Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development
Abstract
1. Introduction
1.1. Regulation and Classification of Animal By-Products (ABPs)
1.2. Utilization of Animal By-Products and Composting
1.3. Food Industry Waste: Focus on the Cheese Industry
1.4. Sewage Sludge Management in Europe and Spain
1.5. Environmental Impact and Risks of Improper Waste Management
1.6. Composting: Process, Benefits, and Limitations
1.7. Biological Control and Potential of the Trichoderma Genus
1.8. Biological Characteristics of Trichoderma
1.9. Factors Affecting Trichoderma Growth
1.10. Mechanisms of Trichoderma in Biological Control
1.11. Application of Trichoderma in Compost and Agronomic Evaluation
1.12. Study Objective and Experimental Approach
2. Materials and Methods
2.1. Experimental Design
- Sewage sludge (CS): Sewage sludge was collected from the Alcázar de San Juan wastewater treatment plant (WWTP), which serves ~29,000 inhabitants in central Spain (39°24′ N, 3°12′ W) at an altitude of 644 m. This facility employs an activated sludge process, a biological wastewater treatment method in which air or oxygen is introduced into the sewage to promote the formation of biological floc, thereby reducing the organic load. This WWTP receives mixed wastewater (70% domestic, 30% industrial). The sludge was composted with shredded cereal straw as a carbon source.
- Cheese industry waste (CW): Whey, rich in fats, proteins, and lactose, was mainly mixed with unshredded cereal straw. This residue, due to its high organic load, was composted to reduce its environmental impact. The compost obtained from the process exhibited a humidity content of 85.5% and a total organic matter percentage of 88.6%. The pH, measured from a 1:10 extract, was 5.76. Regarding the presence of heavy metals, total cadmium and mercury were both below the detection limits (<0.10 mg kg−1 and <0.20 mg kg−1, respectively). Total copper and chrome contents were 5.91 mg kg−1 and 7.10 mg kg−1, respectively, while nickel and lead were present at 2.4 mg kg−1 and 1.1 mg kg−1. Total zinc was also below the detection limit (<50 mg kg−1). In terms of nutrients, compost contained 1.69% phosphorus and 7.77% nitrogen, as determined using the Dumas method.
- Animal by-products (CA): By-products consisted of slaughterhouse blood pre-treated with iron sulfate to enhance organic matter degradation and reduce odors. This waste was composted with shredded straw and a portion of sewage sludge from the same WWTP to balance the C/N ratio. This composition makes it highly biodegradable. Additionally, ABP waste has, in general, a high microbial load and may contain pathogenic microorganisms, such as Salmonella spp., Escherichia coli, and Clostridium spp., requiring sanitization treatments before agricultural use. In general, the composition of these residues varies depending on the specific by-product (blood, viscera, skins, bones), influencing moisture and fat content, which affects stability and necessitates mixing with other waste materials to optimize the composting process. A significant challenge in handling this waste is its potential for odor generation due to the decomposition of proteins and lipids, leading to the release of malodorous volatile compounds, such as amines and sulfides. Therefore, implementing mitigation strategies is essential for proper management. Despite these challenges, ABP waste has high fertilizer potential, as it contains essential macronutrients, such as nitrogen (N), phosphorus (P), and potassium (K), as well as micronutrients necessary for soil fertilization. To ensure their safety and feasibility for agricultural applications, these residues must undergo appropriate treatment processes, such as composting or anaerobic digestion, to achieve stabilization and sanitization.
- ▪
- 1:3 (v/v) (25% compost, 75% peat).
- ▪
- 1:2 (v/v) (33% compost, 67% peat).
- M1: 1/4 CS + 3/4 peat.
- M4: 1/3 CS + 2/3 peat.
- M2: 1/4 CW + 3/4 peat.
- M5: 1/3 CW + 2/3 peat.
- M3: 1/4 CA + 3/4 peat.
- M6: 1/3 CA + 2/3 peat.
2.2. Statistical Procedure
3. Results
3.1. Compost
3.2. Plants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Zohairi, S.; Knudsen, M.T.; Mogensen, L. Utilizing Animal By-Products in European Slaughterhouses to Reduce the Environmental Footprint of Pork Products. Sustain. Prod. Consum. 2023, 37, 306–319. [Google Scholar] [CrossRef]
- Barrena, R.; Artola, A.; Vázquez, F.; Sánchez, A. The Use of Composting for the Treatment of Animal By-Products: Experiments at Lab Scale. J. Hazard. Mater. 2009, 161, 380–386. [Google Scholar] [CrossRef]
- Arrigoni, J.; Paladino, G.; Garibaldi, L.A.; Hedenström, E.; Zhang, W.; Laos, F. Performance of Small-Scale Composting in Low Ambient Temperatures: Effects of Adding Animal by-Products and Recycling Leachates. Waste Manag. Bull. 2024, 2, 309–317. [Google Scholar] [CrossRef]
- Khodaei, D.; Álvarez, C.; Mullen, A. Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview. Polymers 2021, 13, 2561. [Google Scholar] [CrossRef]
- Greff, B.; Szigeti, J.; Nagy, Á.; Lakatos, E.; Varga, L. Influence of Microbial Inoculants on Co-Composting of Lignocellulosic Crop Residues with Farm Animal Manure: A Review. J. Environ. Manag. 2021, 302 Pt B, 114088. [Google Scholar] [CrossRef] [PubMed]
- Russ, W.; Meyer-Pittroff, R. Utilizing Waste Products from the Food Production and Processing Industries. Crit. Rev. Food Sci. Nutr. 2004, 44, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Talebi, S.; Gras, S.; Weeks, M.; Kentish, S. A Review of Salty Waste Stream Management in the Australian Dairy Industry. J. Environ. Manag. 2018, 224, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Sun, H.; Chen, E.; Yang, M.; Wu, C.; Sun, X.; Wang, Q. From Waste to Wealth: Innovations in Organic Solid Waste Composting. Environ. Res. 2023, 229, 115977. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A. Comparative Study of the Methods Used for Treatment and Final Disposal of Sewage Sludge in European Countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Koumoulidis, D.; Varvaris, I.; Pittaki, Z.; Hadjimitsis, D. Sewage Sludge in Agricultural Lands: The Legislative Framework in EU-28. Sustainability 2024, 16, 10946. [Google Scholar] [CrossRef]
- Neri, A.; Rizzuni, A.; Garrone, P.; Cagno, E. Influence of Policymakers and Civil Society Stakeholders on Sewage Sludge Management Strategies: Empirical Results from European Utilities. J. Environ. Manag. 2024, 364, 121396. [Google Scholar] [CrossRef]
- Mininni, G.; Blanch, A.; Lucena, F.; Berselli, S. EU Policy on Sewage Sludge Utilization and Perspectives on New Approaches of Sludge Management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of Solid Organic Waste Composting Products: A Critical Review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Ayilara, M.; Olanrewaju, O.S.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Ty, R.; Kiewicz; Nowak, A.; Ozimek, E. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Vindas-Reyes, E.; Chacón-Cerdas, R.; Rivera-Méndez, W. Trichoderma Production and Encapsulation Methods for Agricultural Applications. AgriEngineering 2024, 6, 2366–2384. [Google Scholar] [CrossRef]
- Verma, M.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Antagonistic Fungi, Trichoderma spp.: Panoply of Biological Control. Biochem. Eng. J. 2007, 37, 1–20. [Google Scholar] [CrossRef]
- Asad, S.A. Mechanisms of Action and Biocontrol Potential of Trichoderma against Fungal Plant Diseases—A Review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Asghar, W.; Craven, K.; Kataoka, R.; Mahmood, A.; Asghar, N.; Raza, T.; Iftikhar, F. The Application of Trichoderma spp., an Old but New Useful Fungus, in Sustainable Soil Health Intensification: A Comprehensive Strategy for Addressing Challenges. Plant Stress 2024, 12, 100455. [Google Scholar] [CrossRef]
- Woo, S.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-Based Products and Their Widespread Use in Agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Steyaert, J.; Weld, R.; Stewart, A. Isolate-Specific Conidiation in Trichoderma in Response to Different Nitrogen Sources. Fungal Biol. 2010, 114, 179–188. [Google Scholar] [CrossRef]
- Li, Y.; Meng, X.; Guo, D.; Gao, J.; Huang, Q.; Zhang, J.; Fischer, R.; Shen, Q.; Yu, Z. A Simple and Low-Cost Strategy to Improve Conidial Yield and Stress Resistance of Trichoderma Guizhouense through Optimizing Illumination Conditions. J. Fungi 2022, 8, 50. [Google Scholar] [CrossRef]
- Schrüfer, K.; Lysek, G. Rhythmic Growth and Sporulation in Trichoderma Species: Differences within a Population of Isolates. Fungal Biol. 1990, 94, 124–127. [Google Scholar] [CrossRef]
- Shain, Y.; Mayer, A. Activation of Enzymes during Germination: Amylopectin-1,6-glucosidase in Peas. Physiol. Plant. 1968, 21, 765–776. [Google Scholar] [CrossRef]
- Vukelić, I.; Radić, D.; Pećinar, I.; Lević, S.; Djikanović, D.; Radotić, K.; Panković, D. Spectroscopic Investigation of Tomato Seed Germination Stimulated by Trichoderma spp. Biology 2024, 13, 340. [Google Scholar] [CrossRef]
- Han, Z.; Chen, L.; Wang, W.; Guan, X.; Song, J.; Ma, S. Biochemical and Transcriptomic Analyses Reveal Key Salinity and Alkalinity Stress Response and Tolerance Pathways in Salix linearistipularis Inoculated with Trichoderma. Agronomy 2024, 14, 2358. [Google Scholar] [CrossRef]
- Saha, K.C.; Uddin, M.K.; Shaha, P.K.; Chowdhury, M.A.H.; Hassan, L.; Saha, B.K. Application of Trichoderma Harzianum Enhances Salt Tolerance and Yield of Indian Mustard through Increasing Antioxidant Enzyme Activity. Heliyon 2024, 11, e41114. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Solanki, M.K.; Solanki, A.C.; Surapathrudu, K. Biocontrol Potential of Trichoderma spp.: Current Understandings and Future Outlooks on Molecular Techniques. In Plant Health Under Biotic Stress: Volume 2: Microbial Interactions; Ansari, R.A., Mahmood, I., Eds.; Springer: Singapore, 2019; pp. 129–160. ISBN 978-981-13-6040-4. [Google Scholar]
- Keswani, C.; Mishra, S.; Sarma, B.; Singh, S.; Singh, H. Unraveling the Efficient Applications of Secondary Metabolites of Various Trichoderma spp. Appl. Microbiol. Biotechnol. 2013, 98, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Schmoll, M. Biology and Biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 2010, 87, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Kappel, L.; Yu, L.; Escobar, C.; Marcianò, D.; Srivastava, V.; Bulone, V.; Gruber, S. A Comparative Cell Wall Analysis of Trichoderma spp. Confirms a Conserved Polysaccharide Scaffold and Suggests an Important Role for Chitosan in Mycoparasitism. Microbiol. Spectr. 2024, 12, e0349523. [Google Scholar] [CrossRef]
- Mehta, D.; Saini, V.; Bajaj, A. Recent Developments in Membrane Targeting Antifungal Agents to Mitigate Antifungal Resistance. RSC Med. Chem. 2023, 14, 1603–1628. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K.T.; Tra, V.-T.; Le, T.; Nguyen, N.-K.-Q.; Tran, C.-S.; Nguyen, P.-T.; Vo, T.; Thai, V.; Bui, X. Compost to Improve Sustainable Soil Cultivation and Crop Productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- Nakasaki, K.; Shoda, M.; Kubota, H. Effect of Temperature on Composting of Sewage Sludge. Appl. Environ. Microbiol. 1985, 50, 1526–1530. [Google Scholar] [CrossRef]
- Ge, M.; Shen, Y.; Ding, J.; Meng, H.; Zhou, H.; Zhou, J.; Cheng, H.; Zhang, X.; Wang, J.; Wang, H.; et al. New Insight into the Impact of Moisture Content and pH on Dissolved Organic Matter and Microbial Dynamics during Cattle Manure Composting. Bioresour. Technol. 2021, 344 Pt A, 126236. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, J.; Zhang, X.; Gao, X.; Yin, J.; Wang, G.; Li, J.; Li, G.; Cui, Z.; Yuan, J. Applicability and Limitation of Compost Maturity Evaluation Indicators: A Review. Chem. Eng. J. 2024, 489, 151386. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 595–624. ISBN 978-0-89118-977-0. [Google Scholar]
- Gautam, V.P.; Mishra, S.; Ahmed, H. Comparison of Total Nitrogen Estimation by Kjeldahl Method and CHNS Analyzer in Dry Tropical Grassland. Int. J. Plant Environ. 2023, 9, 180–182. [Google Scholar] [CrossRef]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris var. mongolica Annual Seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Spaccini, R.; Piccolo, A. An Alternative to Mineral Phosphorus Fertilizers: The Combined Effects of Trichoderma Harzianum and Compost on Zea Mays, as Revealed by 1H NMR and GC-MS Metabolomics. PLoS ONE 2018, 13, e0209664. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, H.; Jartoodeh, S.V.; Aruee, H.; Mazhabi, M. Would Trichoderma Affect Seed Germination and Seedling Quality of Two Muskmelon Cultivars, Khatooni and Qasri and Increase Their Transplanting Success? J. Biol. Environ. Sci. 2011, 5, 169–175. [Google Scholar]
- Marín-Guirao, J.I.; Rodríguez-Romera, P.; Lupión-Rodríguez, B.; Camacho-Ferre, F.; Tello-Marquina, J.C. Effect of Trichoderma on Horticultural Seedlings’ Growth Promotion Depending on Inoculum and Substrate Type. J. Appl. Microbiol. 2016, 121, 1095–1102. [Google Scholar] [CrossRef]
- Naseby, D.C.; Pascual, J.A.; Lynch, J.M. Effect of Biocontrol Strains of Trichoderma on Plant Growth, Pythium Ultimum Populations, Soil Microbial Communities and Soil Enzyme Activities. J. Appl. Microbiol. 2000, 88, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Perez-Murcia, M.D.; Moral, R.; Moreno-Caselles, J.; Perez-Espinosa, A.; Paredes, C. Use of Composted Sewage Sludge in Growth Media for Broccoli. Bioresour. Technol. 2006, 97, 123–130. [Google Scholar] [CrossRef]
- Cotxarrera, L.; Trillas-Gay, M.I.; Steinberg, C.; Alabouvette, C. Use of Sewage Sludge Compost and Trichoderma asperellum Isolates to Suppress Fusarium Wilt of Tomato. Soil Biol. Biochem. 2002, 34, 467–476. [Google Scholar] [CrossRef]
- Ortega-Quispe, K.; Ccopi-Trucios, D.; Lozano-Povis, A.; Llanos-Del-Pino, A.; Gabriel-Campos, E.; Ortega-Quispe, K.; Ccopi-Trucios, D.; Lozano-Povis, A.; Llanos-Del-Pino, A.; Gabriel-Campos, E.; et al. Sustainable Management of Wastewater Sludge Through Composting with Effective Microorganisms: Enhancing the Growth of Tecoma stans. Org. Farming 2024, 10, 108–119. [Google Scholar] [CrossRef]
Units | Methodology | CS | CW | CA | |
---|---|---|---|---|---|
Electrical Conductivity (1/10 Extract)) | µS/cm 20 °C | Conductimetry on 1:5 extract | 5290 | 3530 | 7140 |
Moisture | % | 38.3 | 16.8 | 24.5 | |
Maturity Index | - | Solvita test © | 4 | 4 | 6 |
Total Organic Matter | % | Walkley Black Method | 41.4 | 53.6 | 34 |
Calcium Oxide | %CaO | Bernard Method | 13.0 | 12.8 | 11.6 |
Phosphorus Pentoxide | %P2O5 | Olsen Method | 5.42 | 4.70 | 4.40 |
Magnesium Oxide | %MgO | Spectrophotometry Atomic absorption | 0.98 | 0.89 | 0.84 |
Potassium Oxide | %K2O | Atomic emission spectrophotometry | 0.37 | 0.50 | 0.62 |
pH (1/10 Extract) | - | Potentiometry in 1:2.5 extract | 6.42 | 6.67 | 6.36 |
C/N Ratio | - | 7.911 | 8.451 | 7.538 | |
Metals | |||||
Total Aluminum | mg kg−1 | Spectrophotometry Atomic absorption | 9442 | 9789 | 8083 |
Total Cadmium | mg kg−1 | Spectrophotometry Atomic absorption | 0.36 | 0.18 | 0.35 |
Total Chromium | mg kg−1 | Spectrophotometry Atomic absorption | 27.1 | 20.2 | 26.5 |
Total Iron | mg kg−1 | Spectrophotometry Atomic absorption | 19,983 | 21,778 | 68,870 |
Total Mercury | mg kg−1 | Spectrophotometry Atomic absorption | 0.46 | 0.20 | 0.31 |
Total Nickel | mg kg−1 | Spectrophotometry Atomic absorption | 20.4 | 12.5 | 19.9 |
Total Lead | mg kg−1 | Spectrophotometry Atomic absorption | 29.5 | 16.1 | 34.2 |
Total Zinc | mg kg−1 | Spectrophotometry Atomic absorption | 371 | 228 | 543 |
Nitrogen and Phosphorus Forms | |||||
Dumas Nitrogen | % | 3.03 | 3.68 | 2.61 | |
Kjeldahl Nitrogen | %N | 2.89 | 2.91 | 2.43 | |
Others | |||||
Toxicity | mg L−1 | <500,000 | <500,000 | <500,000 | |
Microbiological Parameters | |||||
Salmonella spp. Detection | /25 g | Absence | Absence | Absence | |
Rec. E. coli β-glucuronidase+ | MPN g−1 | 23 | 43 | 43 |
Main Effects | 14 DAS | 18 DAS | 21 DAS | 25 DAS | 28 DAS | 32 DAS | 39 DAS | 46 DAS |
---|---|---|---|---|---|---|---|---|
Number of Plants that Emerged | ||||||||
Mixture (A) | 0.0004 * | 0.0002 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * |
Trichoderma (B) | 0.0743 | 0.0486 * | 0.0870 | 0.0195 * | 0.0332 * | 0.3241 | 0.1256 | 0.1181 |
(A)–(B) | 0.4599 | 0.1935 | 0.2764 | 0.4139 | 0.2115 | 0.2336 | 0.0379 * | 0.6428 |
Number of plants on the first leaf (25 DAS), three leaves (39 DAS), and the start of tillering (46 DAS) | ||||||||
Mixture (A) | 0.0005 * | 0.0000 * | 0.0000 * | |||||
Trichoderma (B) | 0.3072 | 0.5456 | 0.3411 | |||||
(A)–(B) | 0.3977 | 0.0000 * | 0.2157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mañas, P.; De las Heras, J. Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development. Agronomy 2025, 15, 1935. https://doi.org/10.3390/agronomy15081935
Mañas P, De las Heras J. Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development. Agronomy. 2025; 15(8):1935. https://doi.org/10.3390/agronomy15081935
Chicago/Turabian StyleMañas, Pilar, and Jorge De las Heras. 2025. "Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development" Agronomy 15, no. 8: 1935. https://doi.org/10.3390/agronomy15081935
APA StyleMañas, P., & De las Heras, J. (2025). Agronomic Potential of Compost from Unconventional Organic Waste Sources and the Effect of Trichoderma harzianum T-22 on Durum Wheat’s Early Development. Agronomy, 15(8), 1935. https://doi.org/10.3390/agronomy15081935