The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants
Abstract
1. Introduction
2. Tribological Performances and Wear Mechanisms
2.1. Tribological Performances of Green Lubricants
2.1.1. Green Lubricants Based on Bio-Based Lubricants
- Cellulose
- Vegetable oils
2.1.2. Green Lubricants Based on Water-Based Lubricants
- Ionic liquid
- Hydrogels
2.1.3. Green Lubricants Based on Nano-Lubricants
- MoS2
- Graphene
- Silver
2.2. Wear Mechanisms of Green Lubricants
3. The Current Status of EDEM
4. Friction and Wear Experiments with Green Lubricants
4.1. Commercial Friction and Wear Testing Machines
4.2. Self-Built Friction and Wear Testing Machine
4.3. Intelligentization of the Friction and Wear Testing Machines
5. Conclusions and Prospects
- (1)
- Material dimension: There is a need to broaden the research on the friction interface of the composite green lubricant system and employ discrete element simulation to analyze the formation kinetics of the composite products.
- (2)
- Equipment dimension: The in situ diagnosis of the failure process of lubricant films can be accomplished through the combined application of servo motors and micro-area electrochemical impedance spectroscopy.
- (3)
- Intelligent dimension: By integrating machine vision and online wear debris analysis, researchers can facilitate the upgrade of green lubrication from “passive protection” to “active response”.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2021, 7, 83–103. [Google Scholar] [CrossRef]
- Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Morshed, A.; Wu, H.; Jiang, Z. A Comprehensive Review of Water-Based Nanolubricants. Lubricants 2021, 9, 89. [Google Scholar] [CrossRef]
- Rahman, M.H.; Warneke, H.; Webbert, H.; Rodriguez, J.; Austin, E.; Tokunaga, K.; Rajak, D.K.; Menezes, P.L. Water-Based Lubricants: Development, Properties, and Performances. Lubricants 2021, 9, 73. [Google Scholar] [CrossRef]
- Hatami, M.; Hasanpour, M.; Jing, D. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. J. Mol. Liq. 2020, 319, 114156. [Google Scholar] [CrossRef]
- Kotia, A.; Rajkhowa, P.; Rao, G.S.; Ghosh, S.K. Thermophysical and tribological properties of nanolubricants: A review. Heat Mass Transf. 2018, 54, 3493–3508. [Google Scholar] [CrossRef]
- Darminesh, S.P.; Sidik, N.A.C.; Najafi, G.; Mamat, R.; Ken, T.L.; Asako, Y. Recent development on biodegradable nanolubricant: A review. Int. Commun. Heat Mass Transf. 2017, 86, 159–165. [Google Scholar] [CrossRef]
- Ansari, F.; Sjöstedt, A.; Larsson, P.T.; Berglund, L.A.; Wågberg, L. Hierarchical wood cellulose fiber/epoxy biocomposites—Materials design of fiber porosity and nanostructure. Compos. Part A Appl. Sci. Manuf. 2015, 74, 60–68. [Google Scholar] [CrossRef]
- Lin, L.; Ecke, N.; Kamerling, S.; Sun, C.; Wang, H.; Song, X.; Wang, K.; Zhao, S.; Zhang, J.; Schlarb, A.K. Study on the impact of graphene and cellulose nanocrystal on the friction and wear properties of SBR/NR composites under dry sliding conditions. Wear 2018, 414–415, 43–49. [Google Scholar] [CrossRef]
- Chen, F.; Liao, Y.; Wei, S.; Zhou, H.; Wu, Y.; Qing, Y.; Li, L.; Luo, S.; Tian, C.; Wu, Y. Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors. Int. J. Biol. Macromol. 2023, 250, 126197. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.-C.; Tsai, X.-N.; Pek, S.-S. Tribological behavior and energy dissipation of hybrid nanoparticle-reinforced HPMC composites during sliding wear. Surf. Coat. Technol. 2020, 389, 125617. [Google Scholar] [CrossRef]
- Fahs, A.; Brogly, M.; Bistac, S.; Schmitt, M. Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties. Carbohydr. Polym. 2010, 80, 105–114. [Google Scholar] [CrossRef]
- Ajmal, N.; Mohanan, V.; Pavithran, R.; Rani, S.; Thampi, A.D.; Sneha, E. Lubricant property evaluation of electrical conductive rice bran oil-based lubricant with dioctyl ammonium oleate ionic liquid as an additive. J. Am. Oil Chem. Soc. 2025, 102, 903–912. [Google Scholar] [CrossRef]
- Hamnas, A.; Unnikrishnan, G. Green lubrication: Mustard oil-based bio-lubricant enhanced with waste eggshell-derived CaO nanoparticles for sustainable and eco-friendly industrial solutions. J. Clean. Prod. 2024, 453, 142184. [Google Scholar] [CrossRef]
- Qin, S.; Shi, X.; Xue, Y.; Zhang, K.; Huang, Q.; Wu, C.; Ma, J.; Shu, J. Coupling effects of bionic textures with composite solid lubricants to improve tribological properties of TC4 alloy. Tribol. Int. 2022, 173, 107691. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Wu, C. Optimization of bionic textured parameter to improve the tribological performance of AISI 4140 self-lubricating composite through response surface methodology. Tribol. Int. 2021, 161, 107104. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Li, G.; Guo, Y.; Qi, H.; Zhang, G. Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon 2018, 136, 309–319. [Google Scholar] [CrossRef]
- Duan, H.; Li, W.; Kumara, C.; Jin, Y.; Meyer, H.M.; Luo, H.; Qu, J. Ionic liquids as oil additives for lubricating oxygen-diffusion case-hardened titanium. Tribol. Int. 2019, 136, 342–348. [Google Scholar] [CrossRef]
- Shi, X.; Huang, W.; Wang, X. Ionic liquids–based magnetic nanofluids as lubricants. Lubr. Sci. 2017, 30, 73–82. [Google Scholar] [CrossRef]
- Wang, H.; Che, Q.; Li, Y.; Zhang, S.; Liu, X.; Zhang, J.; Hu, L. Ionic Nitrogen-Doped Carbon Dots as Nonpolar Lubricant Additives at Low Effective Addition. Langmuir ACS J. Surf. Colloids 2024, 40, 12632–12640. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Li, W.; Zhao, Q.; Zheng, D.; Wang, X. In Situ Synthesized Phosphate-based Ionic Liquids as High-Performance Lubricant Additives. Tribol. Lett. 2019, 67, 60. [Google Scholar] [CrossRef]
- Andersson, O.; Johari, G.P. Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. J. Chem. Phys. 2011, 134, 124903. [Google Scholar] [CrossRef]
- Zhang, J.; Ahn, J.-H.; Barone, P.W.; Strano, M.S.; Kim, J.-H.; Ortiz-García, R.; Yoon, H. Modulation of Single-Walled CarbonNanotube Photoluminescence by Hydrogel Swelling. ACS Nano 2009, 3, 3869–3877. [Google Scholar]
- Mallikarjunachari, G.; Ghosh, P. Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques. Polymer 2016, 90, 53–66. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, J.; Luo, T.; Cao, B.; Xu, J.; Chen, X.; Luo, J. Tribochemical mechanism of superlubricity in graphene quantum dots modified DLC films under high contact pressure. Carbon 2021, 173, 329–338. [Google Scholar] [CrossRef]
- Gradt, T.; Schneider, T. Tribological Performance of MoS2 Coatings in Various Environments. Lubricants 2016, 4, 32. [Google Scholar] [CrossRef]
- Watanabe, S.; Noshiro, J.; Miyake, S. Friction properties of WS2/MoS2 multilayer films under vacuum environment. Surf. Coat. Technol. 2004, 188–189, 644–648. [Google Scholar] [CrossRef]
- Berman, D.; Deshmukh, S.A.; Sankaranarayanan, S.K.R.S.; Erdemir, A.; Sumant, A.V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 2015, 348, 1118–1122. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Dwivedi, N.; Patra, T.; Lee, J.-B.; Yeo, R.J.; Srinivasan, S.; Dutta, T.; Sasikumar, K.; Dhand, C.; Tripathy, S.; Saifullah, M.S.M.; et al. Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene. Nano Lett. 2020, 20, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Jan, A.Z.; Majeed, A.H.; Shi, L.; Kędzia, K.; Lima Ferrás, L.J.; Ali, M.R.; Hendy, A.S. Characteristics of synovial trihybrid nanofluid activation energy and Marangoni convective flow: A Computational framework of local thermal non-equilibrium. Case Stud. Therm. Eng. 2024, 59, 104519. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, J.; Liu, Y.; Liu, F.; Wang, H.; Zhang, Y.; Lu, G. Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods. Ceram. Int. 2020, 46, 15764–15771. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Wang, X.-K.; Guo, W.-L.; Wang, J.-G.; Wang, C. Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason. Sonochem. 2010, 17, 675–679. [Google Scholar] [CrossRef]
- Gao, K.; Yan, W.; Liu, Z.; Zhu, X. Wear characteristics of twin-screw extruder based on discrete element method. China Plast. 2023, 37, 135–140. [Google Scholar] [CrossRef]
- Wang, Z.S.; Wang, R.J.; Fei, Q. Structure and Microscopic Wear Analysis of Lining Material Based on EDEM. Int. Conf. Electron. Inf. Technol. Comput. Eng. 2017, 128, 03001. [Google Scholar] [CrossRef]
- Zhao, Q.; Dai, F.; Shi, R.; Zhao, W.; Xu, P.; Deng, H.; Pan, H. Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine. Lubricants 2024, 12, 19. [Google Scholar] [CrossRef]
- Zhang, Q.; Zuo, G.; Lai, Q.; Tong, J.; Zhang, Z. EDEM Investigation and Experimental Evaluation of Abrasive Wear Resistance Performance of Bionic Micro-Thorn and Convex Hull Geometrically Coupled Structured Surface. Appl. Sci. 2021, 11, 6655. [Google Scholar] [CrossRef]
- Shojaei, A.; Arjmand, M.; Saffar, A. Studies on the friction and wear characteristics of rubber-based friction materials containing carbon and cellulose fibers. J. Mater. Sci. 2010, 46, 1890–1901. [Google Scholar] [CrossRef]
- Tavangar, R.; Moghadam, H.A.; Khavandi, A.; Banaeifar, S. Comparison of dry sliding behavior and wear mechanism of low metallic and copper-free brake pads. Tribol. Int. 2020, 151, 106416. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Sun, J.; Gao, F.; Fan, W.; Zhang, Z.; Li, X.; Jiang, X. Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene via Weak Binding. ACS Nano 2015, 10, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zhou, M.; Wei, Y.J.; Cheng, F.; Zhu, P.X. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym. Compos. 2017, 40, E365–E372. [Google Scholar] [CrossRef]
- Pang, H.; Xu, J.; Liu, H.; Wang, W.; Yin, X.; Liu, D.; Zhang, B. The Induced Orientation of Hydroxypropyl Methylcellulose Coating for Ultralow Wear. Lubricants 2024, 12, 129. [Google Scholar] [CrossRef]
- Yin, X.; Pang, H.; Yang, Y.; Hu, C.; Zhang, B. The Invention Discloses a Wear-Resistant Cellulose Coating and a Preparation Method Thereof. Patent CN202310571536.8A, 21 May 2023. [Google Scholar]
- Pang, H.S.; Hu, C.W.; Yin, X.; Zhang, B. Experimental study on tribological properties and wear mechanism of multiscale cellulose regulated by service conditions. J. Beijing Univ. Chem. Technol. 2023, 50, 85–93. [Google Scholar] [CrossRef]
- Mohit, H.; Selvan, V.A.M. Effect of a Novel Chemical Treatment on Nanocellulose Fibers for Enhancement of Mechanical, Electrochemical and Tribological Characteristics of Epoxy Bio-nanocomposites. Fibers Polym. 2019, 20, 1918–1944. [Google Scholar] [CrossRef]
- Stradolini, P.; Gryczak, M.; Petzhold, C.L. Polyols from castor oil (Ricinus communis) and epoxidized soybean oil (Glycine max) for application as a lubricant base. J. Am. Oil Chem. Soc. 2023, 101, 321–334. [Google Scholar] [CrossRef]
- Arumugam, S.; Sriram, G. Synthesis and characterisation of rapeseed oil bio-lubricant—Its effect on wear and frictional behaviour of piston ring–cylinder liner combination. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 227, 3–15. [Google Scholar] [CrossRef]
- Arumugam, S.; Sriram, G.; Ellappan, R. Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy 2014, 72, 618–627. [Google Scholar] [CrossRef]
- Yao, L.; Hammond, E.G.; Wang, T.; Bu, W.; Vaknin, D. Physical and monolayer film properties of potential fatty ester biolubricants. Eur. J. Lipid Sci. Technol. 2014, 116, 910–917. [Google Scholar] [CrossRef]
- Matiliunaite, M.; Paulauskiene, T. From concept to practice: Manufacturing of bio-lubricants from renewable resources. Biomass Convers. Biorefinery 2018, 9, 353–361. [Google Scholar] [CrossRef]
- Bhowmik, P.; Sharma, B.K.; Sarker, M.I.; Choi, H.; Tang, C.; Roy, S. Investigating the impact of a newly developed chemical modification technique on improving the tribological properties of high oleic soybean oil. Sustain. Energy Fuels 2024, 8, 1314–1328. [Google Scholar] [CrossRef]
- Sankaran Nair, S.; Prabhakaran Nair, K.; Rajendrakumar, P.K. Micro and nanoparticles blended sesame oil bio-lubricant: Study of its tribological and rheological properties. Micro Nano Lett. 2018, 13, 1743–1746. [Google Scholar] [CrossRef]
- Avilés, M.-D.; Mostaza, P.; Bermúdez, M.-D.; Carrión-Vilches, F.J. Epoxidized vegetable lubricant enhanced by ionic liquid. Wear 2025, 564–565, 205740. [Google Scholar] [CrossRef]
- Nagendramma, P. Study of pentaerythritol tetraoleate ester as industrial gear oil. Lubr. Sci. 2011, 23, 355–362. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Han, Q.; Feng, G.; Wang, L.; Wang, S. Effects of current-carrying conditions on lubrication and tribological performance of ionic liquid. J. Mol. Liq. 2022, 367, 120471. [Google Scholar] [CrossRef]
- Sadeghi, M.; Omiya, T.; Fernandes, F.; Vilhena, L.; Ramalho, A.; Ferreira, F. Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings. Lubricants 2024, 12, 18. [Google Scholar] [CrossRef]
- Han, Y.; Hao, D.; Gao, P.; Wen, P.; Fan, M. Tailoring an inorganic-organic double layer tribofilm for high-performance ionic liquid magnesium alloy lubricants. Tribol. Int. 2023, 179, 108197. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zhang, S.; Che, Q.; Hu, L.; Zhang, J. Excellent corrosion inhibition and lubrication properties of carbon dot-based ionic liquids as water-based additives. Tribol. Int. 2023, 189, 108990. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zhang, S.; Che, Q.; Hu, L.; Zhang, J. Outstanding lubrication properties of carbon dot-based ionic liquids. J. Mol. Liq. 2023, 376, 121458. [Google Scholar] [CrossRef]
- Zuo, X.; Yu, H.; Zhou, F.; Zhang, X. Synergistic Lubrication Achieved by Proton-Ionic Liquids and MoS2 as High-Performance Water-Based Lubricant Additives. Langmuir ACS J. Surf. Colloids 2025, 41, 5534–5545. [Google Scholar] [CrossRef]
- Li, H.; Zeng, Q.; Fan, M.; He, W.; Pang, Z.; Zhang, W. Structure-property relationship and tunable lubrication mechanism of non-covalently modified graphene oxide by imidazolium ionic liquids under molecular structure scale. Carbon 2025, 238, 120212. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, H. Simulation of nano-grinding of GaN textured surface under ionic liquids lubrication. Mater. Today Commun. 2024, 39, 109387. [Google Scholar] [CrossRef]
- Qu, G.; Liu, L.; Fang, H.; Li, Y.; Zhang, S.; Hu, L. Exploring the distinct lubrication mechanisms of functionalized ionic liquids in air and vacuum: Insights into molecular-level behavior and performance. Appl. Surf. Sci. 2025, 696, 162955. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S. Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chem. Eng. J. 2022, 439, 135756. [Google Scholar] [CrossRef]
- Sun, M.; Bai, R.; Yang, X.; Song, J.; Qin, M.; Suo, Z.; He, X. Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection. Adv. Mater. 2018, 30, e1804916. [Google Scholar] [CrossRef]
- Kissel, T.; Li, Y.; Unger, F. ABA-triblock copolymers from biodegradable polyester Ablocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv. Drug Deliv. Rev. 2002, 54, 99–134. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, Y.; Wei, L.; Zhang, L.; Cui, J.; Qiu, X.; Huang, J. Load-Dependent Behavior and Underneath Mechanism of Hydrogel Friction. ACS Appl. Polym. Mater. 2024, 6, 1540–1550. [Google Scholar] [CrossRef]
- Hafezi, M.; Qin, L.; Mahmoodi, P.; Yang, H.; Dong, G. Releasable agarose-hyaluronan hydrogel with anti-friction performance and enhanced stability for artificial joint applications. Tribol. Int. 2021, 153, 106622. [Google Scholar] [CrossRef]
- Qin, S.Y.; Liu, X.J.; Zhuo, R.X.; Zhang, X.Z. Microstructure-Controllable Graphene Oxide Hydrogel Film Based on a pH-Responsive Graphene Oxide Hydrogel. Macromol. Chem. Phys. 2012, 213, 2044–2051. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Wang, G.; Zhang, Z.; Xia, S.; Gao, G. Ultrathin and Highly Tough Hydrogel Films for Multifunctional Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13, 50411–50421. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Liu, D.; Hu, Y.; Wang, Y.; Lu, Y.; Bai, C.; Hossain, K.R.; Jiang, P.; Wang, X. Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 2024, 17, 9784–9795. [Google Scholar] [CrossRef]
- Lee, M.J.; Espinosa-Marzal, R.M. Intrinsic and Extrinsic Tunability of Double-Network Hydrogel Strength and Lubricity. ACS Appl. Mater. Interfaces 2023, 15, 20495–20507. [Google Scholar] [CrossRef]
- He, X.; He, S.; Xiang, G.; Deng, L.; Zhang, H.; Wang, Y.; Li, J.; Lu, H. Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere. Adv. Mater. 2024, 36, e2405943. [Google Scholar] [CrossRef]
- Ramteke, S.M.; Ramos Grez, J.; Marian, M. Enhanced mechanical and tribological performance of additively manufactured 316L steel by MoS2-reinforcement. Mater. Des. 2025, 249, 113562. [Google Scholar] [CrossRef]
- Fan, X.; Wei, X.; He, Y.; Zhao, Z.; Lin, K.; Zhu, M. MoS2 functionalized lithium complex soap with enhanced thickening net structure toward high-performance thickener. Chem. Eng. J. 2023, 478, 147445. [Google Scholar] [CrossRef]
- Boidi, G.; Zambrano, D.; Ripoll, M.R.; Rosenkranz, A. Humidity-Dependent Tribological Performance of Ti3C2Tx/MoS2 Nanosheet-Based Hybrid Coatings. ACS Appl. Nano Mater. 2024, 7, 24947–24957. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; Ma, X.; Zhu, M. Synergistic lubrication mechanism of core/shell C@MoS2 particles as lubricant additives. Appl. Surf. Sci. 2023, 639, 158234. [Google Scholar] [CrossRef]
- Hu, K.H.; Hu, X.G.; Sun, X.J. Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 2010, 256, 2517–2523. [Google Scholar] [CrossRef]
- Zhu, C.; Luo, T.; Wei, L.I.; Chen, X.; Chen, H.; Wang, Y.; Xiao, G.; Chonghai, X.U.; Cao, B. Ultrafine MoS2 crumpled submicrosphere grown by clean laser irradiation for excellent anti-friction performance. Tribol. Int. 2023, 180, 108259. [Google Scholar] [CrossRef]
- Zambrano-Mera, D.F.; Broens, M.I.; Villarroel, R.; Espinoza-Gonzalez, R.; Aguilar-Hurtado, J.Y.; Wang, B.; Suarez, S.; Mücklich, F.; Valenzuela, P.; Gacitúa, W.; et al. Solid lubrication performance of sandwich Ti3C2Tx-MoS2 composite coatings. Appl. Surf. Sci. 2023, 640, 158295. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Zhao, Z.; Yue, Z.; Feng, P.; Ma, X.; Li, H.; Ye, X.; Zhu, M. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon 2022, 191, 84–97. [Google Scholar] [CrossRef]
- Liao, M.; Nicolini, P.; Du, L.; Yuan, J.; Wang, S.; Yu, H.; Tang, J.; Cheng, P.; Watanabe, K.; Taniguchi, T.; et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 2021, 21, 47–53. [Google Scholar] [CrossRef]
- Wang, L.-F.; Ma, T.-B.; Hu, Y.-Z.; Zheng, Q.; Wang, H.; Luo, J. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study. Nanotechnology 2014, 25, 385701. [Google Scholar] [CrossRef]
- Yang, T.; Wang, X.; Liu, H.; Chen, S.; Liu, J.; Zhao, Q.; Gong, K.; Li, W.; Liang, Y.; Wang, X. Electrostatically Self-Assembled Magnetic Nanoparticles for High-Temperature Resistant and Friction-Controlled Lubrication System. Small 2024, 20, e2405018. [Google Scholar] [CrossRef]
- Li, Y.; Lu, C.; Gao, K.; Zhang, Y.; Zhang, L.; Xie, G. Enhanced lubrication performance of PFPE with TMFS-modified MoS2 under high-temperature conditions. Appl. Surf. Sci. 2025, 683, 161854. [Google Scholar] [CrossRef]
- Long, Y.; Wang, X.; Tan, W.; Li, B.; Li, J.; Deng, W.; Li, X.; Guo, W.; Yin, J. High-Temperature Superlubricity in MoS2/Graphene van der Waals Heterostructures. Nano Lett. 2024, 24, 7572–7577. [Google Scholar] [CrossRef]
- Yin, X.; Jin, J.; Chen, X.; Ma, T.; Zhang, C. A New Pathway for Superlubricity in a Multilayered MoS2-Ag Film under Cryogenic Environment. Nano Lett. 2021, 21, 10165–10171. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Bai, Y.; Li, Z.D.; Bao, M.Y.; Zhan, H.; Liu, N.; Chang, Z.D.; Ma, Y.S. Microstructural optimization and anti-wear performance of supersonic atmospheric plasma sprayed nickel based self-lubricating coatings under heavy load. Surf. Coat. Technol. 2021, 421, 127383. [Google Scholar] [CrossRef]
- Serles, P.; Nicholson, E.; Tam, J.; Barri, N.; Chemin, J.B.; Wang, G.; Michel, Y.; Singh, C.V.; Choquet, P.; Saulot, A.; et al. High Performance Space Lubrication of MoS2 with Tantalum. Adv. Funct. Mater. 2022, 32, 2110429. [Google Scholar] [CrossRef]
- Song, Y.; Hinaut, A.; Scherb, S.; Pellmont, Y.; Pawlak, R.; Huang, S.; Liu, Z.; Glatzel, T.; Meyer, E. Observation of robust superlubricity of MoS2 on Au(111) in ultrahigh vacuum. Appl. Surf. Sci. 2022, 601, 154230. [Google Scholar] [CrossRef]
- Guo, L.; Pan, L.; Li, Z. Study on the Sliding Tribological Behavior of Oleic Acid-Modified MoS2 under Boundary Lubrication. Langmuir ACS J. Surf. Colloids 2023, 39, 14562–14572. [Google Scholar] [CrossRef] [PubMed]
- Babuska, T.F.; Dugger, M.T.; Walczak, K.A.; Lu, P.; Schwartzberg, A.; Aloni, S.; Kuykendall, T.R.; Curry, J.F. Tribological behavior of few-nanometer-thick MoS2 prepared by low-temperature conversion of atomic layer deposited MoOx films. Surf. Coat. Technol. 2023, 471, 129884. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Poll, G.; Möhwald, K.; Schöler, S.; Pape, F.; Konopka, D.; Brunotte, K.; Wester, H.; Richter, S.; Heimes, N. Characterization and Modeling of Nano Wear for Molybdenum-Based Lubrication Layer Systems. Nanomaterials 2021, 11, 1363. [Google Scholar] [CrossRef]
- Rodríguez Ripoll, M.; Tomala, A.; Gabler, C.; Dražić, G.; Pirker, L.; Remškar, M. In situ tribochemical sulfurization of molybdenum oxide nanotubes. Nanoscale 2018, 10, 3281–3290. [Google Scholar] [CrossRef]
- Michalczewski, R.; Ripoll, M.R.; Tomala, A.M. Tribological synergy between classical ZDDP and innovative MoS2 and MoO3 nanotube additives at elevated temperatures. Proc. Est. Acad. Sci. 2019, 68, 178–184. [Google Scholar] [CrossRef]
- Yin, X.; Wu, F.; Chen, X.; Xu, J.; Wu, P.; Li, J.; Zhang, C.; Luo, J. Graphene-induced reconstruction of the sliding interface assisting the improved lubricity of various tribo-couples. Mater. Des. 2020, 191, 108661. [Google Scholar] [CrossRef]
- Berman, D.; Deshmukh, S.A.; Sankaranarayanan, S.K.R.S.; Erdemir, A.; Sumant, A.V. Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer. Adv. Funct. Mater. 2014, 24, 6640–6646. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Marchetto, D.; Feser, T.; Dienwiebel, M. Microscale study of frictional properties of graphene in ultra high vacuum. Friction 2015, 3, 161–169. [Google Scholar] [CrossRef]
- Shi, J.; Ma, G.; Li, G.; Yong, Q.; Guo, W.; Xing, Z.; Wang, H. Tribological behavior of graphene/DLC coatings after AO and UV irradiation in vacuum environment. Mater. Lett. 2023, 349, 134760. [Google Scholar] [CrossRef]
- Xu, H.; Zang, J.; Yuan, Y.; Tian, P.; Wang, Y. Preparation of multilayer graphene coatings with interfacial bond to mild steel via covalent bonding for high performance anticorrosion and wear resistance. Carbon 2019, 154, 156–168. [Google Scholar] [CrossRef]
- Saravanan, P.; Selyanchyn, R.; Tanaka, H.; Darekar, D.; Staykov, A.; Fujikawa, S.; Lyth, S.M.; Sugimura, J. Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments. ACS Appl. Mater. Interfaces 2016, 8, 27179–27187. [Google Scholar] [CrossRef]
- Pape, F. Investigation of Graphene Platelet-Based Dry Lubricating Film Formation in Tribological Contacts. Coatings 2024, 14, 360. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, X.; Li, Y.; Zeng, Z.; Wei, X.; Lin, K.; Zhu, M. Well-dispersed graphene toward robust lubrication via reorganization of sliding interface. J. Ind. Eng. Chem. 2023, 119, 619–632. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Z.; Li, Y.; Zeng, Z.; Wei, X.; Fan, X.; Zhu, M. Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication. Chin. J. Mech. Eng. 2023, 36, 133. [Google Scholar] [CrossRef]
- Gan, C.; Liang, T.; Chen, D.; Li, W.; Fan, X.; Tang, G.; Lin, B.; Zhu, M. Phosphonium-organophosphate modified graphene gel towards lubrication applications. Tribol. Int. 2020, 145, 106180. [Google Scholar] [CrossRef]
- Ghosh, G.K.; Kotia, A.; Kumar, N.; Ghosh, S.K. Multi-response Optimization of Tribological Characteristics for Graphene-Gear Oil Nanolubricants Using Grey-Taguchi Methodology Followed by Scrutinization of Lubrication Mechanisms. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Shi, Y.; Lin, Y.; Liu, J.; Song, W.; Zhang, C.; Chen, X.; Liu, L.; Pan, J. Tailoring the tribological properties of Cu composite coatings via integrating strengthening W particles and lubricant graphene. Appl. Surf. Sci. 2025, 679, 161248. [Google Scholar] [CrossRef]
- Ye, W.; Zhou, Q.; Shi, Y.; Xie, M.; Chen, B.; Wang, H.; Liu, W. Robust wear performance of graphene-reinforced high entropy alloy composites. Carbon 2024, 224, 119040. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, G.; Qi, J.; Lu, S.; Li, Y. Effect of lubricant functional groups on tribological properties of epoxy/graphene composites. J. Appl. Polym. Sci. 2024, 141, e55923. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Luo, L.-J.; Lai, J.-Y. Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Mater. Sci. Eng. C 2021, 119, 111497. [Google Scholar] [CrossRef]
- Blackwell, S.; Smith, R.; Kenny, S.D.; Walls, J.M. Modeling evaporation, ion-beam assist, and magnetron sputtering of thin metal films over realistic time scales. Phys. Rev. B 2012, 86, 035416. [Google Scholar] [CrossRef]
- Lee, S.L.; Beyer, T.D.; Kim, S.S.; Waldhausen, J.H.T.; Healey, P.J.; Sawin, R.S.; Ledbetter, D.J. Initial nonoperative management and delayed closure for treatment of giant omphaloceles. J. Pediatr. Surg. 2006, 41, 1846–1849. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.J.; Aviña, K.; Ulloa-Castillo, N.A.; Melo-Maximo, D.V. Thermal Transport and Physical Characteristics of Silver-Reinforced Biodegradable Nanolubricant. Sustainability 2023, 15, 8795. [Google Scholar] [CrossRef]
- de Castilho, B.C.N.M.; Munagala, V.N.V.; Alidokht, S.A.; Sharifi, N.; Bessette, S.; Makowiec, M.E.; Gauvin, R.; Stoyanov, P.; Moreau, C.; Chromik, R.R. Insights on Silver Migration Mechanisms and their Influence on the Wear Behavior of Thermally Sprayed Self-lubricating Coatings Up to 350 °C. Tribol. Lett. 2022, 70, 120. [Google Scholar] [CrossRef]
- Jackson, R.L.; Coker, A.B.; Tucker, Z.; Hossain, M.S.; Mills, G. An Investigation of Silver-Nanoparticle-Laden Lubricants for Electrical Contacts. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 193–200. [Google Scholar] [CrossRef]
- Hu, B.; Han, J.; Hu, N. Effect of silver-organic precursor on friction and wear. Ind. Lubr. Tribol. 2014, 66, 468–472. [Google Scholar] [CrossRef]
- Twist, C.P.; Bassanetti, I.; Snow, M.; Delferro, M.; Bazzi, H.; Chung, Y.-W.; Marchió, L.; Marks, T.J.; Wang, Q.J. Silver-Organic Oil Additive for High-Temperature Applications. Tribol. Lett. 2013, 52, 261–269. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Z.; Wang, M.; Zhai, W.; Yao, J.; Song, S.; Qamar ud Din, A.; Zhang, Q. Tribological behavior of TiAl matrix self-lubricating composites containing silver from 25 to 800 °C. Wear 2013, 303, 486–494. [Google Scholar] [CrossRef]
- Zhu, S.; Tan, H.; Cheng, J.; Yu, Y.; Qiao, Z.; Yang, J. Nickel Aluminum Matrix Solid-Lubricating Composite Lubricated by Silver and Silver Vanadate Formed by Tribochemistry at Elevated Temperature. J. Tribol. 2019, 141, 031302. [Google Scholar] [CrossRef]
- Tyagi, R.; Xiong, D.S.; Li, J.; Dai, J. Elevated temperature tribological behavior of Ni based composites containing nano-silver and hBN. Wear 2010, 269, 884–890. [Google Scholar] [CrossRef]
- Wan, H.; Jia, Y.; Ye, Y.; Xu, H.; Cui, H.; Chen, L.; Zhou, H.; Chen, J. Tribological behavior of polyimide/epoxy resin-polytetrafluoroethylene bonded solid lubricant coatings filled with in situ-synthesized silver nanoparticles. Prog. Org. Coat. 2017, 106, 111–118. [Google Scholar] [CrossRef]
- Su, J.; Chen, J. Study on Friction and Wear Mechanisms for Coated Surface. Mater. Heat Treat. 2012, 41, 130–133. [Google Scholar]
- Li, Y.; Zhu, P.; Tang, C.; Sun, Z. Effect of Lost-Foam Casting Process on Properties of Spiral Blade. Crystals 2022, 12, 1075. [Google Scholar] [CrossRef]
- Hoormazdi, G.; Küpferle, J.; Röttger, A.; Theisen, W.; Hackl, K. A Concept for the Estimation of Soil-Tool Abrasive Wear Using ASTM-G65 Test Data. Int. J. Civ. Eng. 2019, 17, 103–111. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, T.; Yang, S.; Li, W.; Zhao, K. Experiment and simulation analysis on the mechanism of the spindle barrel finishing. Int. J. Adv. Manuf. Technol. 2020, 109, 57–74. [Google Scholar] [CrossRef]
- Han, D.; Zhang, S.; Pan, Y.; Wang, C. Simulation and experimental research on the wear of synchronous quadruple rotor of an internal mixer during the mixing process. Eng. Fail. Anal. 2022, 139, 106450. [Google Scholar] [CrossRef]
- Cundall, P.A. A computer model for simulating progressive large scale movements in blocky rock systems. In Proceedings of the International Society for Rock Mechanics (ISRM), Nancy, France, 4–6 October 1971; pp. 129–136. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Lemos, J.V.; Hart, P.D.; Cundall, P.A. A generalized distinct element program for modelling jointed rock mass—A keynote lecture. In Proceedings of the Intenational Symposium on Fundamentals of Rock Joints, Björkliden, Sweden, 15–20 September 1985; pp. 335–343. [Google Scholar]
- Lorig, L. A Hybrid Computational Model for Excation and Support Design in Jointed Media (Rock, Tunnel, Mining). Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1984. [Google Scholar]
- Shi, G.; Li, J.; Ding, L.; Zhang, Z.; Ding, H.; Li, N.; Kan, Z. Calibration and Tests for the Discrete Element Simulation Parameters of Fallen Jujube Fruit. Agriculture 2021, 12, 38. [Google Scholar] [CrossRef]
- Chen, X.; Gu, F.; Hu, Z.; Wu, F.; Luo, W.; Guo, K. The Calibration of Soil Simulation Parameters for Wheat Grown after Rice in the Yangtze River Basin of China. Sustainability 2023, 15, 15079. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Z.; Li, Y.; Song, Z.; Yu, J.; Li, Y.; Xu, L. Study of the grain particle-conveying performance of a bionic non-smooth-structure screw conveyor. Biosyst. Eng. 2024, 238, 94–104. [Google Scholar] [CrossRef]
- Wang, Y. Discrete Element Method—A Numerical Method Suitable for Analysis in Jointed Rocks. In Proceedings of the 1st National Symposium on Numerical Calculation and Model Test of Rock Mechanics, Ji’an, China, 20–27 June 1986; pp. 32–37. [Google Scholar]
- Gui, Y.L.; Zhao, Z.Y.; Kodikara, J.; Bui, H.H.; Yang, S.Q. Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model. Eng. Geol. 2016, 202, 14–23. [Google Scholar] [CrossRef]
- Wang, Z.; Su, H.; Luo, C.; Ma, S.; Ding, H. Particle Flow Simulation of Failure Process of Defective Sandstone Under Different Intermediate Principal Stress Under True Triaxial Action. Processes 2022, 10, 2028. [Google Scholar] [CrossRef]
- Meijs, J.W.H.; Weier, O.W.; Peters, M.J.; Oosterom, A.V. On the Numerical Accuracy of the Boundary Element Method. IEEE Trans. Biomed. Eng. 1989, 36, 1038–1049. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H. DEM analysis of failure mechanisms in the intact Brazilian test. Int. J. Rock Mech. Min. Sci. 2018, 102, 109–119. [Google Scholar] [CrossRef]
- Sah, R.K.; Das, A.K. Drainage skeletonization from flow-accumulated area without the use of threshold. Geocarto Int. 2015, 30, 894–904. [Google Scholar] [CrossRef]
- Du, X.; Li, W.; Li, X.; Wang, H. The impact of digital elevation model and land use spatial information on Hydrologic Simulation Program-FORTRAN—Predicted stream flow and sediment uncertainty. J. Hydroinformatics 2014, 16, 989–1003. [Google Scholar] [CrossRef]
- Liang, S.; Feng, Y.T.; Wang, Z. Numerical methods and key issues for the study of particle material fragmentation behavior—A review. Powder Technol. 2025, 451, 120457. [Google Scholar] [CrossRef]
- Piska, R.; Sivadas, K.; Boyina, K.; Vuppuluri, A.; Chaurasia, A.; Parimi, C.; Rabczuk, T. Recent trends in computational damage models: An overview. Theor. Appl. Fract. Mech. 2024, 132, 104494. [Google Scholar] [CrossRef]
- Urrea-Quintero, J.-H.; Marino, M.; Wick, T.; Nackenhorst, U. A Comparative Analysis of Transient Finite-Strain Coupled Diffusion-Deformation Theories for Hydrogels. Arch. Comput. Methods Eng. 2024, 31, 3767–3800. [Google Scholar] [CrossRef]
- Lv, J.; Li, K.; Slowik, A.; Jiang, H. Distributed Edge Intelligence for Rapid In-Vehicle Medical Emergency Response in Internet of Vehicles. IEEE Internet Things J. 2025, 12, 4750–4760. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Liu, D.; Chen, S.; Wu, S.; Yuan, X.; Liu, Z.; Wang, Y.; Zhang, H. Optimization of recirculating water scallop larval cultivation system based on EDEM-fluent coupling. Front. Mar. Sci. 2024, 11, 1407670. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Wang, T.; Ling, G.; Wang, S.; Li, J. Parameter optimization of column-comb harvesting of litchi based on the EDEM. Sci. Hortic. 2023, 321, 112216. [Google Scholar] [CrossRef]
- Chen, G.; Schott, D.L.; Lodewijks, G. Sensitivity analysis of DEM prediction for sliding wear by single iron ore particle. Eng. Comput. 2017, 34, 2031–2053. [Google Scholar] [CrossRef]
- Liu, X.; Du, C.; Fu, X.; Zhao, H.; Zhang, J.; Yang, X. Wear analysis and performance optimization of drum blade in mining coal gangue with shearer. Eng. Fail. Anal. 2021, 128, 105542. [Google Scholar] [CrossRef]
- Yang, W.; Meng, W.; Gao, L.; Tan, Y.; Fottner, J.; Dai, X.; Yao, F.; Yuan, Y.; Sun, X. Analysis of the Screw Flight Wear Model and Wear Regularity of the Bulk Transport in Screw Ship Unloader. Iran. J. Sci. Technol. Trans. Mech. Eng. 2021, 46, 15–29. [Google Scholar] [CrossRef]
- Pang, H.; Yang, Y.; Yin, X.; Zhang, B. Experimental and simulation study of a grinding screw surface based on cross-viscosity cellulose. J. Beijing Univ. Chem. Technol. 2024, 51, 67–75. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, D.; Li, L.; Zhang, B. The Influence of Length-Diameter Ratio of Cellulose on Friction Characteristics of Screw Surface Investigated by EDEM Simulation. Macromol. Theory Simul. 2024, 34, 2400083. [Google Scholar] [CrossRef]
- Wang, Y. Design and Experimental Study of Multifunction Tribometer. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Alshkane, Y.M.; Marshall, A.M.; Stace, L.R. Prediction of strength and deformability of an interlocked blocky rock mass using UDEC. J. Rock Mech. Geotech. Eng. 2017, 9, 531–542. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, S.; Go, Z.; Li, W. Mechanical Design Course Design Manual, 5th ed.; Higher Education Press: Beijing, China, 2018. [Google Scholar]
- Xu, J. Development of Tribological Experimental Device and Research on Tribological Properties. Master’s Thesis, China Academy of Machinery Wuhan Research Insititute of Materials Protection, Wuhan, China, 2013. [Google Scholar]
- Santner, D.E. Laboratories at work: Tribology at BAM. Tribotest 1994, 1, 77–89. [Google Scholar] [CrossRef]
- Pape, F.; Gatzen, H.-H.; Poll, G. Micro Tribological Investigations on Dry Sliding Friction of 100Cr6 Axial Bearing Surfaces. Tribol. Online 2016, 11, 547–550. [Google Scholar] [CrossRef]
- Ma, G.; Xu, B.; Wang, H.; Si, H. Study and Discussion on the Development of Special Friction and Wear Testing Machine. Eng. Test 2009, 49, 1–5. [Google Scholar]
- Lanzhou Institute of Chemical Physics (Chinese Academy of Sciences). Development of HT-500 high temperature friction and wear testing machine. Surf. Eng. Inf. 2005, 5, 13. [Google Scholar]
- Duranty, E.R.; Roosendaal, T.J.; Pitman, S.G.; Tucker, J.C.; Owsley, S.L.; Suter, J.D.; Alvine, K.J. An in situ tribometer for measuring friction and wear of polymers in a high pressure hydrogen environment. Rev. Sci. Instrum. 2017, 88, 95114. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, F.; Yan, L.; Jiang, Z.; Xu, X. A novel ultrahigh-speed ball-on-disc tribometer. Tribol. Int. 2021, 157, 106901. [Google Scholar] [CrossRef]
- Ma, G.; Xu, B.; Wang, H.; Zhang, S. Development of a Novel Multifunctional Vacuum Tribometer. Chin. J. Vac. Sci. Technol. 2013, 33, 162–167. [Google Scholar]
- Francis, E.K.; Youxiong, Y.; Ian, B.; Raina, R.W.; Robert, L.B.; Aubrey, Y.T.; Min, S. Development of a new cryogenic tribotester and its application to the study of cryogenic wear of AISI 316 stainless steel. Wear 2022, 496, 204309. [Google Scholar] [CrossRef]
- Zhang, L. Development and Performance Analusis of Controlled Atmosphere Friction and Wear Testing Machine. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2018. [Google Scholar]
- Cheng, P. Intelligent Measurement and Control System of the Multifunctional Environment Controllable Tribometer. Master’s Thesis, Hefei University of Technology, Hefei, China, 2008. [Google Scholar]
- Wei, B.; Yin, X.; Li, L.; Zhang, B.; Ma, C. The Utility Model Relates to a Face-Surface Rotating Functional Material Testing Machine. CN202311081964.9A, 26 August 2023. [Google Scholar]
- Shen, Z.; Guo, F.; Ding, H. Modern Test Technology and System Design; Xi’an Jiaotong University Press: Xi’an, China, 2006; pp. 79–97. [Google Scholar]
- Jian, K. Reciprocating Friction and Wear Test Rig Control System Design. Master’s Thesis, Northeastern University, Shenyang, China, 2011. [Google Scholar]
- Liu, L. Development of Reciprocating Friction and Tear Testing Machine. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2006. [Google Scholar]
- Chai, J.; Zhou, Z.; Ye, C.; Yao, C.; Li, G. Design and development of a novel sliding friction and wear tester with complex working conditions. Sci. Rep. 2021, 11, 6903. [Google Scholar] [CrossRef]
Green Lubricants | Structural Features | Wear Mechanisms |
---|---|---|
Cellulose | The hydroxyl groups (-OH) on the molecular chain form a physical adsorption film with low shear strength on the surface of the friction pair. | The fracture and spalling of molecular chains occur under the action of shear force. Under long-term high loads, abrasive wear may be induced due to the rupture of the film. |
Vegetable oil | The polar carboxyl groups (-COOH) chemically adsorb onto the metal surface, thereby forming a compact monomolecular boundary film. | The periodic rupture and regeneration of the adsorption film (mild adhesive wear) may occur. At elevated temperatures, oxidation products can induce corrosion wear or abrasive wear resulting from carbon deposition. |
Ionic liquid | Cations (e.g., imidazolium and pyrrolidinium) are adsorbed onto the surface of negatively charged metals via electrostatic interactions. Anions (e.g., [BF4]− and [TFSI]−) form a double-layer barrier with low shear resistance. | Under high contact pressures, chemical reaction films containing fluorine, phosphorus, and boron elements are formed. The dominant phenomenon is the slight spalling of the reaction films, which effectively suppresses adhesive and fatigue wear. |
Hydrogel | Hydrodynamic lubrication is dominant. The three-dimensional network structure releases a substantial amount of bound water under high loads, thereby forming micro-scale water films. | Fatigue fracture resulting from the cyclic elastic deformation of the network structure or adhesive wear caused by local dehydration; nevertheless, the self-healing characteristics can partially repair frictional damage. |
MoS2 | Low-shear slip, which is induced by the weak interlayer van der Waals forces, causes the S-Mo-S interlayer structure to undergo directional alignment. As a result, a transfer film is formed to cover the surfaces of the friction pair. | The high load-bearing capacity and the stress dissipation characteristics of the layered structure contribute to an enhanced anti-wear capacity. The dominant wear mechanism is the progressive spalling (lamellar dissociation) of the transfer film. Additionally, the formation of MoO3 due to high-temperature oxidation can induce abrasive wear. |
Graphene | An ultrathin shear layer is established between the friction pairs via physical adsorption. The π-π stacking within the layer gives rise to an extremely low shear resistance. | The anti-wear performance can be improved by sp2-hybridized carbon networks and self-repair of defects. Progressive exfoliation resulting from the interlayer slip, along with edge oxidation, may induce extremely high local abrasive wear. |
Silver | Silver nanoparticles form a ductile transfer film on the surface of the friction pair via a diffusion mechanism. | The high thermal conductivity of silver (which mitigates local temperature increases) and its re-passivation capacity contribute to an improvement in the anti-wear performance. Under cyclic loading conditions, fatigue spalling is the dominant failure mode of the transfer film. |
Year | Key Achievements |
---|---|
1970s | The concept of the discrete element method was first proposed [131] |
1980 | Application of UDEC [132,140] |
1986 | The principle of the discrete element method was introduced for the first time in China [137] |
1990s | The USA developed PFC2D/3D discrete element simulation software [138,141] |
2000s | The UK developed EDEM software [134] |
2014 | China developed StreamDEM software [142,143] |
2019 | The MatDEM software developed in China won the award [139] |
2025 | CPU acceleration, multi-physics field coupling capability, material model, and contact mechanism [144,145,146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Zhang, D.; Pang, H.; Zhang, B.; Liu, D. The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants. Lubricants 2025, 13, 259. https://doi.org/10.3390/lubricants13060259
Yin X, Zhang D, Pang H, Zhang B, Liu D. The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants. Lubricants. 2025; 13(6):259. https://doi.org/10.3390/lubricants13060259
Chicago/Turabian StyleYin, Xuan, Dingyao Zhang, Haosheng Pang, Bing Zhang, and Dameng Liu. 2025. "The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants" Lubricants 13, no. 6: 259. https://doi.org/10.3390/lubricants13060259
APA StyleYin, X., Zhang, D., Pang, H., Zhang, B., & Liu, D. (2025). The Combined Use of Simulation and Friction and Wear Experiments in the Research of Green Lubricants. Lubricants, 13(6), 259. https://doi.org/10.3390/lubricants13060259