Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = anti-programmed cell death ligand 1 (anti-PD-L1) antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3657 KiB  
Article
Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibition in a Mouse Non-Muscle-Invasive Bladder Cancer Model
by Chih-Rong Shyr, Ching-Feng Wu, Kai-Cheng Yang, Wen-Lung Ma and Chi-Ping Huang
Cancers 2025, 17(15), 2448; https://doi.org/10.3390/cancers17152448 - 24 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually [...] Read more.
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually recur. To add a novel therapy to complement the deficits of the current treatments, this study assesses the antitumor activity and mechanisms of action of intravesical xenogeneic urothelial cell (XUC) treatment as monotherapy and in combination with either chemotherapy or immune checkpoint inhibition (ICI). Methods: The orthotopic NMIBC graft tumor-bearing mice were randomly assigned into different treatment groups, receiving either intravesical XUCs, gemcitabine, anti-programmed death-ligand 1 (PD-L1) antibodies alone or in combination with gemcitabine or anti-PD-1 antibodies. The tumor responses, survival, and immune reactions were analyzed. Results: Intravesical XUC treatment exhibited significantly more antitumor activity to delay tumor progression than the control group and a similar effect to chemotherapy and ICI. In addition, there were significantly higher effects in the combined groups than single treatments. Immune tumor microenvironment and immune cell proliferation, cytotoxicity, and cytokine secretion were also activated by XUC treatment. Moreover, the combined groups have the highest effects. Conclusions: In vivo and ex vivo studies showed increased antitumor efficacy and immune responses by intravesical XUC treatment in single and combined treatments, suggesting a potential utility of this xenogeneic cell immunotherapeutic agent. Intravesical XUC treatment has the potential to address the substantial unmet need in NMIBC therapy as a bladder-sparing treatment option for NMIBC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 478
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

11 pages, 2811 KiB  
Article
miR395e from Manihot esculenta Decreases Expression of PD-L1 in Renal Cancer: A Preliminary Study
by Joanna Bogusławska, Aizhan Rakhmetullina, Małgorzata Grzanka, Alex Białas, Beata Rybicka, Joanna Życka-Krzesińska, Tomasz Molcan, Piotr Zielenkiewicz, Leszek Pączek and Agnieszka Piekiełko-Witkowska
Genes 2025, 16(3), 293; https://doi.org/10.3390/genes16030293 - 27 Feb 2025
Viewed by 1236
Abstract
Background/Objectives: microRNAs are small non-coding RNAs that regulate gene expression by inducing mRNA degradation or inhibiting translation. A growing body of evidence suggests that miRNAs may be utilized as anti-cancer therapeutics by targeting expression of key genes involved in cancerous transformation and [...] Read more.
Background/Objectives: microRNAs are small non-coding RNAs that regulate gene expression by inducing mRNA degradation or inhibiting translation. A growing body of evidence suggests that miRNAs may be utilized as anti-cancer therapeutics by targeting expression of key genes involved in cancerous transformation and progression. Renal cell cancer (RCC) is the most common kidney malignancy. The most efficient RCC treatments involve blockers of immune checkpoints, including antibodies targeting PD-L1 (Programmed Death Ligand 1). Interestingly, recent studies revealed the cross-kingdom horizontal transfer of plant miRNAs into mammalian cells, contributing to the modulation of gene expression by food ingestion. Here, we hypothesized that PD-L1 expression may be modulated by miRNAs originating from edible plants. Methods: To verify this hypothesis, we performed bioinformatic analysis to identify mes-miR395e from Manihot esculenta (cassava) as a promising candidate miRNA that could target PD-L1. To verify PD-L1 regulation mediated by the predicted plant miRNA, synthetic mes-miR395 mimics were transfected into cell lines derived from RCC tumors, followed by evaluation of PD-L1 expression using qPCR and Western blot. Results: Transfection of mes-miR395e mimics into RCC-derived cell lines confirmed that this miRNA decreases expression of PD-L1 in RCC cells at both mRNA and protein levels. Conclusions: This preliminary study shows the promise of plant miRNA as potential adjuvants supporting RCC treatment. Full article
Show Figures

Figure 1

15 pages, 1060 KiB  
Article
Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer
by Tetsu Hirakawa, Kakuhiro Yamaguchi, Kunihiko Funaishi, Kiyofumi Shimoji, Shinjiro Sakamoto, Yasushi Horimasu, Takeshi Masuda, Taku Nakashima, Hiroshi Iwamoto, Hironobu Hamada, Shingo Yamada and Noboru Hattori
Cancers 2025, 17(4), 572; https://doi.org/10.3390/cancers17040572 - 7 Feb 2025
Cited by 2 | Viewed by 1132
Abstract
Background/Objectives: Vascular endothelial growth factor (VEGF)-A promotes an immunosuppressive tumor microenvironment, potentially affecting the efficacy of anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody therapy. VEGF121 and VEGF165, VEGF-A isoforms, promote and inhibit tumor growth, respectively. Additionally, [...] Read more.
Background/Objectives: Vascular endothelial growth factor (VEGF)-A promotes an immunosuppressive tumor microenvironment, potentially affecting the efficacy of anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody therapy. VEGF121 and VEGF165, VEGF-A isoforms, promote and inhibit tumor growth, respectively. Additionally, VEGF-A levels differ depending on whether they are measured in serum or plasma. However, whether the serum or plasma levels of total VEGF-A (tVEGF-A) or its isoforms are the most suitable for predicting anti-PD-1/PD-L1 antibody therapy efficacy remains unclear. Methods: Eighty-six patients with non-small-cell lung cancer (NSCLC) who were treated with anti-PD-1/PD-L1 antibody monotherapy between December 2015 and December 2023 were retrospectively enrolled. The association between the serum and plasma levels of tVEGF-A and its isoforms (VEGF121 and VEGF165) and treatment outcomes was analyzed. Results: The median progression-free survival (PFS) was 2.9 months, and the objective response rate (ORR) was 23.3%. PFS was significantly shorter in patients with higher tVEGF-A serum levels (≥484.2 pg/mL) than in those without (median PFS 2.1 vs. 3.7 months, p = 0.004). In contrast, plasma tVEGF-A levels could not be used to stratify PFS. Therefore, the serum levels of VEGF-A isoforms were measured. Patients with higher VEGF121 serum levels (≥523.5 pg/mL) showed both significantly shorter PFS (median PFS 2.3 vs. 3.3 months, p = 0.022) and a lower ORR (9.7% vs. 30.9%, p = 0.033) than those without. Multivariate Cox and logistic regression analyses showed that higher levels of serum VEGF121 were significantly associated with shorter PFS and a lower ORR. Conclusions: Serum VEGF121 levels may be useful in predicting anti-PD-1/PD-L1 antibody monotherapy efficacy. Full article
(This article belongs to the Special Issue Novel Biomarkers in Non-Small Cell Lung Cancer (NSCLC))
Show Figures

Figure 1

9 pages, 965 KiB  
Article
Avelumab in First Line Maintenance in Advanced Urothelial Carcinoma (aUC) in Elderly Patients: Efficacy, Tolerability, and Quality of Life in Real Life Setting
by Rossella De Luca, Pasquale Vitale, Alessio Pepe, Roberta Spedaliere, Alchiede Simonato, Raffaele Addeo and Giuseppe Cicero
Sci. Pharm. 2024, 92(4), 62; https://doi.org/10.3390/scipharm92040062 - 28 Nov 2024
Viewed by 1403
Abstract
(1) Background Immune checkpoint inhibitors (ICIs) have recently become an important therapeutic option for patients with advanced urothelial carcinoma (aUC). Avelumab is an anti-PD-L1 (programmed cell death ligand 1) antibody that restores antitumor T-cell immune function by blocking the binding of PD-1 to [...] Read more.
(1) Background Immune checkpoint inhibitors (ICIs) have recently become an important therapeutic option for patients with advanced urothelial carcinoma (aUC). Avelumab is an anti-PD-L1 (programmed cell death ligand 1) antibody that restores antitumor T-cell immune function by blocking the binding of PD-1 to its ligand PD-L1. (2) Methods: Our study enrolled 60 elderly patients (≥70 years) diagnosed with aUC. The primary endpoints of this study were overall survival (OS), progression free survival (PFS), and objective response rate (ORR); the secondary endpoints were tolerability, pre- and post- treatment reduction in serum Ca 19.9, and quality of life (QoL). (3) Results: Our results showed no statistically significant or clinically relevant differences between the PD-L1-positive and negative groups. Avelumab was well tolerated and resulted in good disease control, with a moderate toxicity profile and significant clinical benefit. The median PFS was 3.6 months (95% CI: 2.3–6.8), and the median OS was 18.6 months (95% CI: 6.3–20.7), with an ORR of 20%. A significant correlation was observed between serum Ca 19.9 reduction and PFS of 0.59 (95% CI: 0.12–0.57), p = 0.007. (4) Conclusions: Avelumab is an immunotherapy treatment that has been shown to be an effective and well tolerated treatment option in elderly patients with aUC. Full article
Show Figures

Figure 1

17 pages, 44291 KiB  
Article
Inflammation-Triggering Engineered Macrophages (MacTriggers) Enhance Reactivity of Immune Checkpoint Inhibitor Only in Tumor Tissues
by Kenta Tanito, Teruki Nii, Kanae Wakuya, Yusuke Hamabe, Toma Yoshimi, Takanatsu Hosokawa, Akihiro Kishimura, Takeshi Mori and Yoshiki Katayama
Cancers 2024, 16(22), 3787; https://doi.org/10.3390/cancers16223787 - 10 Nov 2024
Cited by 3 | Viewed by 2435
Abstract
Background: We have previously reported engineered macrophages (MacTriggers) that can accelerate the release of tumor necrosis factor-α in response to M2 polarization. MacTriggers are characterized by two original characteristics of macrophages: (1) migration to tumors; and (2) polarization to the M2 phenotype in [...] Read more.
Background: We have previously reported engineered macrophages (MacTriggers) that can accelerate the release of tumor necrosis factor-α in response to M2 polarization. MacTriggers are characterized by two original characteristics of macrophages: (1) migration to tumors; and (2) polarization to the M2 phenotype in tumors. Intravenously administered MacTriggers efficiently accumulated in the tumors and induced tumor-specific inflammation. This study reports a novel methodology for enhancing the anti-tumor effects of immune checkpoint inhibitors (ICIs). Results: In this study, we newly found that the intravenously administered MacTriggers in BALB/c mouse models upregulated the expression levels of immune checkpoint proteins, such as programmed cell death (PD)-1 in CD8+ T cells and PD-ligand 1 (PD-L1) in cancer cells and macrophages. Consequently, in two ICI-resistant tumor-inoculated mouse models, the combined administration of MacTrigger and anti-PD-1 antibody (aPD-1) synergistically inhibited tumor growth, whereas monotherapy with aPD-1 did not exhibit anti-tumor effects. This synergistic effect was mainly from aPD-1 enhancing the tumor-attacking ability of CD8+ T cells, which could infiltrate into the tumors following MacTrigger treatment. Importantly, no side effects were observed in normal tissues, particularly in the liver and spleen, indicating that the MacTriggers did not enhance the aPD-1 reactivity in normal tissues. This specificity was from the MacTriggers not polarizing to the M2 phenotype in normal tissues, thereby avoiding inflammation and increased PD-1/PD-L1 expression. MacTriggers could enhance aPD-1 reactivity only in tumors following tumor-specific inflammation induction. Conclusions: Our findings suggest that the MacTrigger and aPD-1 combination therapy is a novel approach for potentially overcoming the current low ICI response rates while avoiding side effects. Full article
(This article belongs to the Topic Inflammatory Tumor Immune Microenvironment)
Show Figures

Graphical abstract

12 pages, 3097 KiB  
Article
Development of a Mammalian Cell Line for Stable Production of Anti-PD-1
by Erika Csató-Kovács, Pál Salamon, Szilvia Fikó-Lászlo, Krisztina Kovács, Alice Koka, Mónika András-Korodi, Emőke Antal, Emília Brumă, Brigitta Tőrsők, Szilárd Gudor, Ildikó Miklóssy, Kálmán Csongor Orbán, Csilla Albert, Emese Éva Bálint and Beáta Albert
Antibodies 2024, 13(4), 82; https://doi.org/10.3390/antib13040082 - 3 Oct 2024
Cited by 2 | Viewed by 3092
Abstract
Background/Objectives: Immune checkpoint blockade, particularly targeting the programmed cell death 1 (PD-1) receptor, is a promising strategy in cancer immunotherapy. The interaction between PD-1 and its ligands, PD-L1 and PD-L2, is crucial in immune evasion by tumors. Blocking this interaction with monoclonal antibodies [...] Read more.
Background/Objectives: Immune checkpoint blockade, particularly targeting the programmed cell death 1 (PD-1) receptor, is a promising strategy in cancer immunotherapy. The interaction between PD-1 and its ligands, PD-L1 and PD-L2, is crucial in immune evasion by tumors. Blocking this interaction with monoclonal antibodies like Nivolumab can restore anti-tumor immunity. This study aims to develop a stable expression system for Nivolumab-based anti-PD-1 in the Chinese Hamster Ovary (CHO) DG44 cell line using two different expression vector systems with various signal sequences. Methods: The heavy chain (HC) and light chain (LC) of Nivolumab were cloned into two expression vectors, pOptiVEC and pcDNA3.3. Each vector was engineered with two distinct signal sequences, resulting in the creation of eight recombinant plasmids. These plasmids were co-transfected into CHO DG44 cells in different combinations, allowing for the assessment of stable antibody production. Results: Both pOptiVEC and pcDNA3.3 vectors were successful in stably integrating and expressing the Nivolumab-based anti-PD-1 antibody in CHO DG44 cells. This study found that the choice of signal sequence significantly influenced the quantity of antibodies produced. The optimization of production conditions further enhanced antibody yield, indicating the potential for large-scale production. Conclusions: This study demonstrates that both pOptiVEC and pcDNA3.3 expression systems are effective for the stable production of Nivolumab-based anti-PD-1 in CHO DG44 cells. Signal sequences play a critical role in determining the expression levels, and optimizing production conditions can further increase antibody yield, supporting future applications in cancer immunotherapy. Full article
Show Figures

Graphical abstract

31 pages, 1385 KiB  
Review
Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors
by Luciana Alexandra Pavelescu, Robert Mihai Enache, Oana Alexandra Roşu, Monica Profir, Sanda Maria Creţoiu and Bogdan Severus Gaspar
Int. J. Mol. Sci. 2024, 25(17), 9659; https://doi.org/10.3390/ijms25179659 - 6 Sep 2024
Cited by 12 | Viewed by 7010
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor [...] Read more.
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies. Full article
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
A Novel Monoclonal Antibody against PD-1 for the Treatment of Viral Oncogene-Induced Tumors or Other Cancer
by Xu Xu, Shih-Long Yan, Yi-Te Yo, Peiyu Chiang, Chan-Yen Tsai, Lih-Ling Lin and Albert Qin
Cancers 2024, 16(17), 3052; https://doi.org/10.3390/cancers16173052 - 1 Sep 2024
Cited by 1 | Viewed by 2530
Abstract
Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In [...] Read more.
Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In vitro binding assays revealed that P1801 uniquely binds to human PD-1 and inhibits its interaction with PD-L1/2. It showed a minor effect on the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). P1801 significantly induced the release of IL-2 from activated T-cells but not from nonactivated T-cells. A dose-dependent linear PK profile was observed for the cynomolgus monkeys treated with repeated doses of P1801 at 5 mg/kg to 200 mg/kg once weekly. A four-week repeat-dose toxicity study revealed that P1801 given weekly was safe and well tolerated at doses ranging from 5 to 200 mg/kg/dose. No pathological abnormalities were noted. In humanized PD-1 mice harboring human PD-L1-expressing colon tumor cells, P1801 administered intraperitoneally twice per week at 12 mg/kg significantly inhibited tumor growth and prolonged mouse survival. P1801 displayed unique binding properties different from pembrolizumab and nivolumab. Therefore, it showed distinctive immunological reactions and significant antitumor activities. We are initiating a Phase 1 clinical study to test its combination use with ropeginterferon alfa-2b, which also has antiviral and antitumor activities, for the treatment of cancer. Full article
(This article belongs to the Special Issue Viral Oncogenes and Their Role in Cancer Pathogenesis)
Show Figures

Figure 1

8 pages, 1576 KiB  
Article
No Correlation between PD-L1 and NIS Expression in Lymph Node Metastatic Papillary Thyroid Carcinoma
by Lévay Bernadett, Kiss Alexandra, Fröhlich Georgina, Tóth Erika, Slezák András, Péter Ilona, Oberna Ferenc and Dohán Orsolya
Diagnostics 2024, 14(17), 1858; https://doi.org/10.3390/diagnostics14171858 - 26 Aug 2024
Viewed by 1386
Abstract
Approximately 90% of thyroid cancers are differentiated thyroid cancers (DTCs), originating from follicular epithelial cells. Out of these, 90% are papillary thyroid cancer (PTC), and 10% are follicular thyroid cancer (FTC). The standard care procedure for PTC includes surgery, followed by radioiodine (RAI) [...] Read more.
Approximately 90% of thyroid cancers are differentiated thyroid cancers (DTCs), originating from follicular epithelial cells. Out of these, 90% are papillary thyroid cancer (PTC), and 10% are follicular thyroid cancer (FTC). The standard care procedure for PTC includes surgery, followed by radioiodine (RAI) ablation and thyroid-stimulating hormone (TSH) suppressive therapy. Globally, treating radioiodine-refractory DTC poses a challenge. During malignant transformation, thyroid epithelial cells often lose their ability to absorb radioiodine due to impaired membrane targeting or lack of NIS (sodium/iodide symporter) expression. Recent reports show an increase in PD-L1 (programmed death ligand 1) expression in thyroid cancer cells during dedifferentiation. However, no research exists wherein NIS and PD-L1 expression are analyzed together in thyroid cancer. Therefore, we aimed to investigate and correlate PD-L1 and NIS expression within primary tumor samples of lymph node metastatic PTC. We analyzed the expression of hNIS (human sodium/iodide symporter) and PD-L1 in primary tumor samples from metastatic PTC patients using immunohistochemistry. Immunohistochemistry analysis of PD-L1 and NIS was conducted in 89 and 86 PTC cases, respectively. Any subcellular NIS localization was counted as a positive result. PD-L1 expression was absent in 25 tumors, while 58 tumors displayed PD-L1 expression in 1–50% of their cells; in 6 tumors, over 50% of the cells tested positive for PD-L1. NIS immunohistochemistry was performed for 86 primary papillary carcinomas, with 51 out of 86 tumors showcasing NIS expression. Only in seven cases was NIS localized in the plasma membrane; in most tumors, NIS was primarily found in the intracytoplasmic membrane compartments. In the case of PD-L1 staining, cells showing linear membrane positivity of any intensity were counted as positive. The evaluation of NIS immunostaining was simpler: cells showing staining of any intensity of cytoplasmic or membranous fashion were counted as positive. The number of NIS positive cells can be further divided into cytoplasmic and membrane positive compartments. There was no observed correlation between PD-L1 and NIS expression. We can speculate that the manipulation of the PD-1/PD-L1 axis using anti-PD-L1 or anti-PD-1 antibodies could reinstate the functional expression of NIS. However, based on our study, the only conclusion that can be drawn is that there is no correlation between the percentage of NIS- or PD-L1-expressing tumor cells in the primary tumor of lymph node metastatic PTC. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Thyroid Cancer)
Show Figures

Figure 1

24 pages, 8704 KiB  
Article
Immunomodulatory R848-Loaded Anti-PD-L1-Conjugated Reduced Graphene Oxide Quantum Dots for Photothermal Immunotherapy of Glioblastoma
by Yu-Jen Lu, Reesha Kakkadavath Vayalakkara, Banendu Sunder Dash, Shang-Hsiu Hu, Thejas Pandaraparambil Premji, Chun-Yuan Wu, Yang-Jin Shen and Jyh-Ping Chen
Pharmaceutics 2024, 16(8), 1064; https://doi.org/10.3390/pharmaceutics16081064 - 13 Aug 2024
Cited by 4 | Viewed by 2556
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To [...] Read more.
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To potentially shift the GBM environment from being immunosuppressive to immune-enhancing, we engineered a novel nanovehicle from reduced graphene oxide quantum dot (rGOQD), which are loaded with the immunomodulatory drug resiquimod (R848) and conjugated with an anti-PD-L1 antibody (aPD-L1). The immunomodulatory rGOQD/R8/aPDL1 nanoparticles can actively target the PD-L1 on the surface of ALTS1C1 murine glioblastoma cells and release R848 to enhance the T-cell-driven anti-tumor response. From in vitro experiments, the PD-L1-mediated intracellular uptake and the rGOQD-induced photothermal response after irradiation with near-infrared laser light led to the death of cancer cells and the release of damage-associated molecular patterns (DAMPs). The combinational effect of R848 and released DAMPs synergistically produces antigens to activate dendritic cells, which can prime T lymphocytes to infiltrate the tumor in vivo. As a result, T cells effectively target and attack the PD-L1-suppressed glioma cells and foster a robust photothermal therapy elicited anti-tumor immune response from a syngeneic mouse model of GBM with subcutaneously implanted ALTS1C1 cells. Full article
(This article belongs to the Special Issue Metal and Carbon Nanomaterials for Pharmaceutical Applications)
Show Figures

Figure 1

11 pages, 2328 KiB  
Article
Modulating Tumor Immunity by Targeting Tumor Fibrotic Stroma and Angiogenic Vessels for Lung Cancer Treatment
by Yi Yuan, Falguni Mishra, Bin Li, Guangda Peng, Payton Chan, Jenny Yang and Zhiren Liu
Cancers 2024, 16(13), 2483; https://doi.org/10.3390/cancers16132483 - 8 Jul 2024
Cited by 4 | Viewed by 1932
Abstract
Fibrotic stroma and angiogenic tumor vessels play an important role in modulating tumor immunity. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces the apoptosis of cells that express high levels [...] Read more.
Fibrotic stroma and angiogenic tumor vessels play an important role in modulating tumor immunity. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces the apoptosis of cells that express high levels of the integrin. Both activated cancer-associated fibroblasts (CAFs) and angiogenic endothelial cells (aECs) in tumors express high levels of integrin αvβ3. ProAgio simultaneously and specifically induces apoptosis in CAFs and aECs in tumors. We provide evidence here that the depletion of CAFs and the elimination of leaky tumor angiogenic vessels by ProAgio alter tumor immunity. ProAgio reduces CD4+ Treg and Myeloid-derived suppressor cells (MDSCs), increases CD8+ T-cells, and increases the M1/M2 macrophage ratio in the tumor. The depletion of dense fibrotic stroma (CAFs) by ProAgio decreases the Programmed Death Ligand 1 (PDL-1) levels in the stroma areas surrounding the tumors, and thus strongly increases the delivery of anti-PDL-1 antibody to the target cancer cells. The impact of ProAgio on tumor immunity provides strong synergistical effects of checkpoint inhibitors on lung cancer treatment. Full article
(This article belongs to the Special Issue Immunosuppression and Protective Immunity in Tumor Microenvironment)
Show Figures

Figure 1

14 pages, 2428 KiB  
Article
Neutrophils Expressing Programmed Death-Ligand 1 Play an Indispensable Role in Effective Bacterial Elimination and Resolving Inflammation in Methicillin-Resistant Staphylococcus aureus Infection
by Azusa Terasaki, Faizan Ahmed, Alato Okuno, Zhenzi Peng, Duo-Yao Cao and Suguru Saito
Pathogens 2024, 13(5), 401; https://doi.org/10.3390/pathogens13050401 - 11 May 2024
Cited by 2 | Viewed by 2169
Abstract
Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; [...] Read more.
Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1+ neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant Staphylococcus aureus (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution. The frequency of PD-L1+ neutrophils was dramatically increased in MRSA-infected mice, and this population exhibited enhanced activity in bacterial elimination compared to PD-L1- neutrophils. The administration of PD-L1 monoclonal antibody did not impair PD-L1+ neutrophil function, suggesting that PD-L1 expression itself does not influence neutrophil activity. However, PD-1/PD-L1 blockade significantly delayed liver inflammation resolution in MRSA-infected mice, as indicated by their increased plasma alanine transaminase (ALT) levels and frequencies of inflammatory leukocytes in the liver, implying that neutrophil PD-L1 suppresses the inflammatory response of these cells during the acute phase of MRSA infection. Our results reveal that elevated PD-L1 expression can be a marker for the enhanced anti-bacterial function of neutrophils. Moreover, PD-L1+ neutrophils are an indispensable population attenuating inflammatory leukocyte activities, assisting in a smooth transition into the resolution phase in MRSA infection. Full article
(This article belongs to the Special Issue Current Research on Host–Pathogen Interaction in 2024)
Show Figures

Graphical abstract

12 pages, 2646 KiB  
Article
Difference between Keratinized- and Non-Keratinized-Originating Epithelium in the Process of Immune Escape of Oral Squamous Cell Carcinoma
by Yoshiaki Kitsukawa, Chonji Fukumoto, Toshiki Hyodo, Yuske Komiyama, Ryo Shiraishi, Aya Koike, Shuma Yagisawa, Yosuke Kunitomi, Tomonori Hasegawa, Wataru Kotani, Kazuyuki Ishida, Takahiro Wakui and Hitoshi Kawamata
Int. J. Mol. Sci. 2024, 25(7), 3821; https://doi.org/10.3390/ijms25073821 - 29 Mar 2024
Cited by 2 | Viewed by 2620
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death 1 ligand 1 (PD-L1) antibodies, are significantly changing treatment strategies for human malignant diseases, including oral cancer. Cancer cells usually escape from the immune system and acquire proliferative capacity and invasive/metastatic potential. We have focused [...] Read more.
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death 1 ligand 1 (PD-L1) antibodies, are significantly changing treatment strategies for human malignant diseases, including oral cancer. Cancer cells usually escape from the immune system and acquire proliferative capacity and invasive/metastatic potential. We have focused on the two immune checkpoints, PD-1/PD-L1 and CD47/SIRPα, in the tumor microenvironment of oral squamous cell carcinoma (OSCC), performed a retrospective analysis of the expression of seven immune-related factors (PD-L1, PD-1, CD4, CD8, CD47, CD56 and CD11c), and examined their correlation with clinicopathological status. As a result, there were no significant findings relating to seven immune-related factors and several clinicopathological statuses. However, the immune checkpoint-related factors (PD-1, PD-L1, CD47) were highly expressed in non-keratinized epithelium-originated tumors when compared to those in keratinized epithelium-originated tumors. It is of interest that immunoediting via immune checkpoint-related factors was facilitated in non-keratinized sites. Several researchers reported that the keratinization of oral mucosal epithelia affected the immune response, but our present finding is the first study to show a difference in tumor immunity in the originating epithelium of OSCC, keratinized or non-keratinized. Tumor immunity, an immune escape status of OSCC, might be different in the originating epithelium, keratinized or non-keratinized. Full article
(This article belongs to the Special Issue Oral Cancers: Molecular Basis and Treatment Targets)
Show Figures

Figure 1

30 pages, 5770 KiB  
Review
Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1
by Ana Dillen, Indy Bui, Megan Jung, Stephanie Agioti, Apostolos Zaravinos and Benjamin Bonavida
Cancers 2024, 16(6), 1237; https://doi.org/10.3390/cancers16061237 - 21 Mar 2024
Cited by 13 | Viewed by 4732
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host’s immune response, which is [...] Read more.
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host’s immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells’ functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells’ anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial–mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

Back to TopTop