Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,012)

Search Parameters:
Keywords = anti biofilm activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6774 KiB  
Article
Antimicrobial Activities of Propolis Nanoparticles in Combination with Ampicillin Sodium Against Methicillin-Resistant Staphylococcus aureus
by Kaiyue Feng, He Sang, Han Jin, Peng Song, Wei Xu, Hongzhuan Xuan and Fei Wang
Microorganisms 2025, 13(8), 1844; https://doi.org/10.3390/microorganisms13081844 - 7 Aug 2025
Abstract
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their [...] Read more.
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their antibacterial and anti-biofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) in combination with ampicillin sodium (AS) were analyzed. The PNPs had an average particle diameter of 118.0 nm, a polydispersity index of 0.129, and a zeta potential of −28.2 mV. The fractional inhibitory concentration indices of PNPs and AS against tested MRSA strains highlighted this synergy, ranging between 0.375 and 0.5. Crystal violet staining showed that combined PNPs and AS significantly inhibited biofilm formation and reduced existing biofilm biomass. We then discovered that PNPs inhibited bacterial adhesion, extracellular polysaccharide synthesis, and mecR1, mecA, blaZ, and icaADBC gene expression. These results indicated that PNPs exerted a synergistic antibacterial effect with AS by inhibiting mecR1, mecA, and blaZ gene expressions to reduce the drug resistance of MRSA. Meanwhile, PNPs weakened bacterial adhesion and aggregation by suppressing icaADBC gene expression, allowing antibiotics to penetrate the biofilm, and exhibiting significant synergistic anti-biofilm activity. In summary, PNPs are promising candidates for combating MRSA-related diseases. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance, Second Edition)
Show Figures

Figure 1

16 pages, 1827 KiB  
Article
Mixed Candida albicansStaphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B
by Jarmila Czucz Varga, Juraj Bujdák and Helena Bujdáková
J. Fungi 2025, 11(8), 582; https://doi.org/10.3390/jof11080582 - 5 Aug 2025
Viewed by 26
Abstract
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). [...] Read more.
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). Additionally, the effect of PDI on the ALS3 and HWP1 genes of C. albicans was examined in mixed biofilms. Spectral analysis showed a continuous release of PhB from the nanocomposite in Mueller–Hinton broth within 48 h, with a released amount of PhB < 5% of the total amount. The anti-biofilm effectiveness of the light-activated nanocomposite with PhB showed a reduction in the survival rate of biofilm cells to 0.35% and 31.79% for S. aureus and C. albicans, respectively, compared to the control biofilm on PU alone. Scanning electron microscopy images showed that the nanocomposite effectively reduced the colonization and growth of the mixed biofilm. While PDI reduced the regulation of the ALS3 gene, the HWP1 gene was upregulated. Nevertheless, the cell survival of the C. albicansS. aureus biofilm was significantly reduced, showing great potential for the elimination of mixed biofilms. Full article
Show Figures

Figure 1

21 pages, 1360 KiB  
Article
Design and Characterization of Mn(II), Co(II), and Zn(II) Complexes with Chrysin: Spectroscopic, Antibacterial, and Anti-Biofilm Insights
by Elżbieta Woźnicka, Anna Miłoś, Lidia Zapała, Małgorzata Kosińska-Pezda, Katarzyna Lecka-Szlachta and Łukasz Byczyński
Processes 2025, 13(8), 2468; https://doi.org/10.3390/pr13082468 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser [...] Read more.
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser desorption/ionization mass spectrometry (SALDI-MS), FT-IR spectroscopy, and 1H NMR. The spectroscopic data confirm that chrysin coordinates as a bidentate ligand through the 5-hydroxyl and 4-carbonyl groups, with structural differences depending on the metal ion involved. The mass spectrometry results revealed distinct stoichiometries: 1:2 metal-to-ligand ratios for Mn(II) and Co(II), and 1:1 for Zn(II), with additional hydroxide coordination. Biological assays demonstrated that Co(II) and Mn(II) complexes exhibit enhanced antibacterial and anti-biofilm activity compared to free chrysin, particularly against drug-resistant Staphylococcus epidermidis, whereas the Zn(II) complex showed negligible biological activity. Full article
(This article belongs to the Special Issue Metal Complexes: Design, Properties and Applications)
Show Figures

Graphical abstract

18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 137
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 267
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

36 pages, 1730 KiB  
Review
Pharmacological Potential of Cinnamic Acid and Derivatives: A Comprehensive Review
by Yu Tian, Xinya Jiang, Jiageng Guo, Hongyu Lu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2025, 18(8), 1141; https://doi.org/10.3390/ph18081141 - 31 Jul 2025
Viewed by 411
Abstract
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives [...] Read more.
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives reported in publications from 2016 to 2025, and anticipates their potential in medical and industrial fields. This review evaluates studies in major scientific databases, including Web of Science, PubMed, and ScienceDirect, to ensure a comprehensive analysis of the therapeutic potential of cinnamic acid. Through systematic integration of existing knowledge, it has been revealed that cinnamic acid has a wide range of pharmacological activities, including anti-tumor, antibacterial, anti-inflammatory, antidepressant and hypoglycemic effects. Additionally, it has been shown to be effective against a variety of pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and foodborne Pseudomonas. Cinnamic acid acts by disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, thereby demonstrating its ability to act as a natural antimicrobial agent. Its anti-inflammatory properties are demonstrated by improving oxidative stress and reducing inflammatory cell infiltration. Furthermore, cinnamic acid enhances metabolic health by improving glucose uptake and insulin sensitivity, showing promising results in improving metabolic health in patients with diabetes and its complications. This systematic approach highlights the need for further investigation of the mechanisms and safety of cinnamic acid to substantiate its use as a basis for new drug development. Particularly in the context of increasing antibiotic resistance and the search for sustainable, effective medical treatments, the study of cinnamic acid is notably significant and innovative. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 - 30 Jul 2025
Viewed by 285
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

14 pages, 8944 KiB  
Article
Nano-Hydroxyapatite-Based Mouthwash for Comprehensive Oral Care: Activity Against Bacterial and Fungal Pathogens with Antioxidant and Anti-Inflammatory Action
by Tomasz M. Karpiński, Magdalena Paczkowska-Walendowska and Judyta Cielecka-Piontek
Materials 2025, 18(15), 3567; https://doi.org/10.3390/ma18153567 - 30 Jul 2025
Viewed by 471
Abstract
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, [...] Read more.
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, licorice extract, and cetylpyridinium chloride, with particular focus on its efficacy against Staphylococcus aureus and its biofilm on various dental materials. Methods: The antimicrobial activities of the mouthwash KWT0000 and control product ELM were assessed via minimal inhibitory concentration (MIC) testing against selected Gram-positive and Gram-negative bacteria and Candida fungi. Antibiofilm activity was evaluated using fluorescence and digital microscopy following 1-h exposure to biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The efficacy was compared across multiple dental materials, including titanium, zirconia, and PMMA. Antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and anti-inflammatory potential via hyaluronidase inhibition. Results: KWT0000 exhibited strong antimicrobial activity against S. aureus and C. albicans (MICs: 0.2–1.6%) and moderate activity against Gram-negative strains. Fluorescence imaging revealed significant biofilm disruption and bacterial death after 1 h. On metallic surfaces, especially polished titanium and zirconia, KWT0000 reduced S. aureus biofilm density considerably. The formulation also demonstrated superior antioxidant (55.33 ± 3.34%) and anti-inflammatory (23.33 ± 3.67%) activity compared to a fluoride-based comparator. Conclusions: The tested nanoHAP-based mouthwash shows promising potential in antimicrobial and antibiofilm oral care, particularly for patients with dental implants. Its multifunctional effects may support not only plaque control but also soft tissue health. Full article
Show Figures

Figure 1

17 pages, 3410 KiB  
Article
Squama Manitis Extract Exhibits Broad-Spectrum Antibacterial Activity Through Energy and DNA Disruption Mechanisms
by Li Chen, Kunping Song, Mengwei Cheng, Aloysius Wong, Xuechen Tian, Yixin Yang, Mia Yang Ang, Geok Yuan Annie Tan and Siew Woh Choo
Biology 2025, 14(8), 949; https://doi.org/10.3390/biology14080949 - 28 Jul 2025
Viewed by 323
Abstract
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against [...] Read more.
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against clinically significant pathogens, including both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) species (MIC = 31.25 mg/mL), achieving significant reduction in bacterial viability within 24 h. Through integrated multi-omics analysis combining scanning electron microscopy and RNA sequencing, we reveal SME’s unprecedented tripartite mechanism of action: (1) direct membrane disruption causing cell envelope collapse, (2) metabolic paralysis through coordinated suppression of TCA cycle and fatty acid degradation pathways, and (3) inhibition of DNA repair systems (SOS response and recombination downregulation). Despite its potent activity, SME shows low cytotoxicity toward mammalian cells (>90% viability) and can penetrate Gram-negative outer membranes. These features highlight SME’s potential to address drug-resistant infections through synthetic lethality across stress response, energy metabolism, and DNA integrity pathways. While advocating for synthetic alternatives to endangered animal products, this study establishes SME as a polypharmacological template for resistance-resilient antimicrobial design, demonstrating how traditional knowledge and modern systems biology can converge to guide sustainable anti-infective development. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

11 pages, 1067 KiB  
Article
Assessment of the Anti-Biofilm Effect of Cefiderocol Against 28 Clinical Strains of Multidrug-Resistant Gram-Negative Bacilli
by Marta Díaz-Navarro, Emilia Cercenado, Andrés Visedo, Mercedes Marín, Marina Machado, Álvaro Irigoyen-von-Sierakowski, Belén Loeches, Juana Cacho-Calvo, Julio García-Rodríguez, Enea G. Di Domenico, Patricia Muñoz and María Guembe
Antibiotics 2025, 14(8), 738; https://doi.org/10.3390/antibiotics14080738 - 23 Jul 2025
Viewed by 272
Abstract
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of [...] Read more.
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of MDR Gram-negative bacilli isolated from clinical samples of Pseudomonas aeruginosa (n = 5), Acinetobacter baumannii (n = 11), and Klebsiella pneumoniae (n = 12). We first determined the minimum inhibitory concentration (MIC) of each strain using the microdilution method. We also defined the minimum biofilm inhibitory concentration (MBIC) as a ≥50% reduction in tetrazolium salt (XTT) (as recommended in the 2017 Spanish Microbiology Protocols [SEIMC] for the microbiological diagnosis of infections related to the formation of biofilms). We also analyzed the reduction in the following biofilm variables after an 8 mg/mL FDC treatment: the CFU count, the cell viability, the biomass, the metabolic activity, and extracellular α or β polysaccharides. Results: The MIC50 and MBIC50 of FDC were 0.5 mg/L and 64 mg/L, respectively. We observed a mean (SD) fold increase in the susceptibility to FDC between planktonic and sessile cells for P. aeruginosa, A. baumannii, and K. pneumoniae of 9.60 (0.55), 6.27 (2.28), and 6.25 (2.80), respectively. When 8 mg/mL of FDC was tested, we observed that the best median (IQR) percentage reductions were obtained for cell viability and the extracellular matrix (73.1 [12.4–86.5] and 79.5 [37.3–95.5], respectively), particularly for P. aeruginosa. The lowest percentage reduction rates were those obtained for biomass. Conclusions: We demonstrated that the susceptibility to FDC was significantly reduced when strains were in a biofilm state. The best percentage reduction rates for all biofilm-defining variables were observed for P. aeruginosa. Our results need to be validated using a larger collection of clinical samples. Full article
Show Figures

Figure 1

17 pages, 2234 KiB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 442
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 308
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

19 pages, 746 KiB  
Review
Endophytic Bioactive Compounds for Wound Healing: A Review of Biological Activities and Therapeutic Potential
by Octavio Calvo-Gomez, Farkhod Eshboev, Kamilla Mullaiarova and Dilfuza Egamberdieva
Microorganisms 2025, 13(7), 1691; https://doi.org/10.3390/microorganisms13071691 - 18 Jul 2025
Viewed by 895
Abstract
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as [...] Read more.
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as hemostasis, inflammation, proliferation, and remodeling. Uniquely, this review delineates the specific mechanisms supported not only by indirect evidence but by primary research directly linking endophytic metabolites to wound repair. We synthesized and evaluated evidence from 18 studies, of which over 75% directly assessed wound healing effects through in vitro and in vivo models. Metabolites from endophytic microorganisms promoted wound contraction, suppressed biofilm formation by key pathogens (e.g., MRSA, P. aeruginosa), and accelerated tissue re-epithelialization in animal models. Other compounds demonstrated >99% wound closure in rats, while several extracts showed anti-inflammatory and cytocompatible profiles. Nevertheless, the majority of studies applied unstandardized methods and used crude extracts, hindering precise structure–activity assessment. The originality of this review lies in drawing attention to direct evidence for wound healing from diverse endophytic sources and systematically identifying gaps between preclinical promise and clinical translation, positioning endophytes as a sustainable platform for next-generation wound therapeutics. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

23 pages, 10928 KiB  
Article
Myricetin Potentiates Antibiotics Against Resistant Pseudomonas aeruginosa by Disrupting Biofilm Formation and Inhibiting Motility Through FimX-Mediated c-di-GMP Signaling Interference
by Derong Zeng, Fangfang Jiao, Yuqi Yang, Shuai Dou, Jiahua Yu, Xiang Yu, Yongqiang Zhou, Juan Xue, Xue Li, Hongliang Duan, Yan Zhang, Jingjing Guo and Wude Yang
Biology 2025, 14(7), 859; https://doi.org/10.3390/biology14070859 - 15 Jul 2025
Viewed by 267
Abstract
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, [...] Read more.
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, may enhance antibiotic efficacy against Pseudomonas aeruginosa. This study evaluated the synergistic effects of myricetin combined with azithromycin, ciprofloxacin, or cefdinir against both standard and drug-resistant Pseudomonas aeruginosa strains. Antibacterial activity, biofilm disruption, and motility inhibition were experimentally assessed, while molecular dynamic (MD) simulations elucidated myricetin’s molecular mechanism of action. Our results suggested that myricetin synergistically potentiated all three antibiotics, reducing c-di-GMP synthesis by 28% (azithromycin), 57% (ciprofloxacin), and 30% (cefdinir). It enhanced bactericidal effects, suppressed biofilm formation, and impaired swimming, swarming, and twitching motility. Computational analyses revealed that myricetin binds allosterically to FimX very well, a key regulator in the c-di-GMP signaling pathway. Hence, myricetin may act as a c-di-GMP inhibitor, reversing biofilm-mediated resistance in Pseudomonas aeruginosa and augmenting antibiotic efficacy. This integrated experimental and computational approach provides a framework for developing anti-virulence and antibiotic combination therapies against recalcitrant Gram-negative pathogens. Full article
Show Figures

Figure 1

15 pages, 882 KiB  
Article
Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes
by Sophia Athanasopoulou, Eleni Panagiotidou, Eleni Spanidi, Maria Gkika, Danai Georgiou, Athanasios K. Anagnostopoulos, Christos Ganos, Ioanna Chinou, Evangelos Beletsiotis and Konstantinos Gardikis
Antioxidants 2025, 14(7), 849; https://doi.org/10.3390/antiox14070849 - 10 Jul 2025
Viewed by 579
Abstract
Acne is a highly prevalent skin condition with multifactorial pathophysiology, where Cutibacterium acnes (C. acnes) overgrowths generate inflammation. C. acnes can grow and adhere, through the formation of biofilms, to almost any surface, which enables chronic infections. Acne treatment with antibiotics [...] Read more.
Acne is a highly prevalent skin condition with multifactorial pathophysiology, where Cutibacterium acnes (C. acnes) overgrowths generate inflammation. C. acnes can grow and adhere, through the formation of biofilms, to almost any surface, which enables chronic infections. Acne treatment with antibiotics can induce topical antimicrobial resistance, impair microbiome biodiversity and cause cutaneous dysbiosis. In this study, we assess the effect of a standardized propolis extract (PE) from Greece against C. acnes, whilst maintaining skin’s microbiome biodiversity, and we investigate its effect against genes related to the attachment and colonization of C. acnes, as well as against biofilm formation. The extract has been chemically characterized by GC-MS and was additionally tested for its antioxidant properties by the Folin–Ciocalteu method and the 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay and its regulatory activity on the expression of antimicrobial and anti-inflammatory genes in normal human epidermal keratinocytes (NHEKs). The suggested efficacy of PE in targeting pathogenic C. acnes biofilm, via downregulation of virulence genes, represents an alternative strategy to modulate the behavior of skin microbiota in acne, paving the way for next-generation acne-targeting products. Full article
Show Figures

Figure 1

Back to TopTop