Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,301)

Search Parameters:
Keywords = anti-S protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

14 pages, 456 KiB  
Article
The Role of Anisakis sp. in α-Gal Sensitization: Implications for Parasitic-Induced Meat Allergy
by Marta Rodero, Sara Romero, Ángela Valcárcel, Juan González-Fernández, A. Sonia Olmeda, Félix Valcárcel, Alvaro Daschner and Carmen Cuéllar
Pathogens 2025, 14(8), 789; https://doi.org/10.3390/pathogens14080789 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: This study investigates the potential of Anisakis sp. as a novel source of α-Gal (Galα1-3Galβ1-4GlcNAc-R) epitopes capable of inducing allergic sensitization in humans. While α-Gal is classically associated with delayed IgE-mediated hypersensitivity following tick bites, emerging evidence suggests that parasitic helminths such [...] Read more.
Background/Objectives: This study investigates the potential of Anisakis sp. as a novel source of α-Gal (Galα1-3Galβ1-4GlcNAc-R) epitopes capable of inducing allergic sensitization in humans. While α-Gal is classically associated with delayed IgE-mediated hypersensitivity following tick bites, emerging evidence suggests that parasitic helminths such as Anisakis sp. may also express α-Gal-containing glycoconjugates, offering an alternative sensitization pathway. Methods: Protein extracts from Anisakis sp. third-stage larvae and mammalian tissues (beef, pork) were analyzed by SDS-PAGE and Western blot using a monoclonal anti-α-Gal antibody (clone M86), and α-Gal epitopes were detected by ELISA. Sera from urticaria patients, stratified by Anisakis sp. sensitization status, were evaluated for anti-α-Gal IgG, IgE, and IgG4 antibodies. Inhibition assays assessed cross-reactivity. Results: Results confirmed the presence of α-Gal epitopes on Anisakis sp. proteins, with prominent bands at ~250 kDa and 65 kDa. Urticaria patients sensitized to Anisakis sp. exhibited significantly elevated anti-α-Gal antibody levels compared to controls. Inhibition ELISA demonstrated substantial reduction in antibody binding with Anisakis sp. extracts, indicating shared antigenic determinants with mammalian α-Gal. Conclusions: These findings establish Anisakis sp. as a source of α-Gal-containing glycoproteins capable of eliciting specific antibody responses in humans, highlighting a potential parasitic route for α-Gal sensitization. Full article
(This article belongs to the Special Issue Molecular Aspects of Host-Parasite Interactions)
28 pages, 13042 KiB  
Article
Anti-Her2 CAR-NK92 Cells and Their Exosomes: Generation, Characterization, and Selective Cytotoxicity Against Her2-Positive Tumor Cells
by Alexandru Tîrziu, Florina Maria Bojin, Oana Isabella Gavriliuc, Roxana Maria Buzan, Lauriana Eunice Zbîrcea, Manuela Grijincu and Virgil Păunescu
Int. J. Mol. Sci. 2025, 26(15), 7648; https://doi.org/10.3390/ijms26157648 (registering DOI) - 7 Aug 2025
Abstract
Chimeric antigen receptor (CAR)-engineered NK cells are a promising approach for targeted immunotherapy in Her2-positive cancers. This study aimed to generate anti-Her2 CAR-NK92 cells, to evaluate their selective cytotoxicity against Her2-positive cancer cells, and to isolate and characterize their released exosomes. NK92 cells [...] Read more.
Chimeric antigen receptor (CAR)-engineered NK cells are a promising approach for targeted immunotherapy in Her2-positive cancers. This study aimed to generate anti-Her2 CAR-NK92 cells, to evaluate their selective cytotoxicity against Her2-positive cancer cells, and to isolate and characterize their released exosomes. NK92 cells were electroporated with piggyBac transposon vectors encoding anti-Her2 CAR and the helper transposase. Puromycin selection was performed to enrich the transduced cells. CAR and GFP expression were assessed by flow cytometry, and exosomes were isolated and characterized in terms of protein cargo and surface protein expression. Cytotoxicity was evaluated using real-time cell analysis against Her2-positive SK-BR3 cells and Her2-negative MCF-7 cells. Electroporation did not significantly affect NK92 cell viability. Puromycin selection efficiently enriched for CAR-expressing cells, with GFP positivity reaching 99.8% and a 15-fold increase in CAR surface expression compared to wild-type cells. CAR-NK92 cells demonstrated robust, Her2-specific cytotoxicity in a E:T-dependent manner, with the greatest effect observed at a 10:1 effector-to-target ratio. Exosomes derived from CAR-NK92 cells contained CAR molecules and selectively targeted Her2-positive cells. Anti-Her2 CAR-NK92 cells and their exosomes exhibit potent and selective cytotoxicity against Her2-positive cancer cells, supporting their potential as innovative immunotherapeutic agents for solid tumors. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

12 pages, 847 KiB  
Article
Relationship Between Oxidative Stress and Cardiovascular Risk in Adolescents in Montenegro
by Aleksandra Klisic, Marija Bozovic, Barbara Ostanek, Janja Marc, Paschalis Karakasis, Filiz Mercantepe and Jelena Kotur-Stevuljevic
Int. J. Mol. Sci. 2025, 26(15), 7650; https://doi.org/10.3390/ijms26157650 (registering DOI) - 7 Aug 2025
Abstract
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% [...] Read more.
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% girls) aged between 16 and 19 was examined. Total antioxidant status (TAS), superoxide dismutase (SOD), advanced oxidation protein products (AOPPs), malondialdehyde (MDA), and total oxidant status (TOS) were determined. Pro-oxy score, anti-oxy score, and oxy score were calculated as comprehensive parameters of overall redox homeostasis status. CVRS was calculated by summarizing several risk factors (i.e., sex, age, obesity, hypertension, dyslipidemia, impaired fasting glucose, and smoking). A significant positive correlation between CVRS and TOS (rho = 0.246, p = 0.001) and AOPP (rho = 0.231, p = 0.002) and MDA (rho = 0.339, p < 0.001), respectively, and a negative correlation with the TAS/TOS ratio (rho= −0.208, p = 0.005) was observed. An increase in pro-oxy scores as well as oxy scores with CVRS risk increase were observed. Anti-oxy scores did not differ between CVRS subgroups. There is a significant relationship between cardiovascular risk score and oxidative stress in the adolescent Montenegrin population. These findings support the possibility for improvement of age-specific CVD risk algorithms by adding redox homeostasis parameters in addition to conventional ones. Full article
Show Figures

Figure 1

12 pages, 924 KiB  
Article
Houttuynia cordata Exhibits Anti-Inflammatory Activity Against Interleukin-1β-Induced Inflammation in Human Gingival Epithelial Cells: An In Vitro Study
by Ryo Kunimatsu, Sawako Ikeoka, Yuma Koizumi, Ayaka Odo, Izumi Tanabe, Yoshihito Kawashima, Akinori Kiso, Yoko Hashii, Yuji Tsuka and Kotaro Tanimoto
Dent. J. 2025, 13(8), 360; https://doi.org/10.3390/dj13080360 - 7 Aug 2025
Abstract
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function [...] Read more.
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function has been proposed as a therapeutic strategy to prevent the progression of periodontal disease. Houttuynia cordata, a perennial herb traditionally used in Asian medicine, is recognized for its anti-inflammatory properties, with documented benefits in the cardiovascular, respiratory, and gastrointestinal systems. However, its potential therapeutic role in oral pathologies, such as periodontitis, remains underexplored. This study aimed to investigate the anti-inflammatory effects of H. cordata extract on interleukin (IL)-1β-stimulated primary gingival keratinocytes (PGKs) subjected to IL-1β-induced inflammatory stress, simulating the conditions encountered during orthodontic treatment. Methods: Inflammation was induced in PGKs using IL-1β, and the impact of H. cordata extract pretreatment was assessed using quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunoblotting. Results: H. cordata extract significantly downregulated the mRNA and protein expression levels of tumor necrosis factor-alpha, IL-8, and intercellular adhesion molecule-1 in IL-1β-stimulated PGKs without inducing cytotoxicity. Conclusions: These findings suggest that H. cordata holds promise as a preventive agent against periodontitis by attenuating inflammatory responses in gingival epithelial tissues. We believe that our findings will inform the development of prophylactic interventions to reduce periodontitis risk in patients undergoing orthodontic therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 3790 KiB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

17 pages, 10110 KiB  
Article
An Integrated Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation Study to Investigate the Potential Mechanism of Isoliquiritigenin in the Treatment of Ischemic Stroke
by Hang Yuan, Yuting Hou, Yuan Jiao, Xin Lu and Liang Liu
Curr. Issues Mol. Biol. 2025, 47(8), 627; https://doi.org/10.3390/cimb47080627 - 6 Aug 2025
Abstract
Isoliquiritigenin (ISL) is a type of chalcone that widely exists in medicinal plants of the Leguminosae family and exhibits a remarkable anti-ischemic stroke (IS) effect. However, the anti-IS mechanisms of ISL remain to be systematically elucidated. In this study, network pharmacology was used [...] Read more.
Isoliquiritigenin (ISL) is a type of chalcone that widely exists in medicinal plants of the Leguminosae family and exhibits a remarkable anti-ischemic stroke (IS) effect. However, the anti-IS mechanisms of ISL remain to be systematically elucidated. In this study, network pharmacology was used to predict potential targets related to the anti-IS effect of ISL. The binding ability of ISL to potential core targets was further analyzed by molecular docking and molecular dynamics (MD) simulations. By establishing an oxygen–glucose deprivation/reoxygenation (OGD/R)-induced HT22 cell model, the anti-IS mechanisms of ISL were investigated via RT-qPCR and Western Blot (WB). As a result, network pharmacology analysis revealed that APP, ESR1, MAO-A, PTGS2, and EGFR may be potential core targets of ISL for anti-IS treatment. Molecular docking and molecular dynamics simulation results revealed that ISL can stably bind to the five potential core targets and form stable complex systems with them. The results of the cell experiments revealed a significant anti-IS effect of ISL. Additionally, mRNA and protein expression levels of APP, MAO-A and PTGS2 or ESR1 in the ISL treatment group were significantly lower or higher than those in the OGD/R group In conclusion, ISL may improve IS by regulating the protein expression levels of APP, ESR1, MAO-A, and PTGS2. Full article
(This article belongs to the Special Issue Cerebrovascular Diseases: From Pathogenesis to Treatment)
Show Figures

Figure 1

20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
42 pages, 939 KiB  
Review
B7-H3 in Cancer Immunotherapy—Prospects and Challenges: A Review of the Literature
by Sylwia Mielcarska, Anna Kot, Miriam Dawidowicz, Agnieszka Kula, Piotr Sobków, Daria Kłaczka, Dariusz Waniczek and Elżbieta Świętochowska
Cells 2025, 14(15), 1209; https://doi.org/10.3390/cells14151209 - 6 Aug 2025
Abstract
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule [...] Read more.
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule modulates anti-cancer immune responses, acting through diverse signaling pathways and cell populations. It has been implicated in the pathogenesis of numerous malignancies, including melanoma, gliomas, lung cancer, gynecological cancers, renal cancer, gastrointestinal tumors, and others, fostering the immunosuppressive environment and marking worse prognosis for the patients. B7-H3 targeting therapies, such as monoclonal antibodies, antibody–drug conjugates, and CAR T-cells, present promising results in preclinical studies and are the subject of ongoing clinical trials. CAR-T therapies against B7-H3 have demonstrated utility in malignancies such as melanoma, glioblastoma, prostate cancer, and RCC. Moreover, ADCs targeting B7-H3 exerted cytotoxic effects on glioblastoma, neuroblastoma cells, prostate cancer, and craniopharyngioma models. B7-H3-targeting also delivers promising results in combined therapies, enhancing the response to other immune checkpoint inhibitors and giving hope for the development of approaches with minimized adverse effects. However, the strategies of B7-H3 blocking deliver substantial challenges, such as poorly understood molecular mechanisms behind B7-H3 protumor properties or therapy toxicity. In this review, we discuss B7-H3’s role in modulating immune responses, its significance for various malignancies, and clinical trials evaluating anti-B7-H3 immunotherapeutic strategies, focusing on the clinical potential of the molecule. Full article
Show Figures

Figure 1

22 pages, 4653 KiB  
Review
Curcumin as a Dual Modulator of Pyroptosis: Mechanistic Insights and Therapeutic Potential
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7590; https://doi.org/10.3390/ijms26157590 - 6 Aug 2025
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical [...] Read more.
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical target in both chronic inflammatory diseases and cancer therapy. This review comprehensively explores the dual roles of curcumin in the regulation of NLRP3 inflammasome-mediated pyroptosis. Curcumin exerts inhibitory effects by suppressing NF-κB signaling, attenuating mitochondrial reactive oxygen species (ROS) and ER stress, preventing potassium efflux, and disrupting inflammasome complex assembly. Conversely, in certain cancer contexts, curcumin promotes pyroptosis by stabilizing NLRP3 through the inhibition of Smurf2-mediated ubiquitination. Molecular docking studies support curcumin’s direct binding to several pyroptosis-associated proteins, including NLRP3, AMPK, caspase-1, and Smurf2. These context-dependent regulatory effects underscore the therapeutic potential of curcumin as both an inflammasome suppressor in inflammatory diseases and a pyroptosis inducer in cancer. Full article
(This article belongs to the Collection Latest Review Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 17231 KiB  
Article
ArfGAP with Dual Pleckstrin Homology Domains 2 Promotes Hypertrophy of Cultured Neonatal Cardiomyocytes
by Jonathan Berthiaume, Audrey-Ann Dumont, Lauralyne Dumont, Marie-Frédérique Roy, Hugo Giguère and Mannix Auger-Messier
Int. J. Mol. Sci. 2025, 26(15), 7588; https://doi.org/10.3390/ijms26157588 - 6 Aug 2025
Abstract
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed [...] Read more.
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed in the heart but its role remains elusive. To elucidate its function, we investigated the effects of adenoviral-mediated overexpression of Adap2 in cultured neonatal rat ventricular myocytes under both basal and pro-hypertrophic conditions, employing a range of microscopy and biochemical techniques. Despite minimal detection in neonatal rat hearts, Adap2 was found to be well expressed in adult rat hearts, being predominantly localized at the membrane fraction. In contrast to Adap1, overexpression of Adap2 provokes the robust accumulation of β1-integrin at the cellular surface of cultured cardiomyocytes. Interestingly, overexpressed Adap2 relocalizes at the sarcolemma and increases the size of cardiomyocytes upon phenylephrine stimulation, despite attenuating Erk1/2 phosphorylation and Nppa gene expression. Under these same conditions, cardiomyocytes overexpressing Adap2 also express higher level of detyrosinated tubulin, a marker of hypertrophic response. These findings provide new insights into the pro-hypertrophic function of Adap2 in cardiomyocytes. Full article
Show Figures

Figure 1

19 pages, 1856 KiB  
Article
Combination Therapy with Trehalose and Hyaluronic Acid Restores Tear Lipid Layer Functionality by Ameliorating Inflammatory Response Protein Markers on the Ocular Surface of Dry Eye Patients
by Natarajan Perumal, Caroline Manicam, Eunjin Jeong, Sarah Runde, Norbert Pfeiffer and Franz H. Grus
J. Clin. Med. 2025, 14(15), 5525; https://doi.org/10.3390/jcm14155525 - 5 Aug 2025
Abstract
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a [...] Read more.
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a longitudinal clinical study and subsequent elucidation of the tear proteome and cell signaling changes. Methods: Participants were classified as moderate to severe DED (DRY, n = 35) and healthy (CTRL, n = 23) groups. Specific DED subgroups comprising evaporative (DRYlip) and aqueous-deficient with DRYlip (DRYaqlip) were also classified. Only DED patients received Thealoz® Duo. All participants were clinically examined before (day 0, T1) and after the application of Thealoz® Duo at day 28 (T2) and day 56 (T3). Next, 174 individual tear samples from all groups at three time-points were subjected to proteomics analysis. Results: Clinically, Thealoz® Duo significantly improved the ocular surface disease index at T2 vs. T1 (DRY, p = 1.4 × 10−2; DRYlip, p = 9.2 × 10−3) and T3 vs. T1 (DRY, p = 2.1 × 10−5; DRYlip, p = 1.2 × 10−4), and the tear break-up time at T3 vs. T1 (DRY, p = 3.8 × 10−2; DRYlip, p = 1.4 × 10−2). Thealoz® Duo significantly ameliorated expression of inflammatory response proteins (p < 0.05) at T3, which was observed at T1 (DRY, p = 3.4 × 10−4; DRYlip, p = 7.1 × 10−3; DRYaqlip, p = 2.7 × 10−8). Protein S100-A8 (S100A8), Alpha-1-antitrypsin (SERPINA1), Annexin A1 (ANXA1), and Apolipoprotein A-I (APOA1) were found to be significantly reduced in all the DED subgroups. The application of Thealoz® Duo showed the therapeutic characteristic of the anti-inflammatory mechanism by promoting the expression of (Metalloproteinase inhibitor 1) TIMP1 in all the DED subgroups. Conclusions: Thealoz® Duo substantially improved the DED symptoms and restored the functionality of the tear lipid layer to near normal in DRYlip and DRY patients by ameliorating inflammation. Notably, this study unravels the novel mechanistic alterations underpinning the healing effects of Thealoz® Duo in DED subgroups in a time-dependent manner, which supports the improvement in corresponding clinical attributes. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

Back to TopTop