Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = anti-SARS-CoV-2-neutralizing antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4424 KiB  
Article
Humoral and Memory B Cell Responses Following SARS-CoV-2 Infection and mRNA Vaccination
by Martina Bozhkova, Ralitsa Raycheva, Steliyan Petrov, Dobrina Dudova, Teodora Kalfova, Marianna Murdjeva, Hristo Taskov and Velizar Shivarov
Vaccines 2025, 13(8), 799; https://doi.org/10.3390/vaccines13080799 - 28 Jul 2025
Viewed by 374
Abstract
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T [...] Read more.
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T cells plays a vital role in sustaining immunity. Materials and Methods: We conducted a longitudinal prospective study over 12 months, enrolling 285 participants in total, either after natural infection or vaccination with BNT162b2 or mRNA-1273. Peripheral blood samples were collected at four defined time points (baseline, 1–2 months, 6–7 months, and 12–13 months after vaccination or disease onset). Immune responses were assessed through serological assays quantifying anti-RBD IgG and neutralizing antibodies, B-ELISPOT, and multiparameter flow cytometry for S1-specific memory B cells. Results: Both mRNA vaccines induced robust B cell and antibody responses, exceeding those observed after natural infection. Memory B cell frequencies peaked at 6 months and declined by 12 months, but remained above the baseline. The mRNA-1273 vaccine elicited stronger and more durable humoral and memory B-cell-mediated immunity compared to BNT162b2, likely influenced by its higher mRNA dose and longer prime-boost interval. Class-switched memory B cells and S1-specific B cells were significantly expanded in vaccine recipients. Natural infection induced more heterogeneous immune memory. Conclusions: Both mRNA vaccination and natural SARS-CoV-2 infection induce a comparable expansion of memory B cell subsets, reflecting a consistent pattern of humoral immune responses across all studied groups. These findings highlight the importance of vaccination in generating sustained immunological memory and suggest that the vaccine platform and dosage influence the magnitude and durability of immune responses against SARS-CoV-2. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

11 pages, 1069 KiB  
Article
Evaluation of Torquetenovirus (TTV) Particle Integrity Utilizing PMAxx™
by Giuseppe Sberna, Claudia Minosse, Cosmina Mija, Eliana Specchiarello, Pietro Giorgio Spezia, Sara Belladonna, Giulia Berno, Lavinia Fabeni, Giulia Matusali, Silvia Meschi, Daniele Focosi and Fabrizio Maggi
Int. J. Mol. Sci. 2025, 26(13), 6542; https://doi.org/10.3390/ijms26136542 - 7 Jul 2025
Viewed by 453
Abstract
Torquetenovirus (TTV) is a ubiquitous, non-pathogenic DNA virus that has been suggested as a biomarker of immune competence, with the viral load correlating with the level of immunosuppression. However, by detecting non-intact viral particles, standard PCR-based quantification may overestimate the TTV viremia. To [...] Read more.
Torquetenovirus (TTV) is a ubiquitous, non-pathogenic DNA virus that has been suggested as a biomarker of immune competence, with the viral load correlating with the level of immunosuppression. However, by detecting non-intact viral particles, standard PCR-based quantification may overestimate the TTV viremia. To improve the clinical relevance of TTV quantification, in this study, we investigated the use of PMAxx™, a virion viability dye that selectively blocks the amplification of compromised virions. Serum samples from 10 Hepatitis C Virus-positive (HCV+) individuals, 81 liver transplant recipients (LTRs), and 40 people with HIV (PWH) were treated with PMAxx™ and analyzed for TTV DNA loads by digital droplet PCR (ddPCR). Furthermore, anti-SARS-CoV-2 IgG levels and neutralizing antibody (nAbs) titers were measured post-COVID-19 vaccination. Using ddPCR, the PMAxx™ treatment significantly reduced the TTV DNA levels in all the groups (mean reduction: 0.66 Log copies/mL), indicating the abundant presence of non-intact, circulating viral genomes. However, correlations between TTV DNA and SARS-CoV-2 IgG or nAbs were weak or absent in both PMAxx™-treated and untreated samples. These findings suggest that while PMAxx™ enhanced the specificity of TTV quantification, it did not improve the predictive value of TTV viremia at assessing vaccine-induced humoral responses. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

29 pages, 5028 KiB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Viewed by 609
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 3669 KiB  
Article
Factors Associated with Impaired Humoral Immune Response to mRNA Vaccines in Patients with Inflammatory Bowel Disease: A Matched-Cohort Analysis from the RisCoin Study
by Katarina Csollarova, Leandra Koletzko, Thu Giang Le Thi, Paul R. Wratil, Ana Zhelyazkova, Simone Breiteneicher, Marcel Stern, Gaia Lupoli, Tobias Schwerd, Alexander Choukér, Veit Hornung, Oliver T. Keppler, Kristina Adorjan, Helga Paula Török and Sibylle Koletzko
Vaccines 2025, 13(7), 673; https://doi.org/10.3390/vaccines13070673 - 23 Jun 2025
Cited by 1 | Viewed by 615
Abstract
Background/Objectives: The SARS-CoV-2 pandemic challenged patients with inflammatory bowel disease (IBD) under immunosuppressive therapies. We used data from the RisCoin cohort to investigate factors associated with a poor immune response to mRNA vaccination in these patients. Methods: From 4115 RisCoin participants, we [...] Read more.
Background/Objectives: The SARS-CoV-2 pandemic challenged patients with inflammatory bowel disease (IBD) under immunosuppressive therapies. We used data from the RisCoin cohort to investigate factors associated with a poor immune response to mRNA vaccination in these patients. Methods: From 4115 RisCoin participants, we matched 110 IBD patients by age and time interval since the second mRNA vaccination with 306 healthcare workers (HCW) without comorbidities (HCW-healthy) and 292 with medical conditions (HCW-plus); all were SARS-CoV-2 infection naïve. Basic questionnaires collected data on medication, COVID-19 vaccinations and side-effects, dietary patterns, lifestyle factors, and self-perceived stress. Main outcomes included anti-spike immunoglobulin levels and antibody-mediated live-virus neutralization immunity (NT) to the Omicron BA.1 variant (threshold NT ≥ 10 defined as IC50 values ≥1:10 serum dilution) after the second (baseline) and third vaccinations. Results: At baseline, IBD patients treated with anti-TNF but not those under vedolizumab or ustekinumab therapy had lower anti-spike levels compared to HCW-healthy and HCW-plus (166 versus 1384 and 1258 BAU/mL, respectively; p < 0.0001). Anti-TNF compared to vedolizumab/ustekinumab-treated patients reached NT titers above threshold in 17% versus 64%, respectively, and HCW-subgroups in 73% and 79% (all p < 0.0001). Current smokers showed a four to five times increased risk for non-neutralizing immunity compared to non-smokers. After the third vaccination, NT titers did not reach threshold in 15% anti-TNF compared to 5% vedolizumab/ustekinumab-treated patients and none of HCW (p < 0.01). Patients with IBD reported fewer clinical symptoms after vaccination. Perceived stress was not increased. Conclusions: Our findings support individualized schedules for mRNA-based vaccines in IBD patients with different immunosuppressive therapies and enforcement of non-smoking. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

14 pages, 1700 KiB  
Article
Delayed Viral Clearance Accompanied by Early Impaired Humoral and Virus-Specific T-Cell Response in Patients with Coronavirus Disease 2019 and Interstitial Lung Disease
by Jiaying Zhong, Juan Li, Rui Wei, Bingpeng Guo, Tingting Cui, Peiyu Huang, Zhongfang Wang, Qun Luo and Qian Han
Vaccines 2025, 13(6), 655; https://doi.org/10.3390/vaccines13060655 - 19 Jun 2025
Viewed by 496
Abstract
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence [...] Read more.
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence of immune disorders and immunosuppressive therapy. This results in poor control of viral infections following SARS-CoV-2 infection. We aimed to highlight the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Methods: We compared viral clearance, antibody levels, and T-cell immune response between healthy controls and patients with connective tissue disease-related ILD (CTD-ILD) or interstitial pneumonia with autoimmune features (IPAF). Results: Patients with ILD exhibited a higher viral load than the control group (1.58 × 106 vs. 2.37 × 103 copies/mL, p = 0.018), as well as a significantly lower level of neutralizing antibodies against the wild-type (WT) virus (7.01 vs. 625.6, p < 0.0001) and Omicron BA.5 (7.19 vs. 128.4, p < 0.001). Similarly, a lower virus-specific T-cell (VST) immune response was observed 14 days post-symptom onset in the ILD group (CD4+ VSTs: 0.018 vs. 0.082, p = 0.005; CD8+ VSTs: 0.0008 vs. 0.047, p = 0.004). The ILD group had no other heightened inflammatory biomarkers compared with the control group. Conclusions: Our study provides novel evidence of the underlying interaction between virus clearance and host immune status and sheds light on the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
SARS-CoV-2 Variant-Specific Antibodies in Vaccinated Inflammatory Bowel Disease Patients
by Eva Ulla Lorentzen, Richard Vollenberg, Rieke Neddermeyer, Michael Schoefbaenker, Eike R. Hrincius, Stephan Ludwig, Phil-Robin Tepasse and Joachim Ewald Kuehn
Vaccines 2025, 13(6), 595; https://doi.org/10.3390/vaccines13060595 - 30 May 2025
Viewed by 783
Abstract
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may [...] Read more.
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may necessitate further medical interventions. Methods: This pilot study investigated the humoral immune response of vaccinated IBD patients on anti-TNF medication and a comparable group of healthy individuals against the viral variants Alpha, Beta, Gamma, Delta, and Omicron BA.1 and BA.5. While total IgG antibodies targeting the receptor binding site of the spike protein of SARS-CoV-2 were quantified using a chemiluminescence microparticle immunoassay (CMIA), their potential neutralizing capacity was determined using commercial and variant-specific in-house surrogate virus neutralization tests (sVNTs) against a variant-specific in-house VSV-pseudotyped virus neutralization test (pVNT) as the gold standard. Results: Employing variant-specific assays recapitulated the immune escape functions of virus variants. Conspicuously, antibody reactivity against Alpha and Omicron BA.1 and BA.5 was strikingly poor in IBD patient sera post-initial vaccination compared to healthy individuals. A comparison of the diagnostic performance of assays with the pVNT revealed that identification of patients with inadequate humoral responses by CMIA and sVNT may require adjustments to cut-off values and end-point titration of sera. Following adaptation of cut-off values, patient sera exhibited reduced reactivity against all tested variants. The assay panel used substantiated the impact of anti-TNF therapy in IBD patients as to reduced strength, function, and breadth of the immune response to several SARS-CoV-2 variants. The immune response measured following the second vaccination was comparable to the antibody response observed in healthy individuals following the first vaccination. Conclusion: Variant-specific sVNTs and pVNTs have the potential to serve as valuable tools for evaluating the efficacy of adapted vaccines and to inform clinical interventions in the care of immunosuppressed patients. Anti-TNF-treated individuals with antibody levels below the optimized CMIA threshold should be considered for early booster vaccination and/or close immunological monitoring. Full article
Show Figures

Figure 1

18 pages, 8713 KiB  
Article
Protective Potential and Functional Role of Antibodies Against SARS-CoV-2 Nucleocapsid Protein
by Alexandra Rak, Ekaterina Bazhenova, Polina Prokopenko, Victoria Matyushenko, Yana Orshanskaya, Konstantin V. Sivak, Arina Kostromitina, Larisa Rudenko and Irina Isakova-Sivak
Antibodies 2025, 14(2), 45; https://doi.org/10.3390/antib14020045 - 28 May 2025
Viewed by 1408
Abstract
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness [...] Read more.
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness of COVID-19 vaccines, as well as the sensitivity of diagnostic test systems based on variable viral antigens. These problems may be solved by focusing on highly conserved coronavirus antigens, for example nucleocapsid (N) protein, which is actively expressed by coronavirus-infected cells and serves as a target for the production of virus-specific antibodies and T cell responses. It is known that anti-N antibodies are non-neutralizing, but their protective potential and functional activity are not sufficiently studied. Here, the protective effect of anti-N antibodies was studied in Syrian hamsters passively immunized with polyclonal sera raised to N(B.1) recombinant protein. The animals were infected with 105 or 104 TCID50 of SARS-CoV-2 (B.1, Wuhan or BA.2.86.1.1.18, Omicron) 6 h after serum passive transfer, and protection was assessed by weight loss, clinical manifestation of disease, viral titers in the respiratory tract, as well as by the histopathological evaluation of lung tissues. The functional activity of anti-N(B.1) antibodies was evaluated by complement-dependent cytotoxicity (CDC) and antibody-dependent cytotoxicity (ADCC) assays. The protection of anti-N antibodies was evident only against a lower dose of SARS-CoV-2 (B.1) challenge, whereas almost no protection was revealed against BA.2.86.1.1.18 variant. Anti-N(B.1) monoclonal antibodies were able to stimulate both CDC and ADCC. Thus, anti-N(B.1) antibodies possess protective activity against homologous challenge infection, which is possibly mediated by innate Fc-mediated immune reactions. These data may be informative for the development of N-based broadly protective COVID-19 vaccines. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

14 pages, 867 KiB  
Brief Report
Serological Correlate of Protection Established by Neutralizing Antibodies Differs Among Dialysis Patients with SARS-CoV-2 Variants of Concern
by Guy Rostoker, Stéphanie Rouanet, Myriam Merzoug, Hiba Chakaroun, Mireille Griuncelli, Christelle Loridon, Ghada Boulahia and Luc Gagnon
Vaccines 2025, 13(5), 518; https://doi.org/10.3390/vaccines13050518 - 13 May 2025
Viewed by 563
Abstract
Background: The 2019 coronavirus disease (COVID-19) pandemic had a severe impact on frail, end-stage kidney disease (ESKD) patients, either on dialysis or transplanted, with a high mortality rate in the early waves. Vaccination against SARS-CoV-2 with mRNA vaccines has led to reduced hospitalization [...] Read more.
Background: The 2019 coronavirus disease (COVID-19) pandemic had a severe impact on frail, end-stage kidney disease (ESKD) patients, either on dialysis or transplanted, with a high mortality rate in the early waves. Vaccination against SARS-CoV-2 with mRNA vaccines has led to reduced hospitalization and mortality rates in the general population and ESKD patients. Neutralizing antibodies (NAbs) are a valuable correlate of protection after vaccination, and IgG anti-spike antibodies are considered a surrogate marker of protection. Methods: This study investigated the correlates of protection brought by NAb and anti-spike IgG antibodies against SARS-CoV-2 wild-type Wuhan strain and variants of concern in a cohort of 128 French patients on dialysis after vaccination with the BNT162b2 mRNA vaccine. The correlate was assessed using Receiver Operating Characteristic curves. Results: The level of protection for IgG anti-spike antibodies was set at 917 BAU/mL for the original Wuhan strain and 980 BAU/mL and 1450 BAU/mL, respectively, for the Delta and Omicron BA.1 variants. Conclusions: The level of protection can be regularly monitored by measuring IgG anti-spike antibody concentrations to allow tailored boosters of SARS-CoV-2 vaccination in this frail and immunocompromised ESKD population. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

16 pages, 3274 KiB  
Article
Long-Term Dynamics of SARS-CoV-2 Variant-Specific Neutralizing Antibodies Following mRNA Vaccination and Infection
by Veronika Vaňová, Jana Náhliková, Martina Ličková, Monika Sláviková, Ivana Kajanová, Ľubomíra Lukáčiková, Miroslav Sabo, Žofia Rádiková, Silvia Pastoreková and Boris Klempa
Viruses 2025, 17(5), 675; https://doi.org/10.3390/v17050675 - 6 May 2025
Viewed by 772
Abstract
Understanding the long-term dynamics of SARS-CoV-2 neutralizing antibodies is critical for evaluating vaccine-induced protection and informing booster strategies. In this longitudinal study, we analyzed 114 serum samples from 19 individuals across six time points over a three-year period following mRNA vaccination (Comirnaty) and [...] Read more.
Understanding the long-term dynamics of SARS-CoV-2 neutralizing antibodies is critical for evaluating vaccine-induced protection and informing booster strategies. In this longitudinal study, we analyzed 114 serum samples from 19 individuals across six time points over a three-year period following mRNA vaccination (Comirnaty) and natural SARS-CoV-2 infection. Using pseudotype-based neutralization assays against nine SARS-CoV-2 variants, including major Omicron subvariants (BA.1–BA.5, BQ.1.1, XBB), and anti-S1 IgG ELISA, we observed that antibody levels peaked after the third vaccine dose and remained relatively stable two years later. Neutralization titers rose markedly after the second and third doses, with the highest neutralization observed at two years post-booster. Strong correlations were found between anti-S1 IgG levels and mean neutralization titers for pre-Omicron variants (r = 0.79–0.93; p < 0.05), but only moderate for Omicron subvariants (r ≈ 0.50–0.64). Notably, hybrid immunity (vaccination plus infection) resulted in higher neutralization titers at the final time point compared to vaccine-only participants. The lowest neutralization was observed against XBB, underscoring the immune evasiveness of emerging variants. These findings support the importance of booster vaccination and highlight the added durability of hybrid immunity in long-term protection. Full article
(This article belongs to the Special Issue SARS-CoV-2 Neutralizing Antibodies 3rd Edition)
Show Figures

Figure 1

16 pages, 4518 KiB  
Article
Impact of Vaccine-Elicited Anti-Spike IgG4 Antibodies on Fc-Effector Functions Against SARS-CoV-2
by Katrina Dionne, Alexandra Tauzin, Étienne Bélanger, Yann Desfossés, Mehdi Benlarbi, Ling Niu, Guillaume Beaudoin-Bussières, Halima Medjahed, Catherine Bourassa, Josée Perreault, Marzena Pazgier, Renée Bazin and Andrés Finzi
Viruses 2025, 17(5), 666; https://doi.org/10.3390/v17050666 - 3 May 2025
Viewed by 950
Abstract
mRNA vaccines have demonstrated considerable efficacy and safety against SARS-CoV-2, limiting the pandemic burden worldwide. The emergence of new variants of concern and the decline in neutralizing activity observed several weeks post-vaccination reinforced the call for repeated mRNA vaccination. We and others have [...] Read more.
mRNA vaccines have demonstrated considerable efficacy and safety against SARS-CoV-2, limiting the pandemic burden worldwide. The emergence of new variants of concern and the decline in neutralizing activity observed several weeks post-vaccination reinforced the call for repeated mRNA vaccination. We and others have shown that vaccine efficacy does not exclusively rely on antibody neutralizing activites; Fc-effector functions play an important role as well. However, it is well known that long-term exposure and repeated antigen stimulation elicit the IgG4 subclass of antibodies, which are inefficient at mediating Fc-effector functions. In this regard, recent studies highlighted concerns about IgG4 induction by mRNA vaccines. Here, we explored the impact of repeated mRNA vaccination on IgG4 induction and its impact on Fc-effector functions. We observed anti-Spike IgG4 elicitation after three doses of mRNA vaccine; the antibody levels further increased with additional doses. Vaccine-elicited IgG4 preferentially bound the ancestral D614G Spike. We also observed that Breakthrough Infection (BTI) after several doses of vaccine strongly increased IgG1 levels but had no impact on IgG4 levels, thereby improving Fc-effector functions. Finally, we observed that elderly donors vaccinated with Moderna mRNA vaccines elicited higher IgG4 levels and presented lower Fc-effector functions than donors vaccinated with the Pfizer mRNA vaccine. Altogether, our results highlight the importance of monitoring the IgG subclasses elicited by vaccination. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 1306 KiB  
Article
Individuals Infected with SARS-CoV-2 Prior to COVID-19 Vaccination Maintain Vaccine-Induced RBD-Specific Antibody Levels and Viral Neutralization Activity for One Year
by Christina S. Mcconney, Devin Kenney, Christina S. Ennis, Erika L. Smith-Mahoney, Maria Jose Ayuso, Jiabao Zhong, Florian Douam, Manish Sagar and Jennifer E. Snyder-Cappione
Viruses 2025, 17(5), 640; https://doi.org/10.3390/v17050640 - 29 Apr 2025
Viewed by 749
Abstract
The effectiveness of multiple COVID-19 vaccinations in individuals with a history of SARS-CoV-2 infection remains unclear; specifically, elucidation of the durability of anti-viral antibody responses could provide important insights for epidemiological applications. We utilized the BU ELISA protocol to measure the circulating SARS-CoV-2 [...] Read more.
The effectiveness of multiple COVID-19 vaccinations in individuals with a history of SARS-CoV-2 infection remains unclear; specifically, elucidation of the durability of anti-viral antibody responses could provide important insights for epidemiological applications. We utilized the BU ELISA protocol to measure the circulating SARS-CoV-2 receptor-binding domain (RBD) and nucleocapsid (N) specific IgG and IgA antibody levels in a cohort of individuals infected with SARS-CoV-2 in the spring of 2020, with the sample collection spanning six months to two years post-symptom onset. Further, we interrogated the neutralization activity of these samples against the ancestral SARS-CoV-2 (WA-1) and Delta and Omicron (BA.1) variants. Consistent with previous studies, we found a more rapid waning of anti-N compared to anti-RBD antibodies in months prior to the first vaccinations. Vaccine-induced antibody responses in individuals previously infected with SARS-CoV-2 were elevated and sustained for more than one year post-vaccination. Similarly, neutralization activity against WA-1, Delta, and Omicron increased and remained higher than pre-vaccination levels for one year after the first COVID-19 vaccine dose. Collectively, these results indicate that infection followed by vaccination yields robust antibody responses against SARS-CoV-2 that endure for one year. These results suggest that an annual booster would stably boost anti-SARS-CoV-2 antibody responses, preventing infection and disease. Full article
Show Figures

Figure 1

15 pages, 1118 KiB  
Article
Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine
by Anthie Damianaki, Antonios Marmarinos, Margaritis Avgeris, Dimitrios Gourgiotis, Elpis-Athina Vlachopapadopoulou, Marietta Charakida, Maria Tsolia and Lydia Kossiva
Diseases 2025, 13(3), 78; https://doi.org/10.3390/diseases13030078 - 10 Mar 2025
Viewed by 867
Abstract
Background: The aim of this study was to evaluate whether increased body mass index (BMI) and biochemical and lifestyle parameters linked to obesity and smoke exposure disrupt immune responses of children and adolescents following vaccination with the mRNA BNT162b2 vaccine. Methods: A prospective, [...] Read more.
Background: The aim of this study was to evaluate whether increased body mass index (BMI) and biochemical and lifestyle parameters linked to obesity and smoke exposure disrupt immune responses of children and adolescents following vaccination with the mRNA BNT162b2 vaccine. Methods: A prospective, single-center, cohort study was conducted. Participants were assigned to receive two doses of the mRNA vaccine. Anti-SARS-CoV-2 IgG and neutralizing antibodies (AB) were measured before vaccination (T0) and 14 days after the second dose (T1). BMI and biochemical parameters were evaluated at T0. A questionnaire on lifestyle characteristics was filled in. Results: IgG optical density (OD) ratio at T1 was lower in the overweight–obese group regardless of COVID-19 disease positive history [p = 0.028 for the seronegative group, p = 0.032 for the seropositive group]. Neutralizing AB were lower in overweight–obese participants in the seronegative group at T1 [p = 0.008]. HDL, fasting glucose/insulin ratio (FGIR), C-reactive protein (CRP), HBA1c, uric acid, and smoke exposure were significantly correlated with BMI [p = 0.006, p < 0.001, p < 0.001, p = 0.006, p = 0.009, p < 0.001, respectively]. The main biochemical parameters that were inversely correlated with IgG and neutralizing AB titers at T1 were uric acid [p = 0.018, p = 0.002], FGIR [p = 0.001, p = 0.008] and HBA1C [p = 0.027, p = 0.038], while smoke exposure negatively affected the humoral immune responses at T0 in the convalescent group [p = 0.004, p = 0.005]. Conclusions: Current data suggests that uric acid, insulin resistance (IR), and smoke exposure could adversely affect the immune responses in overweight–obese vaccinated children, highlighting the need for actions to enhance the protection of this particular subgroup. Full article
Show Figures

Figure 1

14 pages, 1349 KiB  
Article
SARS-CoV-2 mRNA Vaccines Induce Cross-Reactive Antibodies to NL63 Coronavirus but Do Not Boost Pre-Existing Immunity Anti-NL63 Antibody Responses
by Weiyi Tang, Zi Wei Chang, Yun Shan Goh, Yong Jie Tan, Pei Xiang Hor, Chiew Yee Loh, David C. Lye, Barnaby E. Young, Lisa F. P. Ng, Matthew Zirui Tay, Laurent Rénia, on behalf of the COVID-19 Cohort Study Group, NCID Study Group and COVID Clinicians’ Group
Vaccines 2025, 13(3), 268; https://doi.org/10.3390/vaccines13030268 - 4 Mar 2025
Viewed by 1453
Abstract
Background/Objectives: mRNA vaccines have demonstrated strong immunogenicity and efficacy against SARS-CoV-2. However, the extent of antibody cross-reactivity against human seasonal coronaviruses, such as NL63, remains unclear. Furthermore, it is unknown whether pre-existing antibody responses against NL63 might influence the outcome of SARS-CoV-2 mRNA [...] Read more.
Background/Objectives: mRNA vaccines have demonstrated strong immunogenicity and efficacy against SARS-CoV-2. However, the extent of antibody cross-reactivity against human seasonal coronaviruses, such as NL63, remains unclear. Furthermore, it is unknown whether pre-existing antibody responses against NL63 might influence the outcome of SARS-CoV-2 mRNA vaccination. Methods: We used a flow cytometry-based serological assay and an in vitro neutralization assay to analyze NL63 antibody responses in sera from SARS-CoV-2 mRNA-vaccinated mice and plasma samples from a vaccinated human cohort. Results: We found that the Moderna mRNA-1273 vaccine can generate cross-reactive antibodies against NL63. Importantly, SARS-CoV-2 mRNA vaccination did not boost pre-existing anti-NL63 responses in humans, and pre-existing NL63 antibody levels did not affect the antibody response induced by SARS-CoV-2 mRNA vaccination. Conclusions: These findings suggest that while SARS-CoV-2 mRNA vaccination can induce cross-reactive antibodies against NL63, pre-existing immunity to this seasonal coronavirus does not appear to significantly impact vaccine immunogenicity. These findings contribute to our understanding of the complex interplay between pre-existing immunity to seasonal coronaviruses and the immune response generated by SARS-CoV-2 mRNA vaccines. Full article
(This article belongs to the Special Issue Understanding Immune Responses to COVID-19 Vaccines)
Show Figures

Figure 1

17 pages, 4659 KiB  
Article
Design and Characterization of Bispecific and Trispecific Antibodies Targeting SARS-CoV-2
by Jiayang Wang, Qi Qian, Yushan Jiang, Zuxin Liang, Yun Peng, Wei Zhao, Yang Yang and Chenguang Shen
Vaccines 2025, 13(3), 255; https://doi.org/10.3390/vaccines13030255 - 28 Feb 2025
Cited by 1 | Viewed by 1293
Abstract
Background/Objectives: COVID-19, caused by SARS-CoV-2, has emerged as a global pandemic since its outbreak in 2019. As an increasing number of variants have emerged, especially concerning variants such as Omicron BA.1, BA.2, XBB.1, EG.5, which can escape the immune system and cause repeated [...] Read more.
Background/Objectives: COVID-19, caused by SARS-CoV-2, has emerged as a global pandemic since its outbreak in 2019. As an increasing number of variants have emerged, especially concerning variants such as Omicron BA.1, BA.2, XBB.1, EG.5, which can escape the immune system and cause repeated infections, they have exerted significant pressure on monoclonal antibodies and the treatment approaches for COVID-19. Broad spectrum antiviral medication was urgently needed. In this study, we developed several bispecific antibodies based on the IgG-scFv format and one trispecific antibody containing Fab fragments with different anti-virus mechanisms studied previously. The Fab fragments are from h11B11, S2P6, and S309 respectively. Method: all recombinant antibodies were expressed by HEK 293. The pseudoviruses’ neutralization assay and the virus challenge to BALB/c mice were deployed to assess the efficiency of recombinant antibodies in vitro and in vivo. Results: the bispecific antibodies exhibited a favorable pseudoviruses neutralization activity, with IC50 values ranging from 8 to 591 ng/mL. The trispecific antibody performed even better, with IC50 values ranging from 5 to 27 ng/mL. Furthermore, the virus challenge to mice confirmed that the bispecific antibodies, including the trispecific antibody, had decent therapeutic efficacy. Conclusions: our study provided several supplements to the therapeutic measures of COVID-19 based on multispecific antibodies, supporting the great potential of the multispecific antibodies strategy in dealing with emerging pathogens. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

11 pages, 1020 KiB  
Article
Neutralizing Antibody Response to SARS-CoV-2 Variants After Two mRNA COVID-19 Vaccine Doses in a Cohort of Patients with Inflammatory Bowel Disease from a Southern Italy Tertiary Hospital
by Dario Genovese, Daniele Brinch, Stefano Muscarella, Marica Saladino, Lucio Carrozza, Chiara Cunsolo, Giuseppa Luisa Sanfilippo, Emanuele Amodio, Maria Cappello and Donatella Ferraro
Healthcare 2025, 13(5), 508; https://doi.org/10.3390/healthcare13050508 - 26 Feb 2025
Viewed by 914
Abstract
Introduction: Inflammatory bowel diseases (IBDs) require immunosuppressive drugs like biologics. All IBD patients, including those on biological therapy, should be vaccinated against COVID-19, according to the ECCO recommendations. IBD patients on anti-TNF treatment exhibited lower COVID-19 vaccine responses; however, SARS-CoV-2 variant neutralizing antibody [...] Read more.
Introduction: Inflammatory bowel diseases (IBDs) require immunosuppressive drugs like biologics. All IBD patients, including those on biological therapy, should be vaccinated against COVID-19, according to the ECCO recommendations. IBD patients on anti-TNF treatment exhibited lower COVID-19 vaccine responses; however, SARS-CoV-2 variant neutralizing antibody titers have been seldom studied. Methods: IBD patients and healthcare professionals (control group) were tested for COVID-19 vaccine immunogenicity by neutralizing antibody titers against Wild-Type SARS-CoV-2 and its variants. IBD patients were assigned to no treatment/mesalamine, anti-TNF biologic therapy, or non-anti-TNF biologic therapy. The study was performed in a tertiary hospital in Palermo, Sicily, from May to July 2021. Results: In total, 107 IBD patients and 41 healthcare workers were enrolled. A total of 46 patients received mesalamine or no medication, 28 received anti-TNF biologics, and 33 received non-anti-TNF biologics. No significant differences were found in age, gender, or timing of blood sampling post vaccination. Omicron neutralizing activity was markedly reduced in all groups (p < 0.001). The group of patients on anti-TNF biologics showed lower neutralizing antibody titers against Alpha, Delta, and Gamma strains than every other group analyzed. Conclusions: IBD patients on anti-TNF drugs have a reduced serological response to the SARS-CoV-2 vaccine, with the Omicron variant not being neutralized. This highlights the necessity for tailored vaccine strategies for these patients. Full article
(This article belongs to the Collection COVID-19: Impact on Public Health and Healthcare)
Show Figures

Figure 1

Back to TopTop