Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of A. argyi Extract
2.2. Identification of Extract Constituents
2.3. Synthesis and Optimization of AgNPs
2.4. Characterization of AgNPs
2.5. Cell Culture and Cytotoxicity Evaluation
2.6. Antibacterial Activity of AgNPs
2.6.1. Preparation of Bacterial Suspensions
2.6.2. Growth Curve Analysis
2.6.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
2.6.4. Inhibition Zone Assay
2.7. Preparation of AgNPs/PLA/Col1 Electrospun Dressings
2.8. Cytotoxicity and Antibacterial Performance of Electrospun Fibers
2.8.1. Cytotoxicity Evaluation of Electrospun Fibers
2.8.2. Antibacterial Performance Evaluation
2.9. Evaluation of Wound Healing Ability In Vivo
2.9.1. Establishment of Diabetic Rat Model
2.9.2. Preparation of Diabetic Rat Wound Model
2.10. Statistical Analyses
3. Results and Discussion
3.1. Characterization of A. argyi Extract by HPLC-MS Analysis
3.2. Optimization of AgNP Synthesis Conditions
3.2.1. Effect of Volume Ratio, Concentration, and pH
3.2.2. Effect of Reaction Time and Temperature
3.3. Comprehensive Characterization of Synthesized AgNPs
3.3.1. Morphological and Elemental Analysis
3.3.2. Characterization of Dynamic Dimensions and Colloidal Potential
3.3.3. Crystallographic and Molecular Characterization
3.4. Biological Activity Assessment
3.4.1. Cytotoxicity Evaluation of AgNPs
3.4.2. Comprehensive Antibacterial Activity Analysis
3.5. Development and Characterization of AgNPs/PLA/Col1 Nanofiber Dressings
3.6. In Vivo Wound Healing Efficacy in the Diabetic Rat Model
3.6.1. Wound Closure Kinetics
3.6.2. Histological and Immunohistochemical Analysis
3.7. Mechanistic Insights and Clinical Significance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNPs | Silver nanoparticles |
FCC | Face-centered cubic |
PLA | Polylactic acid |
Col1 | Collagen type I |
A. argyi | Artemisia argyi |
UV-vis | Ultraviolet-visible |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
EDS | Energy dispersive X-ray spectroscopy |
FTIR | Fourier-transform infrared spectroscopy |
PDI | polydispersity index |
DLS | dynamic light scattering |
E. coli | Escherichia coli |
S. aureus | Staphylococcus aureus |
HPLC-MS | High-performance liquid chromatography coupled with mass spectrometry |
H&E | Hematoxylin and eosin |
HCl | Hydrochloric acid |
NaOH | Sodium hydroxide |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | Fetal bovine serum |
CCK-8 | Cell Counting Kit-8 |
LB | Luria–Bertani |
OD | Optical density |
OD600 | Optical density at 600 nm |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
NIH | National Institutes of Health |
SD | Sprague–Dawley |
STZ | Streptozotocin |
ANOVA | Analysis of variance. |
References
- Crane, H.; Boam, G.; Carradice, D.; Vanicek, N.; Twiddy, M.; Smith, G.E. Through-knee versus above-knee amputation for vascular and non-vascular major lower limb amputations. Cochrane Database Syst. Rev. 2021, 12, Cd013839. [Google Scholar]
- Chang, S.Y.; Lee, J.H.; Oh, S.C.; Lee, M.Y.; Lim, N.K. Human Fibroblast Growth Factor-Treated Adipose-Derived Stem Cells Facilitate Wound Healing and Revascularization in Rats with Streptozotocin-Induced Diabetes Mellitus. Cells 2023, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Carey, I.M.; Critchley, J.A.; Chaudhry, U.A.R.; DeWilde, S.; Limb, E.S.; Cook, D.G.; Whincup, P.H.; Harris, T. Evaluating Ethnic Variations in the Risk of Infections in People with Prediabetes and Type 2 Diabetes: A Matched Cohort Study. Diabetes Care 2023, 46, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; He, W.; Mu, X.; Wu, X.; Deng, J.; Nie, X. Fibroblasts: Immunomodulatory factors in refractory diabetic wound healing. Front. Immunol. 2022, 13, 918223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.Y.; Pan, Z.W.; Li, Q.Q.; Sun, L.H.; Li, X.; Gong, M.Y.; Yang, X.W.; Wang, Y.Y.; Li, H.D.; et al. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol. Sin. 2023, 44, 999–1013. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Management of Diabetic Foot Ulcers: A Review. Fed. Pract. 2016, 33, 16–23. [Google Scholar]
- Haque, S.T.; Saha, S.K.; Haque, M.E.; Biswas, N. Nanotechnology-based therapeutic applications: In vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 2021, 9, 7705–7747. [Google Scholar] [CrossRef]
- Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Ezhilarasu, H.; Vishalli, D.; Dheen, S.T.; Bay, B.H.; Srinivasan, D.K. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. Nanomaterials 2020, 10, 1234. [Google Scholar] [CrossRef]
- Astaneh, M.E.; Fereydouni, N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS Omega 2024, 9, 41107–41129. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Luo, J.; Qi, X.; Naz, A.; Khan, I.A.; Liu, H.; Yu, S.; Wei, J. Silver Nanoparticles: Synthesis, Structure, Properties and Applications. Nanomaterials 2024, 14, 1425. [Google Scholar] [CrossRef] [PubMed]
- Mavani, K.; Shah, M. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2013, 2, 1–5. [Google Scholar]
- Lu, G.; Yu, S.; Duan, L.; Meng, S.; Ding, S.; Dong, T. Fluorescence detection of hydrazine in an aqueous environment by a corrole derivative. Luminescence 2023, 38, 1968–1976. [Google Scholar] [CrossRef]
- Salunke, B.K.; Sathiyamoorthi, E.; Tran, T.K.; Kim, B.S. Phyto-synthesized silver nanoparticles for biological applications. Korean J. Chem. Eng. 2017, 34, 943–951. [Google Scholar] [CrossRef]
- Noor, S.; Zubair, M.; Ahmad, J. Diabetic foot ulcer--A review on pathophysiology, classification and microbial etiology. Diabetes Metab. Syndr. 2015, 9, 192–199. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Pechyen, C.; Tangnorawich, B.; Toommee, S.; Marks, R.; Parcharoen, Y. Green synthesis of metal nanoparticles, characterization, and biosensing applications. Sens. Int. 2024, 5, 100287. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, J.; Wu, S.; Wang, C.; Guo, X.; Wu, J.; Zhou, M. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis. Sci. Rep. 2018, 8, 5824. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-K.; Agarwal, S.; Kuo, C.-H.; Kung, Y.-L.; Day, C.H.; Lin, P.-Y.; Lin, S.-Z.; Hsieh, D.J.-Y.; Huang, C.-Y.; Chiang, C.-Y. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson’s disease. Phytomedicine 2022, 104, 154250. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, J.; Liao, M.; Hu, R.; Deng, Q.; Wang, Z.; Wang, X.; Tang, Y. Artemisia argyi water extract promotes selenium uptake of peach seedlings. Front. Plant Sci. 2022, 13, 1014454. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Son, Y.J.; Ha, I.J.; Erdenebileg, S.; Jung, D.S.; Song, D.G.; Kim, Y.S.; Kim, S.M.; Nho, C.W. Artemisia argyi extract alleviates inflammation in a DSS-induced colitis mouse model and enhances immunomodulatory effects in lymphoid tissues. BMC Complement. Med. Ther. 2022, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yang, X.; Yin, J.; Rong, X.; Huang, X.; Yu, P.; He, Z.; Liu, Y. Combination of AgNPs and Domiphen is Antimicrobial Against Biofilms of Common Pathogens. Int. J. Nanomed. 2021, 16, 7181–7194. [Google Scholar] [CrossRef]
- Ali, A.Y.; Alani, A.-A.K.; Ahmed, B.O.; Hamid, L.L. Effect of biosynthesized silver nanoparticle size on antibacterial and anti-biofilm activity against pathogenic multi-drug resistant bacteria. OpenNano 2024, 20, 100213. [Google Scholar] [CrossRef]
- Cazzola, M.; Barberi, J.; Ferraris, S.; Cochis, A.; Cempura, G.; Czyrska-Filemonowicz, A.; Rimondini, L.; Spriano, S. Bioactive Titanium Surfaces Enriched with Silver Nanoparticles Through an In Situ Reduction: Looking for a Balance Between Cytocompatibility and Antibacterial Activity. Adv. Eng. Mater. 2023, 25, 2200883. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Pavliňák, D.; Čileková, M.; Lepcio, P.; Abdel-Rahman, R.M.; Jančář, J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2019, 139, 730–739. [Google Scholar] [CrossRef]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021, 334, 463–484. [Google Scholar] [CrossRef]
- Al-Khattaf, F.S.; Al Mousa, A.A.; Alabdulhadi, H.S.; Abo-Dahab, N.F.; Mohamed, H.; Hatamleh, A.A.; Al-Dahmash, N. Characterization and antibacterial activity of raw cotton fabrics treated with date seed extract and silver nanoparticles (AgNPs). Braz. J. Biol. 2023, 83, e270217. [Google Scholar]
- Goh, H.T.; Cheok, C.Y.; Yeap, S.P. Green synthesis of silver nanoparticles using banana peel extract and application on banana preservation. Food Front. 2023, 4, 283–288. [Google Scholar] [CrossRef]
- Elhawary, S.; El-Hefnawy, H.; Mokhtar, F.A.; Sobeh, M.; Mostafa, E.; Osman, S.; El-Raey, M. Green Synthesis of Silver Nanoparticles Using Extract of Jasminum officinal L. Leaves and Evaluation of Cytotoxic Activity Towards Bladder (5637) and Breast Cancer (MCF-7) Cell Lines. Int. J. Nanomed. 2020, 15, 9771–9781. [Google Scholar] [CrossRef] [PubMed]
- Vorobyova, V.; Vasyliev, G.; Uschapovskiy, D.; Lyudmyla, K.; Skiba, M. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation. J. Microbiol. Methods 2022, 193, 106384. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Asiri, S.M.M.; Alzohairy, M.A.; Alomary, M.N.; Almatroudi, A.; Khan, F.A. Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents. Pharmaceuticals 2021, 14, 139. [Google Scholar] [CrossRef]
- Zuorro, A.; Iannone, A.; Miglietta, S.; Lavecchia, R. Green Synthesis of Silver Nanoparticles Using Spent Coffee Ground Extracts: Process Modelling and Optimization. Nanomaterials 2022, 12, 2597. [Google Scholar] [CrossRef]
- Yang, N.; Li, W.-H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 2013, 48, 81–88. [Google Scholar] [CrossRef]
- Xing, Y.; Liao, X.; Liu, X.; Li, W.; Huang, R.; Tang, J.; Xu, Q.; Li, X.; Yu, J. Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized with the Peel Extract of Mango. Materials 2021, 14, 5878. [Google Scholar] [CrossRef]
- Khalil, M.M.H.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 2014, 7, 1131–1139. [Google Scholar] [CrossRef]
- Vimala, R.T.V.; Sathishkumar, G.; Sivaramakrishnan, S. Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 110–115. [Google Scholar]
- Hamida, R.S.; Ali, M.A.; Mugren, N.; Al-Zaban, M.I.; Bin-Meferij, M.M.; Redhwan, A. Planophila laetevirens-Mediated Synthesis of Silver Nanoparticles: Optimization, Characterization, and Anticancer and Antibacterial Potentials. ACS Omega 2023, 8, 29169–29188. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.M.; Umoren, S.A. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Colloid. Interface Sci. 2016, 462, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, C.; Ahmad, S.; Ri, C.; Tang, J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. J. Environ. Manag. 2023, 344, 118546. [Google Scholar] [CrossRef] [PubMed]
- Manosalva, N.; Tortella, G.; Cristina Diez, M.; Schalchli, H.; Seabra, A.B.; Durán, N.; Rubilar, O. Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 2019, 35, 88. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Alghamdi, S.S.; Shami, A.; Suliman, R.S.; Aabed, K.; Alotaibi, M.O.; Rahman, I. In silico Prediction of Malvaviscus arboreus Metabolites and Green Synthesis of Silver Nanoparticles—Opportunities for Safer Anti-Bacterial and Anti-Cancer Precision Medicine. Int. J. Nanomed. 2023, 18, 2141–2162. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Shah, Z.; Hassan, S.; Shaheen, K.; Khan, S.A.; Gul, T.; Anwar, Y.; Al-Shaeri, M.A.; Khan, M.; Khan, R.; Haleem, M.A.; et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 111, 110829. [Google Scholar] [CrossRef]
- Li, X.-f.; Zhou, Y.-t.; Feng, X.-q. Superior Photocatalytic Activity and Antibacterial Behavior of Chitosan-Anchored Ag/AgCl Composites. Water Air Soil. Pollut. 2024, 235, 103. [Google Scholar] [CrossRef]
- Tan Sian Hui Abdullah, H.S.; Aqlili Riana Mohd Asseri, S.N.; Khursyiah Wan Mohamad, W.N.; Kan, S.-Y.; Azmi, A.A.; Yong Julius, F.S.; Chia, P.W. Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel. Environ. Pollut. 2021, 271, 116295. [Google Scholar] [CrossRef]
- Bawazeer, S.; Rauf, A.; Shah, S.U.A.; Shawky, A.M.; Al-Awthan, Y.S.; Bahattab, O.S.; Uddin, G.; Sabir, J.; El-Esawi, M.A. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Process. Synth. 2021, 10, 85–94. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zhang, R.; Zhang, M.; Fang, A.; Shi, F. Synthesis of Eco-Friendly Silver Nanoparticles Using Glycyrrhizin and Evaluation of Their Antibacterial Ability. Nanomaterials 2022, 12, 2636. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Aude, J.E.; Morones-Ramírez, J.R.; De Haro-Del Río, D.A.; León-Buitimea, A.; Barriga-Castro, E.D.; Escárcega-González, C.E. Ultra-Small Silver Nanoparticles: A Sustainable Green Synthesis Approach for Antibacterial Activity. Antibiotics 2023, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Lv, H.; Cui, S.; Yang, Q.; Song, X.; Wang, D.; Hu, J.; Zhou, Y.; Liu, Y. AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Mater. Sci. Eng. C 2021, 118, 111331. [Google Scholar] [CrossRef]
- Deng, M.; Kumbar, S.G.; Nair, L.S.; Weikel, A.L.; Allcock, H.R.; Laurencin, C.T. Biomimetic Structures: Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration. Adv. Funct. Mater. 2011, 21, 2641–2651. [Google Scholar] [CrossRef]
- Allizond, V.; Banche, G.; Salvoni, M.; Malandrino, M.; Cecone, C.; Cuffini, A.M.; Bracco, P. Facile One-Step Electrospinning Process to Prepare AgNPs-Loaded PLA and PLA/PEO Mats with Antibacterial Activity. Polymers 2023, 15, 1470. [Google Scholar] [CrossRef]
- Roy, R.; Zayas, J.; Singh, S.K.; Delgado, K.; Wood, S.J.; Mohamed, M.F.; Frausto, D.M.; Albalawi, Y.A.; Price, T.P.; Estupinian, R.; et al. Overriding impaired FPR chemotaxis signaling in diabetic neutrophil stimulates infection control in murine diabetic wound. Elife 2022, 11, e72071. [Google Scholar] [CrossRef]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 195–206. [Google Scholar] [CrossRef]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Sabarees, G.; Velmurugan, V.; Tamilarasi, G.P.; Alagarsamy, V.; Raja Solomon, V. Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers 2022, 14, 3994. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Parameter | Condition | Variable | UV (nm) |
---|---|---|---|---|
1 | Ratio of A.argyi to AgNO3 (v/v) | AgNO3: 4 mM | 1:1 | 415.5 |
A. argyi extract: 4 mg/mL | 1:2 | 414 | ||
pH: 8 | 1:3 | 416 | ||
Time: 40 min | 1:4 | 416 | ||
T: 50 °C | 1:5 | 416.5 | ||
2 | Concentration of AgNO3 (mM) | A.argyi:AgNO3: 1:1(v/v) | 2 | 413 |
A. argyi extract: 4 mg/mL | 4 | 414 | ||
pH: 8 | 6 | 416 | ||
Time: 40 min | 8 | 420.5 | ||
T: 50 °C | 10 | 422 | ||
3 | Concentration of plant extract (mg/mL) | A.argyi:AgNO3: 1:1 (v/v) | 1 | 418.5 |
AgNO3: 6 mM | 2 | 416.5 | ||
pH: 8 | 4 | 415.5 | ||
Time: 40 min | 6 | 415.5 | ||
T: 50 °C | 8 | 415 | ||
4 | pH | A.argyi:AgNO3: 1:1 (v/v) | 5 | 321 |
AgNO3: 6 mM | 6 | 425.5 | ||
A. argyi extract: 8 mg/mL | 7 | 417 | ||
Time: 40 min | 8 | 413.5 | ||
T: 50 °C | 9 | 412.5 | ||
5 | Reaction time (min) | A. argyi:AgNO3: 1:1 (v/v) | 15 | 415 |
AgNO3: 6 mM | 30 | 414.5 | ||
A. argyi extract: 8 mg/mL | 45 | 415 | ||
pH:8 | 60 | 414.5 | ||
T: 50 °C | 75 | 414 | ||
6 | Temperature (°C) | A.argyi:AgNO3: 1:1 (v/v) | 25 | 412.5 |
AgNO3: 6 mM | 40 | 414.5 | ||
A. argyi extract: 8 mg/mL | 60 | 414 | ||
pH: 8 | 80 | 415.5 | ||
Time: 60 min | 90 | 411.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Guan, J.; Ma, X.; Zhao, D.; Han, Y.; Guo, D.; Bai, J.; Guo, Z.; Zhang, X. Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions. J. Funct. Biomater. 2025, 16, 236. https://doi.org/10.3390/jfb16070236
Wang J, Guan J, Ma X, Zhao D, Han Y, Guo D, Bai J, Guo Z, Zhang X. Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions. Journal of Functional Biomaterials. 2025; 16(7):236. https://doi.org/10.3390/jfb16070236
Chicago/Turabian StyleWang, Jiale, Jiawei Guan, Xingyu Ma, Dongyang Zhao, Yongqiang Han, Dongdong Guo, Jialin Bai, Zisheng Guo, and Xiaojun Zhang. 2025. "Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions" Journal of Functional Biomaterials 16, no. 7: 236. https://doi.org/10.3390/jfb16070236
APA StyleWang, J., Guan, J., Ma, X., Zhao, D., Han, Y., Guo, D., Bai, J., Guo, Z., & Zhang, X. (2025). Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions. Journal of Functional Biomaterials, 16(7), 236. https://doi.org/10.3390/jfb16070236