Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Evaluations of the Objective Response Rate and Progression-Free Survival
2.3. Measurement of tVEGF-A and Its Isoforms
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prediction of the Therapeutic Effect of Anti-PD-1/PD-L1 Antibody Monotherapy by Serum and Plasma tVEGF-A
3.3. Prediction of the Therapeutic Effect of Anti-PD-1/PD-L1 Antibody Monotherapy by Serum VEGF-A Isoforms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | area under the curve |
CCL | C-C motif chemokine ligand |
CI | confidence interval |
COPD | chronic obstructive pulmonary disease |
CR | complete response |
CXCL | C-X-C motif chemokine ligand |
ELISA | enzyme-linked immunosorbent assay |
ICI | immune checkpoint inhibitor |
IQR | interquartile range |
NSCLC | non-small-cell lung cancer |
NE | not evaluable |
NRP | neuropilin |
ORR | objective response rate |
PD-1 | programmed cell death 1 |
PD-L1 | programmed cell death ligand 1 |
PFS | progression-free survival |
PR | partial response |
PD | progressive disease |
RECIST | Response Evaluation Criteria in Solid Tumors |
ROC | receiver operating characteristic |
SD | stable disease |
tVEGF | total vascular endothelial growth factor |
TPS | tumor proportion score |
VEGF | vascular endothelial growth factor |
VEGFR | vascular endothelial growth factor receptor |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Lantuejoul, S.; Damotte, D.; Hofman, V.; Adam, J. Programmed death ligand 1 immunohistochemistry in non-small cell lung carcinoma. J. Thorac. Dis. 2019, 11, S89–S101. [Google Scholar] [CrossRef]
- Nagy, J.A.; Dvorak, A.M.; Dvorak, H.F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol. 2007, 2, 251–275. [Google Scholar] [CrossRef]
- Mabeta, P.; Steenkamp, V. The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 15585. [Google Scholar] [CrossRef]
- Salgado, R.; Benoy, I.; Bogers, J.; Weytjens, R.; Vermeulen, P.; Dirix, L.; Van Marck, E. Platelets and vascular endothelial growth factor (VEGF): A morphological and functional study. Angiogenesis 2001, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- George, M.L.; Eccles, S.A.; Tutton, M.G.; Abulafi, A.M.; Swift, R.I. Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer: Clinical evidence of platelet scavenging? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 3147–3152. [Google Scholar]
- Silva-Hucha, S.; Pastor, A.M.; Morcuende, S. Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System. Int. J. Mol. Sci. 2021, 22, 814. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jeong, D.; Han, Y.S.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 2015, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, J.; Lv, X.J.; Wang, Q.; Qiu, L.X.; Lin, X.Q.; Yu, L.K.; Song, Y. Prognostic value of vascular endothelial growth factor expression in patients with lung cancer: A systematic review with meta-analysis. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2009, 4, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Al Kawas, H.; Saaid, I.; Jank, P.; Westhoff, C.C.; Denkert, C.; Pross, T.; Weiler, K.B.S.; Karsten, M.M. How VEGF-A and its splice variants affect breast cancer development—Clinical implications. Cell. Oncol. 2022, 45, 227–239. [Google Scholar] [CrossRef] [PubMed]
- White, A.L.; Bix, G.J. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases. Biomolecules 2023, 13, 702. [Google Scholar] [CrossRef]
- Yamakuchi, M.; Okawa, M.; Takenouchi, K.; Bibek, A.; Yamada, S.; Inoue, K.; Higurashi, K.; Tabaru, A.; Tanoue, K.; Oyama, Y.; et al. VEGF-A165 is the predominant VEGF-A isoform in platelets, while VEGF-A121 is abundant in serum and plasma from healthy individuals. PLoS ONE 2023, 18, e0284131. [Google Scholar] [CrossRef]
- Ferrara, N. Binding to the extracellular matrix and proteolytic processing: Two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 2010, 21, 687–690. [Google Scholar] [CrossRef]
- Cheung, N.; Wong, M.P.; Yuen, S.T.; Leung, S.Y.; Chung, L.P. Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum. Pathol. 1998, 29, 910–914. [Google Scholar] [CrossRef]
- Kazemi, M.; Carrer, A.; Moimas, S.; Zandonà, L.; Bussani, R.; Casagranda, B.; Palmisano, S.; Prelazzi, P.; Giacca, M.; Zentilin, L.; et al. VEGF121 and VEGF165 differentially promote vessel maturation and tumor growth in mice and humans. Cancer Gene Ther. 2016, 23, 125–132. [Google Scholar] [CrossRef]
- Hashiguchi, T.; Arimura, K.; Matsumuro, K.; Otsuka, R.; Watanabe, O.; Jonosono, M.; Maruyama, Y.; Maruyama, I.; Osame, M. Highly concentrated vascular endothelial growth factor in platelets in Crow-Fukase syndrome. Muscle Nerve 2000, 23, 1051–1056. [Google Scholar] [CrossRef]
- Cappelletto, E.; Fasiolo, L.T.; Salizzato, V.; Piccin, L.; Fabozzi, A.; Contato, A.; Bianco, P.D.; Pasello, G.; Chiarion-Sileni, V.; Gion, M.; et al. Cytokine and soluble programmed death-ligand 1 levels in serum and plasma of cancer patients treated with immunotherapy: Preanalytical and analytical considerations. Int. J. Biol. Markers 2024, 39, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Shibaki, R.; Murakami, S.; Shinno, Y.; Matsumoto, Y.; Yoshida, T.; Goto, Y.; Kanda, S.; Horinouchi, H.; Fujiwara, Y.; Yamamoto, N.; et al. Predictive value of serum VEGF levels for elderly patients or for patients with poor performance status receiving anti-PD-1 antibody therapy for advanced non-small-cell lung cancer. Cancer Immunol. Immunother. 2020, 69, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Tiako Meyo, M.; Jouinot, A.; Giroux-Leprieur, E.; Fabre, E.; Wislez, M.; Alifano, M.; Leroy, K.; Boudou-Rouquette, P.; Tlemsani, C.; Khoudour, N.; et al. Predictive Value of Soluble PD-1, PD-L1, VEGFA, CD40 Ligand and CD44 for Nivolumab Therapy in Advanced Non-Small Cell Lung Cancer: A Case-Control Study. Cancers 2020, 12, 473. [Google Scholar] [CrossRef]
- Ninomiya, H.; Ozeki, M.; Matsuzawa, Y.; Nozawa, A.; Yasue, S.; Kubota, K.; Endo, S.; Asano, T.; Taguchi, K.; Ohe, N.; et al. A pediatric case of anaplastic astrocytoma with a gliomatosis cerebri; the growth pattern and changes in serum VEGF-121 levels after bevacizumab treatment. J. Clin. Neurosci. 2020, 81, 431–433. [Google Scholar] [CrossRef]
- Segerström, L.; Fuchs, D.; Bäckman, U.; Holmquist, K.; Christofferson, R.; Azarbayjani, F. The anti-VEGF antibody bevacizumab potently reduces the growth rate of high-risk neuroblastoma xenografts. Pediatr. Res. 2006, 60, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Barratt, S.L.; Flower, V.A.; Pauling, J.D.; Millar, A.B. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int. J. Mol. Sci. 2018, 19, 1269. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Wartiovaara, U.; Salven, P.; Mikkola, H.; Lassila, R.; Kaukonen, J.; Joukov, V.; Orpana, A.; Ristimäki, A.; Heikinheimo, M.; Joensuu, H.; et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb. Haemost. 1998, 80, 171–175. [Google Scholar] [CrossRef]
- Banks, R.E.; Forbes, M.A.; Kinsey, S.E.; Stanley, A.; Ingham, E.; Walters, C.; Selby, P.J. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: Significance for VEGF measurements and cancer biology. Br. J. Cancer 1998, 77, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Amirkhosravi, A.; Amaya, M.; Siddiqui, F.; Biggerstaff, J.P.; Meyer, T.V.; Francis, J.L. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets 1999, 10, 285–292. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Tian, Y.; Li, Z.; Liu, Z.; Zhu, S. The critical role of platelet in cancer progression and metastasis. Eur. J. Med. Res. 2023, 28, 385. [Google Scholar] [CrossRef] [PubMed]
- Küsters, B.; de Waal, R.M.; Wesseling, P.; Verrijp, K.; Maass, C.; Heerschap, A.; Barentsz, J.O.; Sweep, F.; Ruiter, D.J.; Leenders, W.P. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma. Cancer Res. 2003, 63, 5408–5413. [Google Scholar]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Manenti, L.; Riccardi, E.; Marchini, S.; Naumova, E.; Floriani, I.; Garofalo, A.; Dossi, R.; Marrazzo, E.; Ribatti, D.; Scanziani, E.; et al. Circulating plasma vascular endothelial growth factor in mice bearing human ovarian carcinoma xenograft correlates with tumor progression and response to therapy. Mol. Cancer Ther. 2005, 4, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Minamiya, Y.; Ito, M.; Saito, H.; Ogawa, J. VEGF121 promotes lymphangiogenesis in the sentinel lymph nodes of non-small cell lung carcinoma patients. Lung Cancer 2008, 59, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Watanabe, Y.; Murakami, S.; Oda, M.; Hayashi, Y.; Nonomura, A.; Endo, Y.; Sasaki, T. Vascular endothelial growth factor and lymph node metastasis in primary lung cancer. Br. J. Cancer 1997, 76, 1041–1045. [Google Scholar] [CrossRef]
- Ljungberg, B.; Jacobsen, J.; Häggström-Rudolfssson, S.; Rasmuson, T.; Lindh, G.; Grankvist, K. Tumour vascular endothelial growth factor (VEGF) mRNA in relation to serum VEGF protein levels and tumour progression in human renal cell carcinoma. Urol. Res. 2003, 31, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Broséus, J.; Mourah, S.; Ramstein, G.; Bernard, S.; Mounier, N.; Cuccuini, W.; Gaulard, P.; Gisselbrecht, C.; Brière, J.; Houlgatte, R.; et al. VEGF(121), is predictor for survival in activated B-cell-like diffuse large B-cell lymphoma and is related to an immune response gene signature conserved in cancers. Oncotarget 2017, 8, 90808–90824. [Google Scholar] [CrossRef] [PubMed]
- Zacchigna, S.; Pattarini, L.; Zentilin, L.; Moimas, S.; Carrer, A.; Sinigaglia, M.; Arsic, N.; Tafuro, S.; Sinagra, G.; Giacca, M. Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J. Clin. Investig. 2008, 118, 2062–2075. [Google Scholar] [CrossRef] [PubMed]
- Carrer, A.; Moimas, S.; Zacchigna, S.; Pattarini, L.; Zentilin, L.; Ruozi, G.; Mano, M.; Sinigaglia, M.; Maione, F.; Serini, G.; et al. Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res. 2012, 72, 6371–6381. [Google Scholar] [CrossRef]
- Galeati, G.; Spinaci, M.; Govoni, N.; Zannoni, A.; Fantinati, P.; Seren, E.; Tamanini, C. Stimulatory effects of fasting on vascular endothelial growth factor (VEGF) production by growing pig ovarian follicles. Reproduction 2003, 126, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Hanefeld, M.; Engelmann, K.; Appelt, D.; Sandner, D.; Weigmann, I.; Ganz, X.; Pistrosch, F.; Köhler, C.; Gasparic, A.; Birkenfeld, A.L. Intra-individual variability and circadian rhythm of vascular endothelial growth factors in subjects with normal glucose tolerance and type 2 diabetes. PLoS ONE 2017, 12, e0184234. [Google Scholar] [CrossRef]
All Patients (n = 86) | CR/PR (n = 20) | SD/PD/NE (n = 66) | p-Value | |
---|---|---|---|---|
Age, years | 73 (67–77) | 70 (68–79) | 73 (66–77) | 0.705 |
Sex | 0.163 | |||
Male, n (%) | 60 (69.8) | 11 (55.0) | 49 (74.2) | |
Female, n (%) | 26 (30.2) | 9 (45.0) | 17 (25.8) | |
Smoking history, pack-years † | 50.0 (22.5–60.0) | 56.3 (30.0–79.5) | 49.8 (16.0–60.0) | 0.242 |
BMI | 21.3 (19.3–23.2) | 21.2 (19.7–23.1) | 21.3 (19.0–23.2) | 0.759 |
PS | 0.221 | |||
0–1, n (%) | 68 (79.1) | 18 (90.0) | 50 (75.8) | |
≥2, n (%) | 18 (20.9) | 2 (10.0) | 16 (24.2) | |
History of COPD | 0.427 | |||
+, n (%) | 31 (36.0) | 9 (45.0) | 22 (33.3) | |
–, n (%) | 55 (64.0) | 11 (55.0) | 44 (66.7) | |
Previous thoracic RT | 0.405 | |||
+, n (%) | 26 (30.2) | 4 (20.0) | 22 (33.3) | |
–, n (%) | 60 (69.8) | 16 (80.0) | 44 (66.7) | |
Stage | 0.022 * | |||
III, n (%) | 8 (9.3) | 5 (25.0) | 3 (4.5) | |
IV, n (%) | 50 (58.1) | 11 (55.0) | 39 (59.1) | |
Recurrence, n (%) | 28 (32.6) | 4 (20.0) | 24 (36.4) | |
Histological type | 1.000 | |||
Squamous, n (%) | 13 (15.1) | 3 (15.0) | 10 (15.2) | |
Non-Squamous, n (%) | 73 (84.9) | 17 (85.0) | 56 (84.8) | |
Driver oncogene ‡ | 0.505 | |||
positive, n (%) | 14 (16.3) | 2 (10.0) | 12 (18.2) | |
negative, n (%) | 72 (83.7) | 18 (90.0) | 54 (81.8) | |
PD-L1 TPS | 0.122 | |||
≥50%, n (%) | 41 (47.7) | 14 (70.0) | 27 (40.9) | |
1–49%, n (%) | 18 (20.9) | 3 (15.0) | 15 (22.7) | |
<1%, n (%) | 8 (9.3) | 0 (0.0) | 8 (12.1) | |
unknown, n (%) | 19 (22.1) | 3 (15.0) | 16 (24.2) | |
ICI treatment line | 0.070 | |||
1st, n (%) | 32 (37.2) | 11 (55.0) | 21 (31.8) | |
2nd or later, n (%) | 54 (62.8) | 9 (45.0) | 45 (68.2) | |
ICI agent | 0.009 ** | |||
Anti-PD-1 antibody, n (%) | 69 (80.2) | 20 (100.0) | 49 (74.2) | |
Anti-PD-L1 antibody, n (%) | 17 (19.8) | 0 (0.0) | 17 (25.8) |
Variables | Univariate Analysis | Multivariate Analysis (Model 1) | Multivariate Analysis (Model 2) | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age, ≥75 | 0.788 | 0.488–1.273 | 0.330 | ||||||
Sex, male | 1.587 | 0.927–2.717 | 0.092 | ||||||
Smoking history, pack-years | 0.996 | 0.989–1.003 | 0.236 | ||||||
BMI | 0.993 | 0.930–1.058 | 0.829 | ||||||
PS, ≥2 | 1.231 | 0.705–2.149 | 0.466 | ||||||
History of COPD | 0.555 | 0.334–0.922 | 0.023 * | 0.821 | 0.478–1.410 | 0.475 | 0.800 | 0.462–1.385 | 0.425 |
Previous thoracic RT | 0.987 | 0.596–1.632 | 0.958 | ||||||
Histological type, squamous | 0.805 | 0.423–1.534 | 0.510 | ||||||
Driver oncogene, positive | 1.521 | 0.831–2.784 | 0.174 | ||||||
PD-L1 TPS, ≥50% | 0.722 | 0.450–1.159 | 0.178 | ||||||
ICI treatment line, 1st | 0.577 | 0.351–0.948 | 0.030 * | 0.580 | 0.330–1.017 | 0.057 | 0.696 | 0.404–1.198 | 0.191 |
ICI agent, anti-PD-1 antibody | 0.303 | 0.169–0.545 | <0.001 *** | 0.317 | 0.166–0.606 | <0.001 *** | 0.317 | 0.164–0.613 | <0.001 *** |
Serum tVEGF-A, ≥484.2 pg/mL | 1.952 | 1.220–3.124 | 0.005 ** | 2.511 | 1.496–4.212 | <0.001 *** | |||
Plasma tVEGF-A, ≥137.1 pg/mL | 1.155 | 0.661–2.015 | 0.613 | ||||||
Serum VEGF121, ≥523.5 pg/mL | 1.731 | 1.074–2.790 | 0.024 * | 1.967 | 1.167–3.314 | 0.011 * | |||
Serum VEGF165, ≥165.0 pg/mL | 1.194 | 0.749–1.904 | 0.457 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age, ≥75 | 1.342 | 0.479–3.698 | 0.570 | |||
Sex, male | 0.424 | 0.149–1.215 | 0.109 | |||
Smoking history, pack-years | 1.005 | 0.992–1.019 | 0.432 | |||
BMI | 1.006 | 0.867–1.165 | 0.932 | |||
PS, ≥2 | 0.347 | 0.052–1.387 | 0.145 | |||
History of COPD | 1.636 | 0.581–4.549 | 0.346 | |||
Previous thoracic RT | 0.500 | 0.131–1.559 | 0.242 | |||
Histological type, squamous | 0.988 | 0.205–3.679 | 0.987 | |||
Driver oncogene, positive | 0.500 | 0.073–2.068 | 0.364 | |||
PD-L1 TPS, ≥50% | 3.370 | 1.193–10.551 | 0.021 * | 2.645 | 0.864–8.845 | 0.089 |
ICI treatment line, 1st | 2.619 | 0.947–7.451 | 0.064 | |||
ICI agent, anti-PD-1 antibody | Not available † | Not available † | 0.001 ** | Not available † | Not available † | 0.005 ** |
Serum tVEGF-A, ≥484.2 pg/mL | 0.455 | 0.146–1.284 | 0.139 | |||
Plasma tVEGF-A, ≥137.1 pg/mL | 2.423 | 0.774–7.337 | 0.126 | |||
Serum VEGF121, ≥523.5 pg/mL | 0.239 | 0.052–0.799 | 0.019 * | 0.231 | 0.049–0.819 | 0.022 * |
Serum VEGF165, ≥165.0 pg/mL | 0.682 | 0.244–1.862 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirakawa, T.; Yamaguchi, K.; Funaishi, K.; Shimoji, K.; Sakamoto, S.; Horimasu, Y.; Masuda, T.; Nakashima, T.; Iwamoto, H.; Hamada, H.; et al. Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer. Cancers 2025, 17, 572. https://doi.org/10.3390/cancers17040572
Hirakawa T, Yamaguchi K, Funaishi K, Shimoji K, Sakamoto S, Horimasu Y, Masuda T, Nakashima T, Iwamoto H, Hamada H, et al. Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer. Cancers. 2025; 17(4):572. https://doi.org/10.3390/cancers17040572
Chicago/Turabian StyleHirakawa, Tetsu, Kakuhiro Yamaguchi, Kunihiko Funaishi, Kiyofumi Shimoji, Shinjiro Sakamoto, Yasushi Horimasu, Takeshi Masuda, Taku Nakashima, Hiroshi Iwamoto, Hironobu Hamada, and et al. 2025. "Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer" Cancers 17, no. 4: 572. https://doi.org/10.3390/cancers17040572
APA StyleHirakawa, T., Yamaguchi, K., Funaishi, K., Shimoji, K., Sakamoto, S., Horimasu, Y., Masuda, T., Nakashima, T., Iwamoto, H., Hamada, H., Yamada, S., & Hattori, N. (2025). Predictive Value of Circulatory Total VEGF-A and VEGF-A Isoforms for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small-Cell Lung Cancer. Cancers, 17(4), 572. https://doi.org/10.3390/cancers17040572