Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = anti-friction and anti-wear mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4423 KiB  
Article
Effect of B Element Doping on High-Temperature Tribological Properties of WS2-Based Composite Coatings
by Songmin Zhang, Xiaopeng Zhang, Haichao Cai, Zixuan Huang, Yujun Xue, Lulu Pei and Bowei Kang
Lubricants 2025, 13(8), 332; https://doi.org/10.3390/lubricants13080332 - 30 Jul 2025
Viewed by 195
Abstract
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, [...] Read more.
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, thereby limiting its engineering applications. By doping with B elements, B/WS2 was successfully prepared as a composite coating. The results demonstrate that the fabricated coating exhibits excellent high-temperature tribological performance in atmospheric environments. The mechanism through which B doping improves the high-temperature friction and wear properties of the WS2 composite coating was revealed through high-temperature friction and wear tests. With the incorporation of B elements, the average friction coefficient of the coating was 0.071, and the wear rate was 7.63 × 10−7 mm3·N−1·m−1, with the wear mechanisms identified as abrasive wear and spalling. Due to high-temperature oxidation, thermal decomposition effects, and the formation of WB4 during sputtering, the wear resistance and anti-plastic deformation capability of the coating were further improved. Compared to room-temperature test conditions, the B/WS2 composite coating at different high temperatures exhibited superior friction coefficients and wear rates. Notably, at 150 °C, the average friction coefficient was as low as 0.015, and the wear forms were abrasive wear and adhesive wear. Full article
Show Figures

Figure 1

22 pages, 6390 KiB  
Article
Exploring the Tribological Potential of Y2BaCuO5 Precursor Powders as a Novel Lubricant Additive
by Shuo Cheng, Longgui He and Jimin Xu
Lubricants 2025, 13(7), 315; https://doi.org/10.3390/lubricants13070315 - 19 Jul 2025
Viewed by 303
Abstract
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 [...] Read more.
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 lubricant (CD) was formulated using ultrasonic dispersion. Tribological performance was evaluated using a custom end-face tribometer (steel-on-iron) under varying loads (100–500 N) and speeds (300–500 rpm), comparing CD to neat PAO6. The results indicate that the Y211 additive consistently reduced the coefficient of friction (COF) relative to neat PAO6, maintaining a stable value around ~0.1. However, its effectiveness was strongly load-dependent: a significant friction reduction was observed at 100 N, while the benefit diminished at higher loads (>200 N), with the COF peaking around 200 N. Rotational speed exerted minimal influence. Compared with neat PAO6, the inclusion of 0.3 wt.% Y211 resulted in a reduction in the coefficient of friction by approximately 50% under low-load conditions (100 N), with COF values decreasing from 0.1 to 0.045. Wear depth measurements also revealed a reduction of over 30%, supporting the additive’s anti-wear efficacy. Y211 demonstrates potential as a friction-reducing additive, particularly under low loads, but its high-load performance limitations warrant further optimization and mechanistic studies. This highlights a novel tribological application for Y211. The objective of this study is to evaluate the tribological effectiveness of Y2BaCuO5 (Y211) as a lubricant additive, investigate its load-dependent friction behavior, and explore its feasibility as a multifunctional additive leveraging its superconductive precursor structure. Full article
(This article belongs to the Special Issue Novel Lubricant Additives in 2025)
Show Figures

Figure 1

53 pages, 7445 KiB  
Review
Research on the Application of Nano-Additives in Gel-like Lubricants
by Han Peng, Zihao Meng, Linjian Shangguan, Lei Liu, Can Yang and Lingxi Guo
Gels 2025, 11(7), 546; https://doi.org/10.3390/gels11070546 - 14 Jul 2025
Viewed by 398
Abstract
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on [...] Read more.
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on friction surfaces. This effectively reduces friction resistance and inhibits wear progression, thereby playing a significant role in promoting energy conservation, emissions reduction, and the implementation of green development principles. This study first introduces the physical and chemical preparation processes of gel-like lubricant nanoadditives. It then classifies them (mainly based on metal bases, metal oxides, nanocarbon materials, and other nanoadditives). Then, the performance of gel-like lubricant nano-additives is evaluated (mainly in terms of anti-wear, friction reduction, oxidation resistance, and load carrying capacity), and the surface analysis technology used is described. Finally, we summarize the application scenarios of gel-like lubricant nano-additives, identify the challenges faced, and discuss future prospects. This study provides new insights and directions for the design and synthesis of novel gel-like lubricants with significant lubricating and anti-wear properties in the future. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

27 pages, 6478 KiB  
Article
Mechanism of Friction Reduction in Surface Micro-Textured Mandrels During Hole Cold Expansion
by Guangming Lv, Zhiyuan Wang, Ligang Qu, Jing Li and Chang Liu
Coatings 2025, 15(7), 789; https://doi.org/10.3390/coatings15070789 - 4 Jul 2025
Viewed by 355
Abstract
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the [...] Read more.
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the Lame stress equation and the Mises yield criterion, a plastic strengthening stress distribution model of the hole wall was developed. Integrating Bowden’s adhesive friction theory, a parameterized numerical model was constructed to investigate the influence of micro-texture morphology on interfacial friction and wear behavior. An elastic–plastic contact model for micro-textured mandrels during hole extrusion strengthening was established using ANSYS. The effects of key parameters such as the micro-texture depth and area ratio on the contact pressure field, friction stress distribution, and strengthening performance were quantitatively analyzed. The results show that a circular micro-texture with a depth of 50 μm and an area ratio of 20% can reduce the fluctuation and peak value of the contact pressure by 41.0% and 29.7%, respectively, and decrease the average friction stress by 8.1%. The interfacial wear resistance and the uniformity of the residual compressive stress distribution on the hole wall are significantly enhanced, providing tribological insight and surface optimization guidance for improving the anti-wear performance and extending the service life of mandrels. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

13 pages, 6820 KiB  
Article
An Exploration of SPS Fabrication and the Sliding Wear Properties of γ-TiAl-Ag Self-Lubrication Materials
by Na Xiao, Chenglong Yang, Shengfei Zhou, Yuliang Yin, Dian Zhao, Yulong Shi and Kang Yang
Surfaces 2025, 8(3), 45; https://doi.org/10.3390/surfaces8030045 - 30 Jun 2025
Viewed by 341
Abstract
To promote the optimization of the anti-friction and anti-wear behavior of lightweight TiAl alloys, γ-TiAl-10 wt.% Ag self-lubricating composites were fabricated, and their mechanical and tribological properties were tested. The results showed that the silver in TiAl-10 wt.% Ag slightly reduced its mechanical [...] Read more.
To promote the optimization of the anti-friction and anti-wear behavior of lightweight TiAl alloys, γ-TiAl-10 wt.% Ag self-lubricating composites were fabricated, and their mechanical and tribological properties were tested. The results showed that the silver in TiAl-10 wt.% Ag slightly reduced its mechanical properties compared with those of pure TiAl alloys. A silver-enriched lubrication film formed on a wear scar, which was helpful in improving the friction and wear behavior. It was found that a large amount of silver gathered at a wear scar, gradually spread out under the action of the sliding friction force, and then increased the silver distribution areas on the wear scar, leading to the good formation of a silver-rich film. Furthermore, an identification model was established to calculate the specific area η of the silver film. A quantitative relationship indicated that an increase in the Ag distribution area improved the tribological behavior of γ-TiAl-10 wt.% Ag. When the specific area η of a silver-rich film was maintained at 44–51%, the small friction coefficient (almost 0.28) and wear rate (about 2.25 × 10−4 mm3·N−1·m−1) were well stabilized. This provides a new research method to improve the tribological performance of TiAl-Ag samples. Full article
Show Figures

Figure 1

26 pages, 1183 KiB  
Review
The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants
by Xuan Yin, Dingyao Zhang, Haosheng Pang, Bing Zhang and Dameng Liu
Lubricants 2025, 13(6), 259; https://doi.org/10.3390/lubricants13060259 - 11 Jun 2025
Viewed by 862
Abstract
During the operation of mechanical equipment, due to the intense friction among raw material or filler particles, there is conspicuous wear on the contact surfaces of components. Using green lubricants assumes a crucial role in mitigating the friction and wear, enhancing the equipment’s [...] Read more.
During the operation of mechanical equipment, due to the intense friction among raw material or filler particles, there is conspicuous wear on the contact surfaces of components. Using green lubricants assumes a crucial role in mitigating the friction and wear, enhancing the equipment’s service life and the production’s reliability. This review centers on investigating the wear mechanism of green lubricants and undertakes a comprehensive summary and in-depth analysis of the research approach, integrating numerical simulation and friction and wear experiments. Moreover, the construction of the friction and wear testing machine and the intelligence of the testing system were probed, offering valuable design theories and research schemes for the development of effective anti-wear green lubricants. Full article
Show Figures

Figure 1

17 pages, 4979 KiB  
Article
Dispersion Stability and Tribological Properties of Cold Plasma-Modified h-BN Nanofluid
by Zhenjing Duan, Ziheng Wang, Yishuai Jia, Shuaishuai Wang, Peng Bian, Ji Tan, Jinlong Song and Xin Liu
Nanomaterials 2025, 15(11), 874; https://doi.org/10.3390/nano15110874 - 5 Jun 2025
Viewed by 527
Abstract
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck [...] Read more.
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck that restricts their application. Currently, to prepare h-BN nanofluids with good dispersion stability, a cold plasma (CP) modification of h-BN nanoparticles is proposed in this study. In this research, h-BN nanofluid with added surfactant (SNL), CP-modified h-BN nanofluid with N2 as the working gas (CP(N2)NL), and CP-modified h-BN nanofluid with O2 as the working gas (CP(O2)NL) were prepared, separately. The mechanism of the dispersion stability of CP-modified h-BN nanofluid was analyzed using X-ray photoelectron spectroscopy (XPS), and the performance of CP-modified nanofluid was analyzed based on static observation of nanofluid, kinematic viscosity, and heat transfer properties. Finally, friction and wear experiments were conducted to further analyze the tribological performance of h-BN nanofluids based on the coefficient of friction, 3D surface morphology, surface roughness (Sa), scratches, and micro-morphology. The results show that CP-modified h-BN nanofluid has excellent dispersed suspension stability and can be statically placed for more than 336 h. The CP-modified h-BN nanofluid showed stable friction-reducing, anti-wear, and heat transfer performance, in which the coefficient of friction of h-BN nanofluid was about 0.66 before and after 24 h of settling. The Sa value of the sample was reduced by 31.6–49.2% in comparison with pure cottonseed oil (CO). Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

22 pages, 16513 KiB  
Article
Investigation of Superhydrophobic, Drag-Reducing and Anti-Icing Properties of Swimming Goggles
by Junyi Ding, Haiqi Lin, Xubin Guo, Guangfei Wang, Yangyang Jia and Lu Tang
Coatings 2025, 15(6), 664; https://doi.org/10.3390/coatings15060664 - 30 May 2025
Viewed by 468
Abstract
Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address [...] Read more.
Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address these problems and enhance the performance of swimming goggles, this study employs a combination of plasma cleaning and mechanical spraying methods, utilizing HB-139 SiO2 to modify the surface of goggle lenses, thereby fabricating lenses with superhydrophobic properties. The changes in lens surfaces before and after friction and immersion treatments were characterized using three-dimensional profilometry and scanning electron microscopy, further investigating the hydrophobic, drag-reducing, wear-resistant, and anti-icing properties of the lenses. Experimental results demonstrate that SiO2 can enhance the hydrophobic, drag-reducing, durability, and anti-icing performance of the lenses. Under standard conditions, the contact angle of modified samples reached 162.33 ± 3.15°, representing a 48.77 ± 2.15% improvement over original samples. Under friction conditions, modified samples exhibited a 45.86 ± 2.53% increase in contact angle compared to original samples, with Sa values decreasing by 58.64 ± 3.21%. Under immersion conditions, modified samples showed a 54.37 ± 2.44% increase in contact angle relative to original samples. The modified samples demonstrated excellent droplet bouncing performance at temperatures of −10 °C, 10 °C, and 30 °C. De-icing efficiency improved by 14.94 ± 2.37%. Throughout the experimental process, SiO2 demonstrated exceptional hydrophobic, drag-reducing, durability, and anti-icing capabilities. This establishes a robust foundation for the exemplary performance of swimming goggles in both training and competitive contexts. Full article
Show Figures

Figure 1

14 pages, 4128 KiB  
Article
Laser Texturing to Improve Wear Resistance of 65Mn Steel Rotary Tiller Blades: Effects of Scanning Speed
by Heng Xiao, Dongyan Yang, Yiding Ou, Junlan Zhang, Yue Hu and Lei Ma
Lubricants 2025, 13(5), 224; https://doi.org/10.3390/lubricants13050224 - 16 May 2025
Viewed by 589
Abstract
With rapid advancements in agricultural mechanization, enhancing the wear resistance and lifespan of rotary tiller blades is crucial for boosting productivity. This study examines how surface textures affect the friction and wear of 65Mn steel in quartz sand slurry. The results show that [...] Read more.
With rapid advancements in agricultural mechanization, enhancing the wear resistance and lifespan of rotary tiller blades is crucial for boosting productivity. This study examines how surface textures affect the friction and wear of 65Mn steel in quartz sand slurry. The results show that laser processing treatment significantly improves the wear resistance of 65Mn steel blades through the lubrication effect due to the wear debris capturing ability of the laser-processed micro-pits. Samples with surface textures processed using a laser scanning speed of 200 mm/s exhibit the best anti-wear property under loads of both 70 N and 100 N, reducing the wear loss by approximately 44.19% and 36.22%, respectively, compared to the non-textured samples. With the applied load increase to 100 N, laser-processed textures can still reduce wear damage but with an impaired anti-wear effect due to the gradually flattening of some textures due to long-term friction and crush damage by high load conditions. These findings help to augment wear resistance and prolong the operational lifespan of 65Mn steel rotary tiller blades, thereby contributing to a more robust understanding of the tribological enhancements achievable through the laser surface texturing process. Full article
Show Figures

Figure 1

21 pages, 12254 KiB  
Article
Tribological Performance of an Automatic Transmission Fluid Additized with a Phosphonium-Based Ionic Liquid Under Electrified Conditions
by Alejandro García Tuero, Seungjoo Lee, Antolin Hernández Battez and Ali Erdemir
Lubricants 2025, 13(5), 209; https://doi.org/10.3390/lubricants13050209 - 9 May 2025
Cited by 1 | Viewed by 1182
Abstract
This study explores the impact of a phosphonium-based IL (trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate, [P6,6,6,14][BEHP])) on the tribological performance of an automatic transmission fluid (ATF) when used as an additive. Tests were carried out under both non-electrified and electrified conditions in a reciprocating [...] Read more.
This study explores the impact of a phosphonium-based IL (trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate, [P6,6,6,14][BEHP])) on the tribological performance of an automatic transmission fluid (ATF) when used as an additive. Tests were carried out under both non-electrified and electrified conditions in a reciprocating ball-on-flat tribometer. After tribological tests, the worn surfaces were subjected to extensive structural and surface analyses to understand the underlying friction and wear mechanisms. The addition of this ionic liquid improved the anti-wear protection of the ATF, although the wear rates were consistently higher than in non-electrified conditions. The tribofilm formed by the IL-containing ATF augmented the electrical resistance at the contact interface, thereby reducing the likelihood of electrification-induced wear. Our results point to the need for further improvements in the chemical formulation of the ionic liquids, like the one used in the present study, to enhance the protection of sliding surfaces against wear in future electric vehicle applications. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Graphical abstract

28 pages, 4467 KiB  
Review
Review of Laser Texturing Technology for Surface Protection and Functional Regulation of Aluminum Alloys: Wettability, Anti-Icing, Corrosion Resistance, and Wear Resistance
by Jinxia Zhou, Jianmei Wu, Shanshan Tang and Yanzhou Li
Coatings 2025, 15(5), 567; https://doi.org/10.3390/coatings15050567 - 9 May 2025
Viewed by 1387
Abstract
Laser surface texturing (LST) is a versatile method for enhancing material surface properties, offering high precision and flexibility for surface modification. This review comprehensively examines the application of laser texturing technology for surface protection and functional regulation of aluminum alloys, focusing on wettability, [...] Read more.
Laser surface texturing (LST) is a versatile method for enhancing material surface properties, offering high precision and flexibility for surface modification. This review comprehensively examines the application of laser texturing technology for surface protection and functional regulation of aluminum alloys, focusing on wettability, anti-icing, corrosion resistance, and wear resistance. It highlights recent progress in laser surface patterning techniques, describing the principles and attributes of methods such as direct laser writing, laser interference patterning, and laser shock treatment. The influence of laser intensity, scanning velocity, and texture spacing on surface topography is discussed thoroughly. Mechanisms of wettability control via laser surface texturing are summarized, emphasizing the key factors required to achieve superhydrophobic or hydrophilic properties through texture design. Advancements in enhancing anti-icing, anti-frost, anti-fouling, and anti-corrosion properties through multi-scale textures and their synergistic effects with functional coatings are analyzed. Additionally, the enhancement of wear resistance and friction performance under both dry and lubricated conditions is reviewed, with a focus on how the geometry and arrangement of textures affect the coefficient of friction and wear rate. Finally, the paper addresses challenges and future directions, including process optimization, scalability, and the integration of LST with advanced coatings to maximize its potential in aluminum alloy applications. Full article
Show Figures

Figure 1

13 pages, 5825 KiB  
Article
Effect of Climatic and Thermal Aging on Friction of Frost-Resistant Rubber With and Without Ultra-High Molecular Weight Polyethylene Coating
by Ivan Shkalei, Jeng-Haur Horng, Elena Torskaya, Pavel Bukovsky, Aleksey Morozov, Fedor Stepanov, Natalia Petrova, Afanasy Dyakonov and Vasilii Mukhin
Coatings 2025, 15(5), 514; https://doi.org/10.3390/coatings15050514 - 24 Apr 2025
Viewed by 451
Abstract
The polymer composite frost-resistant rubber–UHMWPE (ultra-high molecular weight polyethylene) has simultaneously damping, anti-wear and anti-friction properties. To use it in seals operating in northern climatic conditions, it is necessary to study the effect of climatic aging on mechanical, strength and tribological properties of [...] Read more.
The polymer composite frost-resistant rubber–UHMWPE (ultra-high molecular weight polyethylene) has simultaneously damping, anti-wear and anti-friction properties. To use it in seals operating in northern climatic conditions, it is necessary to study the effect of climatic aging on mechanical, strength and tribological properties of the composite. In this study, climatic aging of rubber and UHMWPE separately was made at testing ground in Yakutsk (Russia), as well as accelerated thermal aging of the composite in laboratory conditions. Comparison of the results of climatic and laboratory aging showed that climatic aging has a negative effect on the properties of both rubber and UHMWPE. Accelerated aging, on the contrary, leads to an improvement in the anti-friction properties of the composite with a small (about 10 percent) increase in its stiffness. Thus, with prolonged use in friction units, the composite should be protected from radiation and ozone. Full article
(This article belongs to the Special Issue Wear and Tribology Properties of Materials, Films and Coatings)
Show Figures

Graphical abstract

15 pages, 14513 KiB  
Article
Effects of Laser Bionic Textures and Diamond-like Carbon Coatings on Tribological Properties of CuAl10Fe5Ni5 Under Oil Lubrication
by Mengjiao Wang, Mingbo Zhu, Xiangkai Meng and Xudong Peng
Coatings 2025, 15(4), 446; https://doi.org/10.3390/coatings15040446 - 9 Apr 2025
Cited by 1 | Viewed by 617
Abstract
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures [...] Read more.
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures were designed on a CuAl10Fe5Ni5 surface via laser processing, and diamond-like carbon (DLC) coatings were subsequently deposited on these hexagonal textures. The tribological properties of textured surfaces and DLC coatings in conjunction with textures under various loads were examined through reciprocating friction tests conducted under oil lubrication conditions. The results demonstrate that the textured surface significantly enhances the stability of the CuAl10Fe5Ni5 alloy and effectively reduces friction and wear under various loading conditions. Hexagonal textures exhibit superior anti-friction and wear-resistant compared to other textures. The friction coefficients of the hexagonal textures at higher loads of 15 N and 20 N are 25% and 16% lower than those of the substrate, and the wear rates are 64% and 12% lower, respectively. DLC coatings further improve the tribological properties of CuAl10Fe5Ni5. The friction coefficients of DLC coatings and textured DLC coatings are 25% and 20% lower than those of the substrate, and the wear rates are 95% and 96% lower than those of the substrate, respectively. These results demonstrate that both textures and DLC coatings effectively enhance the tribological properties of CuAl10Fe5Ni5’s surface. The interaction mechanism between textures and DLC coatings can be attributed primarily to secondary lubrication, debris capture by the textures, self-lubricating properties, and increased surface hardness. Full article
Show Figures

Figure 1

18 pages, 14349 KiB  
Article
Numerical Simulation of the Lubrication Performance of the Stator and Rotor Friction Pair Surface Rhombus-like Texture in Screw Pumps
by Xiangzhi Shi, Xinfu Liu, Chunhua Liu, Zhongxian Hao, Shouzhi Huang, Yi Sun and Xinglong Niu
Lubricants 2025, 13(4), 157; https://doi.org/10.3390/lubricants13040157 - 2 Apr 2025
Viewed by 575
Abstract
To address wear failure in screw pump stator and rotor friction pairs, this study constructed a numerical model of a rhombus-like micro-dimple texture on friction pair surfaces based on the scale structure of rhombus rattlesnakes. The model was based on the fluid dynamic [...] Read more.
To address wear failure in screw pump stator and rotor friction pairs, this study constructed a numerical model of a rhombus-like micro-dimple texture on friction pair surfaces based on the scale structure of rhombus rattlesnakes. The model was based on the fluid dynamic pressure lubrication mechanism. The CFD method was used to calculate the bearing capacity, friction coefficient, flow field pressure distribution, and flow trace distribution of an oil film carrying surface. The effects of the area rate, depth, shape, and angle of the rhombus-like dimple texture and the actual well fluid viscosity of shale oil on the surface lubrication performance of screw pump stator and rotor friction pairs were analyzed. The results demonstrated that increasing the texture area rate and the angle of the long sides and decreasing the texture angle resulted in a decrease in the oil film surface friction coefficient and an increase in the average pressure and net bearing capacity as well as the hydrodynamic lubrication performance. The average pressure increased and then decreased as the texture depth increased, while the friction coefficient of the oil film surface initially decreased and then increased. At a texture depth of 20 μm, the friction coefficient reached its lowest value while the average pressure and net bearing capacity of the oil film reached their highest value, which resulted in optimal hydrodynamic lubrication performance. When the texture depth became greater than 20 μm, vortices were gradually formed within the texture, which decreased the hydrodynamic lubrication performance. When the area rate of the rhombus-like dimple texture, depth, angle between long sides, and angle were, respectively, equal to 27%, 20 μm, 74°, and 0°, the net bearing capacity of the oil film was maximized, the friction coefficient was minimized, and the hydrodynamic lubrication performance and anti-wear effect reached their highest values. The increase in the viscosity of the actual well fluid could enhance the dynamic pressure lubrication performance and improve the bearing capacity. Full article
(This article belongs to the Special Issue Tribology of Textured Surfaces)
Show Figures

Figure 1

15 pages, 7956 KiB  
Article
A Study on the Surfactant and Tribological Properties of Water-Based Nano-Rolling Lubricants on Non-Ferrous Metal Surfaces
by Yuchuan Zhu, Zixuan Li and Changyu Han
Lubricants 2025, 13(4), 152; https://doi.org/10.3390/lubricants13040152 - 31 Mar 2025
Viewed by 541
Abstract
This study proposes a composite-surfactant-assisted method for preparing Fe3O4 water-based nanolubricants to enhance environmental and tribological performance in rolling applications. The dispersion stability of nanoparticles in the suspension was analyzed. The optimal concentration of the nanolubricant was identified. In addition, [...] Read more.
This study proposes a composite-surfactant-assisted method for preparing Fe3O4 water-based nanolubricants to enhance environmental and tribological performance in rolling applications. The dispersion stability of nanoparticles in the suspension was analyzed. The optimal concentration of the nanolubricant was identified. In addition, the reaction mechanism between nanoparticles and water-based nanolubricants was discussed. The experimental results demonstrated that the lubricant containing 6 wt% Fe3O4 nanoparticles exhibited the best anti-friction and anti-wear performance. The aqueous lubricant with composite surfactants showed improved dispersion stability, with its Zeta potential increasing to −43.45 mV, and the intensity curve exhibited a single peak. Through contact angle measurements, wettability was also significantly improved. The molecular interactions of composite surfactants in the prepared water-based nanolubricants were investigated using numerical simulations. The water-based nanolubricant containing composite surfactants displayed enhanced adsorption capacity on Fe3O4 crystals. Compared to other surfactants, the Fe3O4 water-based nanolubricant prepared with composite surfactants exhibited stable dispersion properties. Therefore, composite surfactants can enhance the stability and wettability of water-based nanolubricants. This method enables the preparation of high-performance water-based rolling nanolubricants. Full article
Show Figures

Figure 1

Back to TopTop