Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (341)

Search Parameters:
Keywords = anti-PD-1 immune checkpoint inhibitor therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1727 KiB  
Review
Immune Evasion in Head and Neck Squamous Cell Carcinoma: Roles of Cancer-Associated Fibroblasts, Immune Checkpoints, and TP53 Mutations in the Tumor Microenvironment
by Chung-Che Tsai, Yi-Chiung Hsu, Tin-Yi Chu, Po-Chih Hsu and Chan-Yen Kuo
Cancers 2025, 17(15), 2590; https://doi.org/10.3390/cancers17152590 - 7 Aug 2025
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and extracellular matrix elements, that collectively modulate tumor growth, metastasis, and resistance to therapy. Immune evasion in HNSCC is orchestrated through multiple mechanisms, including the suppression of cytotoxic T lymphocytes, recruitment of immunosuppressive cells, such as regulatory T and myeloid-derived suppressor cells, and upregulation of immune checkpoint molecules (e.g., PD-1/PD-L1 and CTLA-4). Natural killer (NK) cells, which play a crucial role in anti-tumor immunity, are often dysfunctional within the HNSCC TME due to inhibitory signaling and metabolic constraints. Additionally, endothelial cells contribute to tumor angiogenesis and immune suppression, further exacerbating disease progression. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors and NK cell-based strategies, have shown promise in restoring anti-tumor immunity. Moreover, TP53 mutations, frequently observed in HNSCC, influence tumor behavior and therapeutic responses, highlighting the need for personalized treatment approaches. This review provides a comprehensive analysis of the molecular and cellular mechanisms governing immune evasion in HNSCC with a focus on novel therapeutic strategies aimed at improving patient outcomes. Full article
(This article belongs to the Special Issue Oral Cancer: Prevention and Early Detection (2nd Edition))
Show Figures

Figure 1

24 pages, 2475 KiB  
Article
An Immunomodulating Peptide with Potential to Promote Anticancer Immunity Without Compromising Immune Tolerance
by Michael Agrez, Christopher Chandler, Amanda L. Johnson, Marlena Sorensen, Kirstin Cho, Stephen Parker, Benjamin Blyth, Darryl Turner, Justyna Rzepecka, Gavin Knox, Anastasia Nika, Andrew M. Hall, Hayley Gooding and Laura Gallagher
Biomedicines 2025, 13(8), 1908; https://doi.org/10.3390/biomedicines13081908 - 5 Aug 2025
Abstract
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the [...] Read more.
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the interleukin-12 isoform, IL-12p40. Paradoxically, both cytokines and the anti-PD-1 antibody worsen psoriasis. We previously reported an immunomodulating peptide, designated IK14004, that inhibits progression of Lewis lung cancer in mice yet uncouples IFN-γ from IL-12p40 production in human immune cells. Methods: Immune cells obtained from healthy donors were exposed to IK14004 in vitro to further characterise the signalling pathways affected by this peptide. Using C57BL/6 immunocompetent mice, the effect of IK14004 was tested in models of lung melanoma and psoriatic skin. Results: Differential effects of IK14004 on the expression of IFN-α/β, the interleukin-15 (IL-15) receptor and signal transducers and activators of transcription were consistent with immune responses relevant to both cancer surveillance and immune tolerance. Moreover, both melanoma and psoriasis were inhibited by the peptide. Conclusions: Taken together, these findings suggest mechanisms underlying immune homeostasis that could be exploited in the setting of cancer and autoimmune pathologies. Peptide administered together with checkpoint blockers in relevant models of autoimmunity and cancer may offer an opportunity to gain further insight into how immune tolerance can be retained in patients receiving cancer immunotherapy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 478
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

37 pages, 1173 KiB  
Review
Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets
by Mariana Grigoruta, Xiaohua Kong and Yong Qin
J. Clin. Med. 2025, 14(14), 5137; https://doi.org/10.3390/jcm14145137 - 19 Jul 2025
Viewed by 468
Abstract
Uveal melanoma (UM), the most common primary intraocular malignancy in adults, poses a unique clinical challenge due to its high propensity for liver metastasis and poor responsiveness to conventional therapies. Despite the expanding landscape of immunotherapy in oncology, progress in managing metastatic uveal [...] Read more.
Uveal melanoma (UM), the most common primary intraocular malignancy in adults, poses a unique clinical challenge due to its high propensity for liver metastasis and poor responsiveness to conventional therapies. Despite the expanding landscape of immunotherapy in oncology, progress in managing metastatic uveal melanoma (mUM) remains limited, and no universally accepted standard of care has been established. In this review, we examine the current state and evolving strategies in immunotherapy for mUM, focusing on immune checkpoint inhibitors (ICIs), T cell receptor (TCR)-engineered therapies, and tumor-targeted vaccines. We also present a meta-analytical comparison of clinical outcomes between ICI monotherapy and combination regimens, alongside the recently FDA-approved T cell engager tebentafusp. Our analysis indicates that the triple combination of Ipilimumab, anti-PD-1 agents, and tebentafusp significantly enhances objective response rates, disease control rates, 1-year overall survival rates, and median overall survival (mOS) compared to ICI monotherapy alone. However, this enhanced efficacy is accompanied by increased toxicity due to broader immune activation. In contrast, tebentafusp offers superior tumor specificity and a more favorable safety profile in HLA-A*02:01-positive patients, positioning it as a preferred therapeutic option for this genetically defined subset of UM. Additionally, early-phase studies involving dendritic cell-based immunotherapies and peptide vaccines has shown encouraging signs of tumor-specific immune activation, along with improved tolerability. Collectively, this review underscores the urgent need for more precise and effective immunotherapeutic approaches tailored to the unique biology of mUM. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Therapeutic Strategies for Uveal Melanoma)
Show Figures

Figure 1

14 pages, 1865 KiB  
Article
Plasma WFDC2 (HE4) as a Predictive Biomarker for Clinical Outcomes in Cancer Patients Receiving Anti-PD-1 Therapy: A Pilot Study
by Makoto Watanabe, Katsuaki Ieguchi, Takashi Shimizu, Ryotaro Ohkuma, Risako Suzuki, Emiko Mura, Nana Iriguchi, Tomoyuki Ishiguro, Yuya Hirasawa, Go Ikeda, Masahiro Shimokawa, Hirotsugu Ariizumi, Kiyoshi Yoshimura, Atsushi Horiike, Takuya Tsunoda, Mayumi Tsuji, Shinichi Kobayashi, Tatsunori Oguchi, Yuji Kiuchi and Satoshi Wada
Cancers 2025, 17(14), 2384; https://doi.org/10.3390/cancers17142384 - 18 Jul 2025
Viewed by 308
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, reliable biomarkers of therapeutic efficacy remain limited. We investigated the clinical utility of plasma WFDC2 levels in patients receiving anti-PD-1 antibody treatment. Methods: Twenty-one patients with non-small cell lung, gastric, or [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, reliable biomarkers of therapeutic efficacy remain limited. We investigated the clinical utility of plasma WFDC2 levels in patients receiving anti-PD-1 antibody treatment. Methods: Twenty-one patients with non-small cell lung, gastric, or bladder cancer received nivolumab or pembrolizumab. Plasma WFDC2 concentrations were measured by ELISA before ICI treatment (pre-ICI) and after two and four treatment cycles. Associations between WFDC2 expression changes and overall survival (OS), progression-free survival (PFS), and tumor progression were assessed. ROC curve analyses compared the predictive performance of WFDC2, soluble PD-L1 (sPD-L1), soluble PD-1 (sPD-1), and their combinations, with the area under the curve (AUC) evaluating predictive accuracy. Results: Levels of WFDC2 pre-ICI and those after two cycles were significantly higher than levels in healthy donors. However, no significant differences in WFDC2 levels were found between the time points during treatment. Greater increases in WFDC2 levels were significantly correlated with shorter OS (p = 0.002), shorter PFS (p = 0.037), and tumor progression (p = 0.003). ROC analysis revealed that WFDC2 achieved a higher AUC (0.700) than sPD-L1 (0.538) or sPD-1 (0.650). Combining biomarkers improved the predictive accuracy, with sPD-L1 plus WFDC2 showing the highest AUC (0.825). Conclusions: Serial increases in plasma WFDC2 are associated with poor clinical outcomes, highlighting its potential as a biomarker. Baseline plasma WFDC2 outperformed sPD-L1 and sPD-1 diagnostically. These findings should be interpreted as exploratory and hypothesis-generating, requiring confirmation in larger, tumor-specific cohorts with multivariate adjustment. WFDC2 represents a promising minimally invasive biomarker for the early identification of patients unlikely to benefit from ICI therapy. Full article
Show Figures

Figure 1

31 pages, 1186 KiB  
Review
Immune Checkpoint Molecules in Hodgkin Lymphoma and Other Hematological Malignancies
by Mohamed Nazem Alibrahim, Antonino Carbone, Noor Alsaleh and Annunziata Gloghini
Cancers 2025, 17(14), 2292; https://doi.org/10.3390/cancers17142292 - 10 Jul 2025
Viewed by 512
Abstract
Immune checkpoints such as PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, and TIGIT play critical roles in regulating anti-tumor immunity and are exploited by hematological malignancies to evade immune surveillance. While classic Hodgkin lymphoma (HL) demonstrates notable responsiveness to immune checkpoint inhibitors (ICIs), which is attributed [...] Read more.
Immune checkpoints such as PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, and TIGIT play critical roles in regulating anti-tumor immunity and are exploited by hematological malignancies to evade immune surveillance. While classic Hodgkin lymphoma (HL) demonstrates notable responsiveness to immune checkpoint inhibitors (ICIs), which is attributed to genetic alterations like chromosome 9p24.1 amplification, the responsiveness of non-Hodgkin lymphoma (NHL), acute myeloid leukemia (AML), and multiple myeloma (MM) remain inconsistent and generally modest. In NHL, the heterogeneous immune microenvironment, particularly variations in tumor-infiltrating lymphocytes and PD-L1 expression, drives differential ICI outcomes. AML shows limited responsiveness to monotherapy, but the combination of monotherapy with hypomethylating agents yield encouraging results, particularly in selected patient subsets. Conversely, MM trials have largely failed, potentially due to genetic polymorphisms influencing checkpoint signaling pathways and the inherently immunosuppressive bone marrow microenvironment. Both intrinsic tumor factors (low tumor mutational burden, impaired antigen presentation, IFN-γ pathway alterations) and extrinsic factors (immunosuppressive cells and alternative checkpoint upregulation) contribute significantly to primary and acquired resistance mechanisms. Future strategies to overcome resistance emphasize combination therapies, such as dual checkpoint blockade, epigenetic modulation, and reprogramming the tumor microenvironment, as well as biomarker-driven patient selection, aiming for precision-based, tailored immunotherapy across hematological malignancies. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 3527 KiB  
Article
Treatment-Induced Gene Expression Changes in Metastatic Renal Cell Carcinoma: Insights from a Syngeneic Mouse Model
by Ko Okabe, Toshiaki Tanaka, Tetsuya Shindo, Yuki Kyoda, Sachiyo Nishida, Kohei Hashimoto, Ko Kobayashi and Naoya Masumori
Curr. Oncol. 2025, 32(7), 391; https://doi.org/10.3390/curroncol32070391 - 8 Jul 2025
Viewed by 485
Abstract
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice [...] Read more.
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice received first-line treatment with cabozantinib, anti-PD-1 antibody, or a combination. Tumor progression was monitored using serial micro-computed tomography. Lung metastasis samples were collected, and RNA sequencing was performed. Mice with apparent disease progression received second-line treatment with axitinib, everolimus, or lenvatinib after combination therapy. The median overall survival was 28, 34, 34, and 49 days in untreated mice and those treated with cabozantinib, anti-PD-1, or their combination, respectively (p < 0.05). RNA sequencing revealed upregulation of the fibroblast growth factor pathway in lung metastases after monotherapy, whereas mTOR pathway activation was observed only after combination therapy. Treatment-specific gene expression changes occur in mRCC, suggesting that the optimal target for sequential therapy in mRCC varies depending on prior treatment. Full article
Show Figures

Figure 1

38 pages, 2269 KiB  
Review
MicroRNAs in Cancer Immunology: Master Regulators of the Tumor Microenvironment and Immune Evasion, with Therapeutic Potential
by Erfan Zare, Seyyed Mohammad Yaghoubi, Maedeh Khoshnazar, Sina Jafari Dargahlou, Janvhi Suresh Machhar, Zihan Zheng, Pascal H. G. Duijf and Behzad Mansoori
Cancers 2025, 17(13), 2172; https://doi.org/10.3390/cancers17132172 - 27 Jun 2025
Viewed by 707
Abstract
MicroRNAs (miRNAs) are pivotal modulators of tumor progression and immune function. Given the central role of the immune system in recognizing and eliminating malignant cells, understanding how miRNAs influence immune responses has become essential for advancing cancer therapy. This review explores the emerging [...] Read more.
MicroRNAs (miRNAs) are pivotal modulators of tumor progression and immune function. Given the central role of the immune system in recognizing and eliminating malignant cells, understanding how miRNAs influence immune responses has become essential for advancing cancer therapy. This review explores the emerging roles of miRNAs in orchestrating cancer immunology, emphasizing their regulation of tumor immune surveillance, immune equilibrium, immune evasion, and immunometabolism. We further illustrate how specific miRNAs modulate the tumor microenvironment by shaping immune cell phenotypes, cytokine networks, and antigen presentation. Some miRNAs enhance cytotoxic T lymphocyte activity, while others promote immune escape by expanding regulatory T cells and myeloid-derived suppressor cells. miRNAs also regulate immune checkpoints (e.g., PD-L1 and CTLA-4), metabolic reprogramming, and stress responses that collectively influence tumor immunogenicity. Additionally, miRNAs are gaining traction as biomarkers for immune activity and predictors of immunotherapy response. Therapeutically, miRNA mimics and inhibitors can enhance anti-tumor immunity, particularly when combined with advanced delivery platforms or immune checkpoint inhibitors. However, challenges such as delivery specificity, off-target effects, and the context-dependent nature of miRNA activity remain significant barriers to clinical translation. Despite shortcomings, miRNAs represent a class of immune regulators with substantial therapeutic potential. Accelerated progress in miRNA-guided therapies is anticipated through deepening insights into miRNA regulatory networks, coupled with integrative multi-omics and AI-driven analytical frameworks. Altogether, miRNAs are a promising frontier in next-generation cancer immunotherapy and precision oncology. Full article
(This article belongs to the Special Issue MicroRNA and Cancer Immunology)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Local T-Cell Dysregulation and Immune Checkpoint Expression in Human Papillomavirus-Mediated Recurrent Respiratory Papillomatosis
by Hans N. C. Eckel, Su Ir Lyu, Frederik Faste, Shachi J. Sharma, Anne Nobis, Nora Wuerdemann, Maria Ziogas, Marcel Mayer, Malte C. Suchan, Kerstin Wennhold, Maria A. Garcia-Marquez, Martin Thelen, Elena Hagen, Julia Eßer, Charlotte Klasen, Oliver Siefer, Martin Otte, Hans A. Schloesser, Jens P. Klussmann, Alexander Quaas and Kevin K. Hansenadd Show full author list remove Hide full author list
Cells 2025, 14(13), 985; https://doi.org/10.3390/cells14130985 - 27 Jun 2025
Viewed by 531
Abstract
Human papillomavirus-mediated recurrent respiratory papillomatosis (RRP) is a premalignant neoplasia of the upper airway characterized by significant dysphonia and respiratory obstruction. Immune checkpoint blockade has emerged as a potential alternative to repeated surgical interventions in RRP. Here, we investigated the intralesional T-cell composition [...] Read more.
Human papillomavirus-mediated recurrent respiratory papillomatosis (RRP) is a premalignant neoplasia of the upper airway characterized by significant dysphonia and respiratory obstruction. Immune checkpoint blockade has emerged as a potential alternative to repeated surgical interventions in RRP. Here, we investigated the intralesional T-cell composition and expression of the immune checkpoints programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) in RRP. We analyzed tissue samples from 30 patients treated at a tertiary care center between 2009 and 2021, including paired samples from individual patients collected at different time points. Immunohistochemical staining was performed for CD4, CD8, CTLA-4, FoxP3, and PD-L1 and correlated with disease severity and previous adjuvant therapies. Overall disease burden and intervention-free survival were not associated with the abundance of CD4+, CD8+, or FoxP3+ T cells, nor with immune checkpoint expression. However, patients with aggressive disease exhibited a higher intralesional FoxP3/CD4 T-cell ratio. Prior intralesional cidofovir treatment was associated with reduced CD4+ T-cell infiltration. These findings suggest that a locally immunosuppressive microenvironment, reflected by an elevated FoxP3/CD4 ratio, contributes to disease severity in RRP. Consistent CTLA-4 expression across all evaluated samples supports further investigation of anti-CTLA-4 therapy, either alone or in combination with other checkpoint inhibitors. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

12 pages, 649 KiB  
Review
Melanoma Vaccines: Comparing Novel Adjuvant Treatments in High-Risk Patients
by Joseph C. Broderick, Alexandra M. Adams, Elizabeth L. Barbera, Spencer Van Decar, Guy T. Clifton and George E. Peoples
Vaccines 2025, 13(6), 656; https://doi.org/10.3390/vaccines13060656 - 19 Jun 2025
Viewed by 702
Abstract
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer [...] Read more.
Background: The emergence of checkpoint inhibitors (CPIs) has significantly improved survival outcomes in later-stage melanoma. However, the efficacy of these treatments remains limited, with around 50% of later-stage melanoma patients experiencing recurrence. As variable response rates to CPIs persist, the development of cancer vaccines has emerged as a potential strategy to augment antitumor immune responses. Results: This review compares two promising personalized therapeutic cancer vaccine trials in advanced melanoma: Elios Therapeutics’ Tumor Lysate (TL) vaccine and Moderna’s mRNA-4157 vaccine. The TL vaccine, which utilizes yeast cell wall particles (YCWPs) loaded with autologous tumor lysate, and the mRNA-4157 vaccine, which encodes up to 34 patient-specific neoantigens, both aim to stimulate robust tumor-specific immune responses. Both trials were phase 2b randomized studies, with Elios Therapeutics’ trial employing a double-blind, placebo-controlled design, while Moderna’s was open-label. Both trials had roughly equivalent sample sizes (n = 187 and n = 157, respectively) with similar demographics and disease characteristics. The TL trial reported improvements in disease-free survival (DFS) with a hazard ratio (HR) of 0.52 (p < 0.01) over 36 months, whereas the mRNA-4157 trial demonstrated improvements in recurrence-free survival (RFS) with an HR of 0.56 (p = 0.053) over 18 months. The TL vaccine exhibited lower rates of related grade 3 adverse events (<1%) compared to the mRNA vaccine (12%). Key differences between the two trials include the use of CPIs, with 100% of patients in the mRNA trial receiving pembrolizumab versus 37% of the patients in the TL trial receiving either an anti-PD-1 or anti-CTLA-4. The production processes also varied significantly, with the mRNA vaccine requiring individualized sequencing and a 9-week production time, while the TL vaccine utilized tumor lysate with a 1–3-day production time. Conclusions: While both vaccines demonstrated promising efficacy, future phase 3 trials are needed to further evaluate their potential as adjuvant therapies for melanoma. This review highlights the comparative strengths and limitations of these vaccine platforms, providing insight into the evolving landscape of adjuvant cancer vaccines. Full article
Show Figures

Figure 1

10 pages, 549 KiB  
Article
Complete Blood Count-Derived Biomarkers’ Association with Risk of PD-1 or PD-1/CTLA-4 Inhibitor-Induced Hypothyroidism in Patients with Solid Tumors
by Ketevan Lomidze, Nino Kikodze, Marine Gordeladze, Nino Charkviani and Tinatin Chikovani
Immuno 2025, 5(2), 21; https://doi.org/10.3390/immuno5020021 - 4 Jun 2025
Viewed by 562
Abstract
Background: A novel and highly effective strategy for tumor immunotherapy involves enhancing host immune responses against tumors through the blockade of checkpoint molecules. The most common toxicities associated with checkpoint blockade therapies include autoimmune damage to various organs. Purpose: This study aims to [...] Read more.
Background: A novel and highly effective strategy for tumor immunotherapy involves enhancing host immune responses against tumors through the blockade of checkpoint molecules. The most common toxicities associated with checkpoint blockade therapies include autoimmune damage to various organs. Purpose: This study aims to investigate hematological markers derived from complete blood counts (CBCs)—including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), derived neutrophil-to-lymphocyte ratio (dNLR), white blood cell-to-hemoglobin ratio (WHR), neutrophils, lymphocytes, platelets, hemoglobin, red blood cell (RBC) count, neutrophil-to-RBC ratio (NRR), and neutrophil-to-hemoglobin ratio (NHR)—as potential prognostic biomarkers for the early identification of hypothyroidism in patients receiving PD-1 or PD-1/CTLA-4 immune checkpoint inhibitors. Materials and Methods: A prospective observational study was conducted on 44 patients with stage III-IV solid tumors treated with immune checkpoint (PD-1 or PD-1/CTLA-4) inhibitors. Thyroid function tests and CBC-derived biomarkers were collected at baseline, before immunotherapy. In the immunotherapy cohort, 15 of the 44 patients developed immune-related hypothyroidism, defined as overt autoimmune thyroiditis (TSH > 4.0, FT4 < 12, and anti-TPO antibodies > 30 IU/mL and/or anti-TG antibodies > 95 IU/mL) (Group 1). In comparison, 29 patients maintained normal thyroid function (Group 2). The control group comprised 14 age- and sex-matched healthy volunteers (Group 3). Statistical analyses were performed using analysis of variance (ANOVA) to compare blood parameters among the three groups (Group 1, Group 2, and Group 3) before treatment, with statistical significance set at a p-value < 0.05. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic power of the potential prognostic biomarkers areas. The area under the curve (AUC), sensitivity, and specificity were calculated for the 44 immunotherapy patients. Results: The PLR was significantly higher (262.25 ± 162.95), while WBCs-neutrophils, the WHR, the NRR, the NHR, WBCs, neutrophils, and lymphocytes were lower (2.07 ± 0.66, 0.54 ± 0.19, 0.96 ± 0.28, 0.36 ± 0.14, 6.36 ± 2.07, 4.29 ± 1.55, and 1.23 ± 0.41, respectively) at baseline in Group 1 in comparison to Group 2. ROC curve analysis revealed that the areas under the curve (AUC) for WBCs, neutrophils, lymphocytes, WBCs-neutrophils, the PLR, the WHR, the NRR, and the NHR were 0.9, 0.87, 0.83, 0.85, 0.84, 0.92, 0.89, and 0.87, respectively. These values exceeded the threshold, indicating the high prognostic potential of each marker. Conclusions: Lower baseline levels of WBCs-neutrophils, the WHR, the NRR, the NHR, WBCs, neutrophils, and lymphocytes, along with a higher PLR, were associated with an increased risk of hypothyroidism in patients receiving PD-1 or PD-1/CTLA-4 inhibitors. These CBC-derived biomarkers represent simple, accessible, and potentially useful tools for predicting hypothyroidism in cancer patients undergoing immunotherapy. Further studies in bigger cohorts are needed to validate our findings. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

26 pages, 705 KiB  
Review
Recent Advances in Molecular Research and Treatment for Melanoma in Asian Populations
by Soichiro Kado and Mayumi Komine
Int. J. Mol. Sci. 2025, 26(11), 5370; https://doi.org/10.3390/ijms26115370 - 3 Jun 2025
Viewed by 1083
Abstract
Melanoma treatment comprised a few treatment choices with insufficient efficacy before the emergence of molecularly targeted medication and immune checkpoint inhibitors, which dramatically improved patient outcomes. B-Rapidly Accelerated Fibrosarcoma (BRAF) and Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitors significantly improved survival in BRAF [...] Read more.
Melanoma treatment comprised a few treatment choices with insufficient efficacy before the emergence of molecularly targeted medication and immune checkpoint inhibitors, which dramatically improved patient outcomes. B-Rapidly Accelerated Fibrosarcoma (BRAF) and Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitors significantly improved survival in BRAF-mutant melanoma and immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) agents, established new standards of care. Challenges remain, however, including the existence of resistance mechanisms and the reduced efficacy of immune-based therapies in Asian populations, particularly for acral and mucosal subtypes. This review highlights historical and current therapeutic advancements, discusses regional considerations, and explores emerging strategies aiming at globally optimizing melanoma management. Full article
Show Figures

Figure 1

14 pages, 1109 KiB  
Systematic Review
Impaired Overall Survival of Melanoma Patients Due to Antibiotic Use Prior to Immune Checkpoint Inhibitor Therapy: Systematic Review and Meta-Analysis
by Thilo Gambichler, Sera S. Weyer-Fahlbusch, Jan Overbeck, Nessr Abu Rached, Jürgen C. Becker and Laura Susok
Cancers 2025, 17(11), 1872; https://doi.org/10.3390/cancers17111872 - 3 Jun 2025
Viewed by 769
Abstract
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) [...] Read more.
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) in melanoma. Conversely, broad-spectrum antibiotics can induce dysbiosis, reducing T cell activation and cytokine production, and have been linked to diminished ICI efficacy in several cancer types. Methods: We conducted a systematic review and meta-analysis of seven retrospective cohorts (total n = 5213) comparing overall survival in cutaneous melanoma (CM) patients who did or did not receive systemic antibiotics within six weeks before ICI initiation. From each study, we extracted hazard ratios (HRs) for death, antibiotic-to-ICI interval, ICI regimen (PD-1 monotherapy vs. PD-1 + CTLA-4 combination), cohort size, and country. Pooled log-HRs were estimated under fixed-effect and random-effects (REML) models. Statistical heterogeneity was quantified by Cochran’s Q and I2 statistics, and τ2. We performed leave-one-out sensitivity analyses, generated a Baujat plot to identify influential studies, applied trim-and-fill to assess publication bias, and ran meta-regressions for regimen, antibiotic timing, sample size, and geography. Results: Under the fixed-effect model, antibiotic exposure corresponded to a pooled HR of 1.26 (95% CI 1.13–1.41; p < 0.001). The random-effects model yielded a pooled HR of 1.55 (95% CI 1.21–1.98; p = 0.0005) with substantial heterogeneity (Q = 25.1; I2 = 76%). Prediction intervals (0.78–3.06) underscored between-study variability. Leave-one-out analyses produced HRs from 1.50 to 1.75, confirming robustness, and the Baujat plot highlighted two cohorts as primary heterogeneity drivers. Trim-and-fill adjusted the HR to 1.46 (95% CI 1.08–1.97). In subgroup analyses, combination therapy studies (k = 4) showed a pooled HR of ~1.9 (I2 = 58%) versus ~1.3 (I2 = 79%) for monotherapy. Meta-regression attributed the largest variance to the regimen (R2 = 32%; β(monotherapy) = −0.35; p = 0.13). Conclusions: Pre-ICI antibiotic use in CM is consistently associated with a 26–55% increase in mortality risk, particularly with PD-1 + CTLA-4 combinations, reinforcing the mechanistic link between microbiome integrity and ICI success. Looking ahead, integrating prospective microbiome profiling into clinical trials will be critical to personalize ICI therapy, clarify causality, and identify microbial biomarkers for optimal treatment selection. Prospective, microbiome-integrated trials promise to refine melanoma immunotherapy by tailoring antibiotic stewardship and microbial interventions to enhance patient outcomes. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Figure 1

10 pages, 241 KiB  
Review
Advanced Basal Cell Carcinoma: A Narrative Review on Current Systemic Treatments and the Neoadjuvant Approach
by Andrea Paradisi, Maria Mannino, Francesco Brunetti, Enrico Bocchino, Alessandro Di Stefani and Ketty Peris
J. Pers. Med. 2025, 15(6), 226; https://doi.org/10.3390/jpm15060226 - 1 Jun 2025
Cited by 1 | Viewed by 756
Abstract
Background/Objectives: Systemic therapy with hedgehog pathway inhibitors (HHIs) and anti-programmed cell death protein 1 (PD-1) antibodies represent the first- and second-line treatment options for advanced basal cell carcinoma (aBCC), respectively. A shift in the treatment paradigms toward the neoadjuvant approach is gaining increasing [...] Read more.
Background/Objectives: Systemic therapy with hedgehog pathway inhibitors (HHIs) and anti-programmed cell death protein 1 (PD-1) antibodies represent the first- and second-line treatment options for advanced basal cell carcinoma (aBCC), respectively. A shift in the treatment paradigms toward the neoadjuvant approach is gaining increasing interest in aBCC management, whereby prior systemic therapy followed by surgery is likely to yield more favorable outcomes. The aim of this narrative review is to summarize the current evidence on systemic treatment options and the neoadjuvant approach for aBCC management. Methods: We performed a non-systematic review of the literature based on PubMed as search engine. Results: The pivotal phase II trials ERIVANCE and BOLT investigated the efficacy and safety profile of vismodegib and sonidegib, respectively, with reported objective response rates (ORRs) of 60.3% and 56% in laBCC patients, respectively. The pivotal phase II trial NCT03132636 investigated the efficacy and safety profile of cemiplimab in patients who progressed or were intolerant to prior HHI therapy, with an ORR of 32.1% in laBCC patients. Real-life studies confirmed the effectiveness and safety profile of HHI and anti-PD-1 immunotherapy. Several phase I/II clinical trials are currently investigating HHIs and immune-checkpoint inhibitors in the neoadjuvant setting followed by surgery for aBCC patients, with the aim of providing more favorable treatment outcomes, especially when upfront surgery would result in functional and/or aesthetic sequelae. Conclusions: Advanced BCC treatment is challenging, and the neoadjuvant approach followed by surgery is expected to reduce surgical complexity, increase tissue preservation, and improve patients’ satisfaction. Full article
(This article belongs to the Special Issue Dermatology: Molecular Mechanisms, Diagnosis and Therapeutic Targets)
16 pages, 374 KiB  
Review
Immune Checkpoint Inhibitors in the Treatment of Advanced Melanoma in Older Patients: An Overview of Published Data
by Marko Lens and Jacob Schachter
Cancers 2025, 17(11), 1835; https://doi.org/10.3390/cancers17111835 - 30 May 2025
Viewed by 745
Abstract
Melanoma has important burden in older populations due to high incidence and aggressive biology. The emergence of immunotherapy with immune checkpoint inhibitors and targeted therapy (BRAF/MEK inhibitors) significantly improved melanoma prognosis. Currently, the body of knowledge on the efficacy and tolerability of these [...] Read more.
Melanoma has important burden in older populations due to high incidence and aggressive biology. The emergence of immunotherapy with immune checkpoint inhibitors and targeted therapy (BRAF/MEK inhibitors) significantly improved melanoma prognosis. Currently, the body of knowledge on the efficacy and tolerability of these treatments in geriatric patients is primarily based on the results outside of clinical trials since the majority of clinical studies do not include older patients. We present a comprehensive narrative review of published data regarding efficacy and safety of therapeutic modalities using immune checkpoint inhibitors in patients age 65–75 years and >75 years: the anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitor (ipilimumab), the anti-programmed death-ligand 1 (PD-1) inhibitors (nivolumab and pembrolizumab), and the lymphocyte activation gene-3 (LAG-3) inhibitor (relatlimab). We carefully address difficulties in multi-disciplinary clinical decision-making in care of older melanoma patients. Although many older patients may not be offered immunotherapy, the available evidence indicates that immunotherapy is equally beneficial in the older patients and does not have higher incidence of adverse events in this group of patients compared to younger population. Full article
(This article belongs to the Special Issue Combination Therapy in Geriatric Population with Cancer (2nd Edition))
Show Figures

Figure 1

Back to TopTop