Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,373)

Search Parameters:
Keywords = animal waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2637 KiB  
Article
Enteropathogenic Bacteria in Water Sources Associated with Faecal Waste from Open Defecation and Animals in Rural Communities of Vhembe District, South Africa
by Barbara Mogane and Maggy Ndombo Benteke Momba
Water 2025, 17(16), 2410; https://doi.org/10.3390/w17162410 - 15 Aug 2025
Viewed by 88
Abstract
The lack of improved sanitation in rural areas of developing countries, including South Africa, exacerbates open defecation, leading to the significant contamination of water sources by human and animal waste. This study aimed to establish the association of Campylobacter jejuni, Salmonella enterica [...] Read more.
The lack of improved sanitation in rural areas of developing countries, including South Africa, exacerbates open defecation, leading to the significant contamination of water sources by human and animal waste. This study aimed to establish the association of Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Shigella flexneri, and Yersinia enterocolitica in open defecation sites and animal waste with the contamination of water sources in Vhembe District, South Africa. A total of 1032 water samples and 111 faecal samples from the Collins Chabane and Thulamela municipalities were analysed using qPCR. Regression models were used to assess associations, with S. Typhimurium (19–60%) and S. flexneri (11–44%) being the most prevalent bacteria in faecal matter and water, showing detection rates of 4–100% and 5–100%, respectively. Strong associations were found during the wet season between faecal waste and water contamination for S. flexneri (R2 = 0.7, p = 0.005) and S. Typhimurium (R2 = 0.619, p = 0.091). Urgent measures are needed to address the contamination of rural water sources due to open defecation and livestock waste. Full article
Show Figures

Figure 1

20 pages, 457 KiB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 175
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

23 pages, 313 KiB  
Review
Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films
by Kristina Cvetković, Ivana Karabegović, Simona Dordevic, Dani Dordevic and Bojana Danilović
Processes 2025, 13(8), 2567; https://doi.org/10.3390/pr13082567 - 14 Aug 2025
Viewed by 106
Abstract
In recent years, food waste management has become one of the key challenges faced by modern society. The significant ecological footprint left by this type of waste can be mitigated through proper valorization. Directing food waste towards the production of biopolymers has attracted [...] Read more.
In recent years, food waste management has become one of the key challenges faced by modern society. The significant ecological footprint left by this type of waste can be mitigated through proper valorization. Directing food waste towards the production of biopolymers has attracted considerable attention from researchers. Plant- and animal-based by-products from the food industry are the valuable materials which can be utilized for the production of biopolymer-based films. Although the use of food waste in biopolymer film production holds great potential, various factors such as the type of source and extraction methods significantly affect the physicochemical properties of the films. With the addition of various compounds that enhance their antioxidant and antimicrobial effects, these films can prolong the freshness and safety of packaged products, making them comparable to plastic derived from fossil fuels. This review highlights the potential of biopolymers from food waste for the production of biopolymer-based films and the possibilities of their modification in order to improve their properties for use in the food packaging industry. Full article
(This article belongs to the Special Issue Resource Utilization of Food Industry Byproducts)
17 pages, 599 KiB  
Review
Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste
by Ioannis Stavrakakis, Paraschos Melidis, Nektarios Kavroulakis, Michael Goliomytis, Panagiotis Simitzis and Spyridon Ntougias
Microorganisms 2025, 13(8), 1891; https://doi.org/10.3390/microorganisms13081891 - 13 Aug 2025
Viewed by 181
Abstract
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting [...] Read more.
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting the EU’s commitment to fostering circularity. Biotreatment of citrus processing waste, including bioconversion into biomethane, biohydrogen, bioethanol and biodiesel, has been applied to valorize biomass for energy recovery. It can also be composted into a valuable soil conditioners and fertilizers, while raw and fermented citrus residues may exhibit phytoprotective activity. Citrus-derived residues can be converted into materials such as nanoparticles with adsorptive capacity for heavy metals and recalcitrant organic pollutants, and materials with antimicrobial properties against various microbial pathogens, or the potential to remove antibiotic-resistance genes (ARGs) from wastewater. Indeed, citrus residues are an ideal source of industrial biomolecules, like pectin, and the recovery of bioactive compounds with added value in food processing industry. Citrus processing waste can also serve as a source for isolating specialized microbial starter cultures or as a substrate for the growth of bioplastic-producing microorganisms. Solid-state fermentation of citrus residues can enhance the production of hydrolytic enzymes, with applications in food and environmental technology, as well as in animal feed. Certain fermented products also exhibit antioxidant properties. Citrus processing waste may be used as alternative feedstuff that potentially improves the oxidative stability and quality of animal products. Full article
(This article belongs to the Special Issue Earth Systems: Shaped by Microbial Life)
Show Figures

Figure 1

15 pages, 1891 KiB  
Article
Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch
by Viviane de Souza Silva, Luna Valentina Angulo Arias, José Ignacio Velasco, Farayde Matta Fakhouri and Rafael Augustus de Oliveira
Molecules 2025, 30(16), 3363; https://doi.org/10.3390/molecules30163363 - 13 Aug 2025
Viewed by 198
Abstract
Starch is the main source of carbohydrates in human and animal diets. The extraction of this polysaccharide from unconventional residues of minimally processed foods represents an innovation in the production chain and promotes an appropriate destination for organic waste. Kabocha pumpkin produces minimally [...] Read more.
Starch is the main source of carbohydrates in human and animal diets. The extraction of this polysaccharide from unconventional residues of minimally processed foods represents an innovation in the production chain and promotes an appropriate destination for organic waste. Kabocha pumpkin produces minimally processed products, but the discarded peel is not processed and becomes organic waste. In this study, starch was obtained from kabocha pumpkin residues and characterized according to its physicochemical composition, morphology, and thermal properties. Kabocha pumpkin peel starch (KPPS) showed variations in granule morphology. X-ray diffraction analysis revealed about 22% crystallinity. The pasting temperature of KPPS was 69.1 °C and the peak, trough, breakdown, final, and setback viscosities were 5293 cP, 2804 cP, 2849 cP, 3550 cP, and 746 cP, respectively. The stability (120 and 260 °C) observed on the thermogravimetric analysis of KPPS allows it to be used as an interesting ingredient in the production of new foods and non-food products, such as packaging. Moreover, using a product that would otherwise be discarded minimizes residue generation, reducing environmental impact and promoting an alternative source of income for the minimal processing food industry. Full article
Show Figures

Figure 1

17 pages, 1264 KiB  
Article
Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development
by Pilar Mañas and Jorge De las Heras
Agronomy 2025, 15(8), 1935; https://doi.org/10.3390/agronomy15081935 - 11 Aug 2025
Viewed by 231
Abstract
Composting organic waste enhances soil fertility, supports plant growth, and offers a sustainable waste management strategy. This study evaluated the agronomic potential of three compost types derived from unconventional sources: (i) sewage sludge, (ii) slaughterhouse animal by-products (ABPs), and (iii) cheese industry waste. [...] Read more.
Composting organic waste enhances soil fertility, supports plant growth, and offers a sustainable waste management strategy. This study evaluated the agronomic potential of three compost types derived from unconventional sources: (i) sewage sludge, (ii) slaughterhouse animal by-products (ABPs), and (iii) cheese industry waste. The impact of Trichoderma harzianum strain T-22 inoculation was also assessed in relation to the early development of durum wheat (Triticum turgidum subsp. durum) under greenhouse conditions. Compost type significantly influenced plant emergence and growth, with sewage sludge-based compost showing the best performance. T. harzianum T-22 inoculation produced mixed results; it improved growth in specific combinations (CS-1/3 and CA-1/4) but inhibited it in others (particularly CW-based composts). These findings underscore the importance of compost source selection and highlight that microbial inoculation effects are substrate-dependent. This work supports sustainable composting practices and fungal waste valorization to optimize plant growth in sustainable agriculture. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

25 pages, 5318 KiB  
Review
Physical, Chemical, and Performance Properties of Biodiesel Fuels: A Comparative Study of Lipid-Based Feedstocks
by Sergii Boichenko, Anna Yakovlieva, Stepan Zubenko and Iryna Shkilniuk
Energies 2025, 18(16), 4274; https://doi.org/10.3390/en18164274 - 11 Aug 2025
Viewed by 188
Abstract
Contemporary climate challenges and energy security issues once again demonstrate that the transition to alternative motor fuels is a key and priority task for ensuring sustainable development in European Union countries, as well as in Ukraine. This review provides a comparative analysis of [...] Read more.
Contemporary climate challenges and energy security issues once again demonstrate that the transition to alternative motor fuels is a key and priority task for ensuring sustainable development in European Union countries, as well as in Ukraine. This review provides a comparative analysis of the physical, chemical, and performance properties of biodiesel fuels derived from 17 lipid-based feedstocks, including vegetable oils, animal fats, food industry waste, and microalgae. This study investigates the influence of fatty acid composition and transesterification alcohol type on key fuel properties, including density, viscosity, cetane number, pour point, heat value, and flash point. The results show that biodiesel fuels with a high content of saturated fatty acids exhibit higher cetane numbers and energy content, while biodiesel fuels with a high content of unsaturated fatty acids possess improved viscosity and cold flow properties. Camelina, rapeseed, and used cooking oil are identified as being particularly promising feedstocks based on their performance and availability in the European and Ukrainian dimensions. These findings are supported by a SWOT analysis and cost–benefit comparison, providing practical insights into the feasibility and scalability of biodiesel production pathways. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 1111 KiB  
Review
Black Soldier Fly Larvae as a Novel Protein Feed Resource Promoting Circular Economy in Agriculture
by Hongren Su, Bin Zhang, Jingyi Shi, Shichun He, Sifan Dai, Zhiyong Zhao, Dongwang Wu and Jun Li
Insects 2025, 16(8), 830; https://doi.org/10.3390/insects16080830 - 10 Aug 2025
Viewed by 492
Abstract
This study is a systematic critical review aimed at rigorously evaluating the potential of Hermetia illucens larvae (black soldier fly larvae, BSFL) as a sustainable protein source for animal feed through a standardized methodological framework. To address the significant challenge posed by the [...] Read more.
This study is a systematic critical review aimed at rigorously evaluating the potential of Hermetia illucens larvae (black soldier fly larvae, BSFL) as a sustainable protein source for animal feed through a standardized methodological framework. To address the significant challenge posed by the increasing global demand for protein feed to agricultural sustainability, we retrieved relevant studies published between October 2008 and June 2025 from three core databases—PubMed, ScienceDirect, and Web of Science—and conducted study screening and data extraction in accordance with the PRISMA guidelines. BSFL represent a viable alternative, with a high protein content of 40–60% and efficient organic waste conversion capabilities. This systematic review explores the potential of BSFL to replace traditional protein sources such as fishmeal and soybean meal in animal feed, highlighting their advantages in enhancing growth performance, improving gut health, and reducing methane emissions in ruminants. However, there are still critical research gaps, including the need for standardized safety assessments regarding heavy metal accumulation and chitin digestibility. Addressing these challenges through optimized rearing techniques and rigorous safety evaluations will be crucial for scaling up BSFL production and advancing the development of circular agriculture. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
Show Figures

Figure 1

20 pages, 7049 KiB  
Article
Coupled Bone–Muscle Degeneration in Chronic Pancreatitis: A Juvenile Porcine Model of Secondary Osteosarcopenia
by Siemowit Muszyński, Michał Świetlicki, Dorota Wojtysiak, Agnieszka Grzegorzewska, Piotr Dobrowolski, Małgorzata Świątkiewicz, Marcin B. Arciszewski, Iwona Puzio, Joanna Bonior, Agnieszka Tomczyk-Warunek, Maria Mielnik-Błaszczak and Ewa Tomaszewska
Int. J. Mol. Sci. 2025, 26(16), 7690; https://doi.org/10.3390/ijms26167690 - 8 Aug 2025
Viewed by 179
Abstract
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize [...] Read more.
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize musculoskeletal alterations associated with SOS using a juvenile porcine model of cerulein-induced chronic pancreatitis. Femoral bone analysis included densitometry, mechanical testing, histomorphometry, and serum bone turnover markers. The quadriceps femoris muscle was evaluated through histological analysis and gene expression profiling of antioxidant enzymes and apoptotic regulators. Animals with SOS showed significantly reduced femoral BMD compared to controls, with altered cortical geometry and compromised mechanical properties. Trabecular bone analysis revealed classic osteoporotic changes with decreased bone volume fraction. Negative changes were also observed in the growth plate morphology, indicating impaired endochondral ossification. Bone turnover markers indicated elevated bone resorption and altered formation. Muscle analysis demonstrated sarcopenic changes with selective atrophy of fast-twitch type II fibers and increased fiber density. At the molecular level, SOS muscles exhibited downregulated expression of CAT and CASP3, suggesting muscle atrophy predominantly mediated by oxidative stress and caspase-independent proteolysis rather than classical apoptosis. In conclusion, chronic pancreatitis in young pigs induces coupled bone and muscle degeneration consistent with secondary osteosarcopenia, demonstrating that muscle–bone crosstalk dysfunction occurs early in chronic inflammatory disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Viewed by 289
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Viewed by 264
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
15 pages, 750 KiB  
Review
Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
by Júlia dos Santos Fonseca, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos and Jackson Victor de Araújo
Pathogens 2025, 14(8), 775; https://doi.org/10.3390/pathogens14080775 - 5 Aug 2025
Viewed by 374
Abstract
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. [...] Read more.
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. Other actions, such as the removal of organic waste, have also been adopted. Few or no control measures are applied to free-ranging wild animals. Helminthophagous fungi are a promising biological alternative. When animals ingest fungal spores, they are excreted in their feces, where they trap and destroy helminth larvae and eggs, preventing and reducing the parasite load in the environment. Another alternative is to administer fungi by spraying them directly into the environment. This review aims to examine the use of helminthophagous fungi in the control of helminthiases in wild animals, highlighting their potential to minimize dependence on chemical treatments and promote sustainable animal breeding and production. There are many challenges to making this viable, such as environmental variability, stability of formulations, and acceptance of this new technology. These fungi have been shown to reduce parasite burdens in wild animals by up to 75% and can be administered through the animals’ feeding troughs. To date, evidence shows that helminthophagous fungi can reliably curb environmental parasite loads for extended periods, offering a sustainable alternative to repeated anthelmintic dosing. Their use has been linked to tangible gains in body condition, weight, and overall welfare in various captive and free-ranging wildlife species. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Viewed by 301
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

22 pages, 11423 KiB  
Article
Adornments from the Sea: Fish Skins, Heads, Bones, Vertebras, and Otoliths Used by Alaska Natives and Greenlandic Inuit
by Elisa Palomino
Wild 2025, 2(3), 30; https://doi.org/10.3390/wild2030030 - 4 Aug 2025
Viewed by 570
Abstract
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some [...] Read more.
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some or all of their own social, economic, cultural, and political institutions. In this paper, I use the terms “Indigenous” and “Native” interchangeably. In some countries, one of these terms may be favoured over the other.) and Greenlandic Inuit women. It aims to uncover how fish remnants—skins, bones, bladders, vertebrae, and otoliths—were transformed through tanning, dyeing, and sewing into garments, containers, tools, oils, glues, and adornments, reflecting sustainable systems of knowledge production rooted in Arctic Indigenous lifeways. Drawing on interdisciplinary methods combining Indigenist research, ethnographic records, and sustainability studies, the research contextualises these practices within broader environmental, spiritual, and social frameworks. The findings demonstrate that fish-based technologies were not merely utilitarian but also carried symbolic meanings, linking wearers to ancestral spirits, animal kin, and the marine environment. These traditions persisted even after European contact and the introduction of glass trade beads, reflecting continuity and cultural adaptability. The paper contributes to academic discourse on Indigenous innovation and environmental humanities by offering a culturally grounded model of zero-waste practice and reciprocal ecology. It argues that such ancestral technologies are directly relevant to contemporary sustainability debates in fashion and material design. By documenting these underexamined histories, the study provides valuable insight into Indigenous resilience and offers a critical framework for integrating Indigenous knowledge systems into current sustainability practices. Full article
Show Figures

Figure 1

8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 - 1 Aug 2025
Viewed by 386
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

Back to TopTop