Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Propolis Extraction
2.2. Quantification of Extract Components
2.3. GC-MS Analysis
2.4. Total Phenolic Content (TPC)
2.5. Antioxidant Activity via 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
2.6. Stability of PE
2.7. In Vitro Microbiome Preservation
2.8. Crystal Violet Staining for Quantitative Analysis of Biofilm
2.9. Gene Expression Analysis in C. acnes
2.10. Gene Expression Analysis in Keratinocytes
2.11. Statistical Analysis
3. Results
3.1. Propolis Composition
3.2. Sensitivity of Skin Microbiome to PE In Vitro and Ex Vivo
3.3. PE Inhibits Biofilm Growth and Development and Alters the Gene Expression Levels of C. acnes
3.4. PE Alters the Gene Expression in Keratinocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dréno, B. What is new in the pathophysiology of acne, an overview. J. Eur. Acad. Dermatol. Venereol. 2017, 31 (Suppl. 5), 8–12. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.L.; Mitran, C.I.; Mitran, M.I.; Tampa, M.; Matei, C.; Popa, M.I.; Georgescu, S.R. Markers of Oxidative Stress in Patients with Acne: A Literature Review. Life 2023, 13, 1433. [Google Scholar] [CrossRef]
- Cavallo, I.; Sivori, F.; Truglio, M.; De Maio, F.; Lucantoni, F.; Cardinali, G.; Pontone, M.; Bernardi, T.; Sanguinetti, M.; Capitanio, B.; et al. Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci. Rep. 2022, 12, 21104. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T.; Spittaels, K.-J.; Achermann, Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022, 4, 100063. [Google Scholar] [CrossRef] [PubMed]
- Gannesen, A.V.; Zdorovenko, E.L.; Botchkova, E.A.; Hardouin, J.; Massier, S.; Kopitsyn, D.S.; Gorbachevskii, M.V.; Kadykova, A.A.; Shashkov, A.S.; Zhurina, M.V.; et al. Composition of the Biofilm Matrix of Cutibacterium acnes Acneic Strain RT5. Front. Microbiol. 2019, 10, 1284. [Google Scholar] [CrossRef]
- Nakamura, K.; O’Neill, A.M.; Williams, M.R.; Cau, L.; Nakatsuji, T.; Horswill, A.R.; Gallo, R.L. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci. Rep. 2020, 10, 21237. [Google Scholar] [CrossRef]
- Singh, A.; Amod, A.; Pandey, P.; Bose, P.; Pingali, M.S.; Shivalkar, S.; Varadwaj, P.K.; Sahoo, A.K.; Samanta, S.K. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater. 2022, 17, 022003. [Google Scholar] [CrossRef]
- Pecoraro, C.; Carbone, D.; Parrino, B.; Cascioferro, S.; Diana, P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int. J. Mol. Sci. 2023, 24, 4872. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Persat, A. Mechanomicrobiology: How bacteria sense and respond to forces. Nat. Rev. Microbiol. 2020, 18, 227–240. [Google Scholar] [CrossRef]
- Parrino, B.; Diana, P.; Cirrincione, G.; Cascioferro, S. Bacterial Biofilm Inhibition in the Development of Effective Anti-Virulence Strategy. Open Med. Chem. J. 2018, 12, 84–87. [Google Scholar] [CrossRef]
- Queiroga, M.C.; Laranjo, M.; Andrade, N.; Marques, M.; Costa, A.R.; Antunes, C.M. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics 2023, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT Food Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Popova, M.; Giannopoulou, E.; Skalicka-Wózniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bȩben, K.; Antosiewicz, B.; et al. Characterization and biological evaluation of propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Pyrgioti, E.; Graikou, K.; Aligiannis, N.; Karabournioti, S.; Chinou, I. Qualitative Analysis Related to Palynological Characterization and Biological Evaluation of Propolis from Prespa National Park (Greece). Molecules 2022, 27, 7018. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Lyoussi, B.; Miguel, M.G. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem. Biodivers. 2019, 16, e1900094. [Google Scholar] [CrossRef]
- Aminimoghadamfarouj, N.; Nematollahi, A. Propolis diterpenes as a remarkable bio-source for drug discovery development: A review. Int. J. Mol. Sci. 2017, 18, 1290. [Google Scholar] [CrossRef]
- Misir, S.; Aliyazicioglu, Y.; Demir, S.; Turan, I.; Hepokur, C. Effect of Turkish Propolis on miRNA Expression, Cell Cycle, and Apoptosis in Human Breast Cancer (MCF-7) Cells. Nutr. Cancer 2020, 72, 133–145. [Google Scholar] [CrossRef]
- Saavedra, N.; Cuevas, A.; Cavalcante, M.F.; Dörr, F.A.; Saavedra, K.; Zambrano, T.; Abdalla, D.S.P.; Salazar, L.A. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages. BioMed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Vukovic, N.L.; Obradovic, A.D.; Vukic, M.D.; Jovanovic, D.; Djurdjevic, P.M. Cytotoxic, proapoptotic and antioxidative potential of flavonoids isolated from propolis against colon (HCT-116) and breast (MDA-MB-231) cancer cell lines. Food Res. Int. 2018, 106, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kapare, H.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Standardization, anti-carcinogenic potential and biosafety of Indian propolis. J. Ayurveda Integr. Med. 2019, 10, 81–87. [Google Scholar] [CrossRef]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.-M.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 27, 8473. [Google Scholar] [CrossRef]
- Zullkiflee, N.; Taha, H.; Abdullah, N.A.; Hashim, F.; Usman, A.; Journal, P. Antibacterial and Antioxidant Activities of Ethanolic and Water Extracts of Stingless Bees Tetrigona binghami, Heterotrigona itama, and Geniotrigona thoracica Propolis Found in Brunei. Philipp. J. Sci. 2022, 151, 1455–1462. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of Pigment and Flavanol Content with Antioxidant Properties in Selected Aged Regional Wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Spanidi, E.; Athanasopoulou, S.; Liakopoulou, A.; Chaidou, A.; Hatziantoniou, S.; Gardikis, K. Royal Jelly Components Encapsulation in a Controlled Release System—Skin Functionality, and Biochemical Activity for Skin Applications. Pharmaceuticals 2022, 15, 907. [Google Scholar] [CrossRef]
- Lomholt, H.B.; Scholz, C.F.P.; Brüggemann, H.; Tettelin, H.; Kilian, M. A comparative study of Cutibacterium (Propionibacterium) acnes clones from acne patients and healthy controls. Anaerobe 2017, 47, 57–63. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Yin, K.-Y.; Luo, W.-Q.; Chen, A.; Liang, Z.-W.; Ji, P.-C.; Wang, Y.-J.; Wang, X.-N. Anti-virulence potential of carvone against Serratia marcescens. Food Med. Homol. 2024, 1, 9420001. [Google Scholar] [CrossRef]
- Ruffier d’Epenoux, L.; Fayoux, E.; Veziers, J.; Dagnelie, M.-A.; Khammari, A.; Dréno, B.; Corvec, S. Biofilm of Cutibacterium acnes: A target of different active substances. Int. J. Dermatol. 2024, 63, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Patel, S.K.S.; Lee, J.-K. Bacterial biofilm inhibitors: An overview. Ecotoxicol. Environ. Saf. 2023, 264, 115389. [Google Scholar] [CrossRef]
- Condrò, G.; Guerini, M.; Castello, M.; Perugini, P. Acne Vulgaris, Atopic Dermatitis and Rosacea: The Role of the Skin Microbiota-A Review. Biomedicines 2022, 10, 2523. [Google Scholar] [CrossRef]
- Holland, C.; Mak, T.N.; Zimny-Arndt, U.; Schmid, M.; Meyer, T.F.; Jungblut, P.R.; Brüggemann, H. Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiol. 2010, 10, 230. [Google Scholar] [CrossRef]
- Allhorn, M.; Arve, S.; Brüggemann, H.; Lood, R. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci. Rep. 2016, 6, 36412. [Google Scholar] [CrossRef] [PubMed]
- Marion, C.; Stewart, J.M.; Tazi, M.F.; Burnaugh, A.M.; Linke, C.M.; Woodiga, S.A.; King, S.J. Streptococcus pneumoniae can utilize multiple sources of hyaluronic acid for growth. Infect. Immun. 2012, 80, 1390–1398. [Google Scholar] [CrossRef]
- Spittaels, K.-J.; Coenye, T. Developing an in vitro artificial sebum model to study Propionibacterium acnes biofilms. Anaerobe 2018, 49, 21–29. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Gause, W.C.; Wynn, T.A.; Allen, J.E. Type 2 immunity and wound healing: Evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 2013, 13, 607–614. [Google Scholar] [CrossRef]
- Allen, J.E. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu. Rev. Immunol. 2023, 41, 229–254. [Google Scholar] [CrossRef]
- Raschig, J.; Mailänder-Sánchez, D.; Berscheid, A.; Berger, J.; Strömstedt, A.A.; Courth, L.F.; Malek, N.P.; Brötz-Oesterhelt, H.; Wehkamp, J. Ubiquitously expressed Human Beta Defensin 1 (hBD1) forms bacteria-entrapping nets in a redox dependent mode of action. PLoS Pathog. 2017, 13, e1006261. [Google Scholar] [CrossRef] [PubMed]
- Borisova, M.; Shi, Y.; Buntru, A.; Wörner, S.; Ziegler, W.H.; Hauck, C.R. Integrin-mediated internalization of Staphylococcus aureus does not require vinculin. BMC Cell Biol. 2013, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Fagerholm, S.C.; Guenther, C.; Llort Asens, M.; Savinko, T.; Uotila, L.M. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front. Immunol. 2019, 10, 254. [Google Scholar] [CrossRef] [PubMed]
- Zgraggen, S.; Huggenberger, R.; Kerl, K.; Detmar, M. An important role of the SDF-1/CXCR4 axis in chronic skin inflammation. PLoS ONE 2014, 9, e93665. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Jiang, X.; Bai, R. CXCR4/CXCL12 axis: “old” pathway as “novel” target for anti-inflammatory drug discovery. Med. Res. Rev. 2024, 44, 1189–1220. [Google Scholar] [CrossRef]
No | RT (min) | Compound | Area% | Chemical Type of Compounds |
---|---|---|---|---|
1 | 5.40 | Ethyl phenyl ether | 4.90 | Ether |
2 | 6.40 | Benzoic acid | 9.70 | Aromatic acid |
3 | 7.16 | Butanedioic acid | 10.40 | Aliphatic acid |
4 | 9.23 | Dimethyl-phenanthrene | 12.60 | Aromatic hydrocarbon |
5 | 9.81 | unknown | 2.50 | - |
6 | 10.28 | γ-curcumene | 0.64 | Sesquiterpene |
7 | 10.34 | ar-curcumene | 1.27 | Sesquiterpene |
8 | 12.79 | calarene | 1.30 | Sesquiterpene |
9 | 13.49 | cadinene | 0.56 | Sesquiterpene |
10 | 13.86 | β-eudesmol | 0.82 | Sesquiterpene |
11 | 14.24 | longifolene | 0.91 | Sesquiterpene |
12 | 17.89–20.51 | sugars | 6.70 | Sugars |
13 | 27.38 | ferulic acid ester | 0.65 | Ester of Aromatic acid |
14 | 28.58 | unknown | 1.24 | - |
15 | 29.18 | unknown | 1.66 | - |
16 | 29.3 | pinostrobin chalcone | 0.37 | Flavonoids/Chalcones |
17 | 29.62 | coumarate/caffeate derivative | 0.73 | Ester of Aromatic acid |
18 | 29.85 | pinocembrin chalcone | 0.96 | Flavonoids/Chalcones |
19 | 29.95 | pinocembrin | 0.80 | Flavonoids/Chalcones |
20 | 30.41 | caffeate derivative | 0.74 | Ester of Aromatic acid |
21 | 30.51 | hydroxy methoxy chalcone | 5.38 | Flavonoids/Chalcones |
22 | 30.9 | pinobanksin | 3.32 | Flavonoids/Chalcones |
23 | 31.6 | methoxylflavanone | 5.13 | Flavonoids/Chalcones |
24 | 32.09 | pinobanksin-3-acetate | 2.58 | Flavonoids/Chalcones |
25 | 32.52 | chalcone | 3.85 | Flavonoids/Chalcones |
26 | 33.18 | galangin | 2.71 | Flavonoids/Chalcones |
27 | 33.68 | phenyl ethyl ester of caffeic acid | 1.80 | Ester of Aromatic acid |
28 | 33.88 | dihydroxymethoxyflavone | 0.77 | Flavonoids/Chalcones |
29 | 34.08 | caffeic acid derivative | 1.70 | Ester of Aromatic acid |
30 | 35.96 | cinnamyl ester of isoferulic acid | 1.67 | Ester of Aromatic acid |
31 | 36.85 | cinnamyl ester of caffeic acid | 311 | Ester of Aromatic acid |
32 | 37.3 | alpinon chalcone | 1.03 | Flavonoids/Chalcones |
33 | 37.46 | kaempferol derivative | 0.90 | Flavonoids/Chalcones |
34 | 40.17 | unknown | 1.76 | - |
35 | 42.32 | unknown | 2.24 | - |
Total | 98.40 |
Time | Conditions | TPC (μg GA/mL) | DPPH (mM Trolox Equivalent) |
---|---|---|---|
T (0) | 7046 ± 227 | 31.55 ± 0.89 | |
2 months | RT | 8309 ± 63.5 ** | 36.84 ± 0.61 * |
6 °C | 5782 ± 271.6 ** | 26.59 ± 1.37 * | |
38 °C | 6666 ± 176.2 | 29.01 ± 1.45 | |
UV | 6611 ± 145.5 | 28.70 ± 0.73 |
Microorganisms | Control (0 h) (Mean ± SEM) | 0.1% v/v PE (2 h) (Mean ± SEM) | 0.3% v/v PE (2 h) (Mean ± SEM) | 0.5% v/v PE (2 h) (Mean ± SEM) |
---|---|---|---|---|
Staphylococcus epidermidis | 7.24 ± 0.05 | 7.31 ± 0.02 | 6.97 ± 0.08 | 6.34 ± 0.09 |
Staphylococcus capitis | 7.79 ± 0.18 | 7.31 ± 0.04 | 7.80 ± 0.09 | 7.77 ± 0.12 |
Cutibacterium acnes | 6.70 ± 0.10 | 6.74 ± 0.06 | 5.24 ± 0.04 # | 1.70 ± 0.00 # |
Corynebacterium tuberculostearicum | 5.91 ± 0.04 | 5.93 ± 0.11 | 5.32 ± 0.04 | 3.02 ± 0.22 # |
Micrococcus luteus | 7.03 ± 0.05 | 6.92 ± 0.02 | 6.88 ± 0.07 | 6.92 ± 0.03 |
Malassezia globosa | 6.08 ± 0.01 | 6.03 ± 0.02 | 5.66 ± 0.08 | 1.70 ± 0.00 # |
Staphylococcus hominis | 6.56 ± 0.07 | 6.57 ± 0.09 | 6.44 ± 0.10 | 5.89 ± 0.08 |
Streptococcus mitis | 5.65 ± 0.07 | 4.89 ± 0.01 | 4.02 ± 0.06 # | 1.70 ± 0.00 # |
Microorganisms | Control (0 h) (Mean ± SEM) | 0.1% v/v PE (2 h) (Mean ± SEM) | 0.3% v/v PE (2 h) (Mean ± SEM) | 0.5% v/v PE (2 h) (Mean ± SEM) |
---|---|---|---|---|
Staphylococcus aureus | 7.82 ± 0.12 | 7.61 ± 0.02 | 7.34 ± 0.04 | 6.94 ± 0.06 |
Pseudomonas aeruginosa | 8.08 ± 0.12 | 8.02 ± 0.08 | 7.89 ± 0.09 | 7.74 ± 0.16 |
Klebsiella pneumoniae | 7.95 ± 0.02 | 8.18 ± 0.01 | 8.11 ± 0.04 | 8.07 ± 0.05 |
Escherichia coli | 7.95 ± 0.05 | 8.16 ± 0.04 | 8.05 ± 0.11 | 8.01 ± 0.03 |
Streptococcus mutans | 5.86 ± 0.08 | 5.78 ± 0.03 | 5.59 ± 0.02 | 5.55 ± 0.05 |
Candida albicans | 6.47 ± 0.08 | 6.51 ± 0.05 | 6.10 ± 0.00 | 5.72 ± 0.10 |
Candida glabrata | 6.27 ± 0.13 | 6.09 ± 0.12 | 4.96 ± 0.20 # | 3.48 ± 0.12 # |
Malassezia furfur | 7.32 ± 0.03 | 7.16 ± 0.04 | 7.01 ± 0.07 | 5.36 ± 0.07 # |
Enterobacter cloacae | 8.35 ± 0.04 | 8.41 ± 0.01 | 8.33 ± 0.05 | 8.41 ± 0.06 |
Streptococcus viridans | 6.26 ± 0.01 | 4.92 ± 0.15 # | 3.70 ± 0.18 # | 3.60 ± 0.13 # |
Candida tropicalis | 5.92 ± 0.10 | 5.82 ± 0.06 | 5.50 ± 0.22 | 4.35 ± 0.05 # |
Corynebacterium kroppenstedtii | 6.32 ± 0.01 | 6.30 ± 0.01 | 5.81 ± 0.12 | 1.70 ± 0.00 # |
Microorganisms | Control (0 h) (Mean ± SEM) | 0.1% v/v PE (2 h) (Mean ± SEM) | 0.3% v/v PE (2 h) (Mean ± SEM) | 0.5% v/v PE (2 h) (Mean ± SEM) |
---|---|---|---|---|
Total Aerobic Microbial count (TSA) | 4.31 ± 0.74 | 3.90 ± 0.45 | 3.36 ± 0.28 # | 3.00 ± 0.04 # |
Total Aerobic Microbial count (PCA) | 4.69 ± 0.44 | 4.42 ± 0.38 | 4.14 ± 0.31 | 3.74 ± 0.09 # |
Total Aerobic Microbial count (BHI) | 4.58 ± 0.45 | 4.16 ± 0.40 | 3.89 ± 0.26 | 3.65 ± 0.13 # |
Total Anaerobic Microbial count (RCA) | 6.41 ± 0.11 | 6.45 ± 0.30 | 6.34 ± 0.16 | 6.38 ± 0.26 |
Growth medium for Staphylococcus (MSA) | 4.79 ± 0.44 | 4.43 ± 0.45 | 4.21 ± 0.24 | 3.93 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasopoulou, S.; Panagiotidou, E.; Spanidi, E.; Gkika, M.; Georgiou, D.; Anagnostopoulos, A.K.; Ganos, C.; Chinou, I.; Beletsiotis, E.; Gardikis, K. Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes. Antioxidants 2025, 14, 849. https://doi.org/10.3390/antiox14070849
Athanasopoulou S, Panagiotidou E, Spanidi E, Gkika M, Georgiou D, Anagnostopoulos AK, Ganos C, Chinou I, Beletsiotis E, Gardikis K. Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes. Antioxidants. 2025; 14(7):849. https://doi.org/10.3390/antiox14070849
Chicago/Turabian StyleAthanasopoulou, Sophia, Eleni Panagiotidou, Eleni Spanidi, Maria Gkika, Danai Georgiou, Athanasios K. Anagnostopoulos, Christos Ganos, Ioanna Chinou, Evangelos Beletsiotis, and Konstantinos Gardikis. 2025. "Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes" Antioxidants 14, no. 7: 849. https://doi.org/10.3390/antiox14070849
APA StyleAthanasopoulou, S., Panagiotidou, E., Spanidi, E., Gkika, M., Georgiou, D., Anagnostopoulos, A. K., Ganos, C., Chinou, I., Beletsiotis, E., & Gardikis, K. (2025). Propolis Extract with Activity Against Cutibacterium acnes Biofilm Targeting the Expression of Virulence Genes. Antioxidants, 14(7), 849. https://doi.org/10.3390/antiox14070849