Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = angle-resolved photoemission spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11512 KiB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 382
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

10 pages, 6353 KiB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 431
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

27 pages, 10002 KiB  
Review
The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy
by Paola Romano, Aniello Pelella, Antonio Di Bartolomeo and Filippo Giubileo
Nanomaterials 2024, 14(21), 1740; https://doi.org/10.3390/nano14211740 - 30 Oct 2024
Viewed by 1722
Abstract
The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying [...] Read more.
The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying mechanism for superconductivity. In this review, we discuss the current understanding of pairing symmetry in BiS2-based superconductors and particularly the role of point-contact spectroscopy in unravelling the mechanism underlying the superconducting state. We also review experimental results obtained with different techniques including angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, specific heat measurements, and nuclear magnetic resonance spectroscopy. The integration of experimental results and theoretical predictions sheds light on the complex interplay between electronic correlations, spin fluctuations, and Fermi surface topology in determining the coupling mechanism. Finally, we highlight recent advances and future directions in the field of BiS2-based superconductors, underlining the potential technological applications. Full article
Show Figures

Figure 1

8 pages, 806 KiB  
Communication
Exploring Unconventional Electron Distribution Patterns: Contrasts Between FeSe and FeSe/STO Using an Ab Initio Approach
by Chi-Ho Wong and Rolf Lortz
Materials 2024, 17(21), 5204; https://doi.org/10.3390/ma17215204 - 25 Oct 2024
Cited by 1 | Viewed by 864
Abstract
For more than a decade, the unusual distribution of electrons observed in ARPES (angle-resolved photoemission spectroscopy) data within the energy range of ~30 meV to ~300 meV below the Fermi level, known as the ARPES energy range, has remained a puzzle in the [...] Read more.
For more than a decade, the unusual distribution of electrons observed in ARPES (angle-resolved photoemission spectroscopy) data within the energy range of ~30 meV to ~300 meV below the Fermi level, known as the ARPES energy range, has remained a puzzle in the field of iron-based superconductivity. As the electron–phonon coupling of FeSe/SrTiO3 is very strong, our investigation is centered on exploring the synergistic interplay between spin-density waves (SDW) and charge-density waves (CDW) with differential phonons at the interface between antiferromagnetic maxima and minima under wave interference. Our analysis reveals that the synergistic energy is proportional to the ARPES energy range, as seen in the comparison between FeSe and FeSe/SrTiO3. This finding may suggest that the instantaneous interplay between these intricate phenomena may play a role in triggering the observed energy range in ARPES. Full article
Show Figures

Figure 1

9 pages, 4348 KiB  
Article
Surface Electronic Structure of Cr Doped Bi2Se3 Single Crystals
by Turgut Yilmaz, Xiao Tong, Zhongwei Dai, Jerzy T. Sadowski, Genda Gu, Kenya Shimada, Sooyeon Hwang, Kim Kisslinger, Elio Vescovo and Boris Sinkovic
Crystals 2024, 14(9), 812; https://doi.org/10.3390/cryst14090812 - 14 Sep 2024
Viewed by 1784
Abstract
Here, by using angle-resolved photoemission spectroscopy, we showed that Bi2−xCrxSe3 single crystals have a distinctly well-defined band structure with a large bulk band gap and undistorted topological surface states. These spectral features are unlike their thin film forms [...] Read more.
Here, by using angle-resolved photoemission spectroscopy, we showed that Bi2−xCrxSe3 single crystals have a distinctly well-defined band structure with a large bulk band gap and undistorted topological surface states. These spectral features are unlike their thin film forms in which a large nonmagnetic gap with a distorted band structure was reported. We further provide laser-based high resolution photoemission data which reveal a Dirac point gap even in the pristine sample. The gap becomes more pronounced with Cr doping into the bulk of Bi2Se3. These observations show that the Dirac point can be modified by the magnetic impurities as well as the light source. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

9 pages, 2794 KiB  
Communication
Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition
by Turgut Yilmaz, Xiao Tong, Jerzy T. Sadowski, Sooyeon Hwang, Kenneth Evans Lutterodt, Kim Kisslinger and Elio Vescovo
Materials 2024, 17(18), 4498; https://doi.org/10.3390/ma17184498 - 13 Sep 2024
Cited by 2 | Viewed by 1526
Abstract
Periodic lattice distortion, known as the charge density wave, is generally attributed to electron–phonon coupling. This correlation is expected to induce a pseudogap at the Fermi level in order to gain the required energy for stable lattice distortion. The transition metal dichalcogenide 1T-VSe [...] Read more.
Periodic lattice distortion, known as the charge density wave, is generally attributed to electron–phonon coupling. This correlation is expected to induce a pseudogap at the Fermi level in order to gain the required energy for stable lattice distortion. The transition metal dichalcogenide 1T-VSe2 also undergoes such a transition at 110 K. Here, we present detailed angle-resolved photoemission spectroscopy experiments to investigate the electronic structure in 1T-VSe2 across the structural transition. Previously reported warping of the electronic structure and the energy shift of a secondary peak near the Fermi level as the origin of the charge density wave phase are shown to be temperature independent and hence cannot be attributed to the structural transition. Our work reveals new states that were not resolved in previous studies. Earlier results can be explained by the different dispersion natures of these states and temperature-induced broadening. Only the overall size of the Fermi surface is found to change across the structural transition. These observations, quite different from the charge density wave scenario commonly considered for 1T-VSe2 and other transition metal dichalcogenides, bring fresh perspectives toward correctly describing structural transitions. Therefore, these new results can be applied to material families in which the origin of the structural transition has not been resolved. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

17 pages, 17776 KiB  
Review
Toward Direct Exploration of the Few-Femtosecond Dynamics of Electronic Coherence and Correlation in Quantum Materials Using Time- and Angle-Resolved Photoemission Spectroscopy
by Kai Rossnagel and Michael Bauer
Crystals 2024, 14(5), 404; https://doi.org/10.3390/cryst14050404 - 26 Apr 2024
Cited by 1 | Viewed by 2004
Abstract
Over the last two decades, time- and angle-resolved photoemission spectroscopy (trARPES) has become a mature and established experimental technique for the study of ultrafast electronic and structural dynamics in materials. To date, most trARPES investigations have focused on the investigation of processes occurring [...] Read more.
Over the last two decades, time- and angle-resolved photoemission spectroscopy (trARPES) has become a mature and established experimental technique for the study of ultrafast electronic and structural dynamics in materials. To date, most trARPES investigations have focused on the investigation of processes occurring on time scales of ≳30 fs, in particular, relaxation and thermalization, and have therefore been blind to the initial sub-10 fs dynamics related to electronic coherence and correlation effects. In this article, we illustrate how current trARPES setups reach their limits when it comes to addressing such extraordinarily short time scales and present an experimental configuration that provides the time, energy, and momentum resolutions required to monitor few-femtosecond dynamics on the relevant energy and momentum scales. We discuss the potential capabilities of such an experiment to study the electronic response of materials in the strong-field interaction regime at PHz frequencies and finally review a theoretical concept that may in the future even overcome the competing resolution limitations of trARPES experiments, as imposed by the time–bandwidth product of the probing laser pulse. Our roadmap for ultrafast trARPES indicates a path to break new experimental ground in quantum nonequilibrium electronic dynamics, from which new possibilities for ultrafast control of optical and electronic signals in quantum materials can be explored. Full article
(This article belongs to the Special Issue Advanced Research of Silicon Photonics and Optoelectronics Devices)
Show Figures

Figure 1

14 pages, 3525 KiB  
Article
Efficient Hydrogen Evolution Reaction in 2H-MoS2 Basal Planes Enhanced by Surface Electron Accumulation
by Vimal Krishnamoorthy, Hemanth Kumar Bangolla, Chi-Yang Chen, Yu-Ting Huang, Cheng-Maw Cheng, Rajesh Kumar Ulaganathan, Raman Sankar, Kuei-Yi Lee, He-Yun Du, Li-Chyong Chen, Kuei-Hsieh Chen and Ruei-San Chen
Catalysts 2024, 14(1), 50; https://doi.org/10.3390/catal14010050 - 10 Jan 2024
Cited by 3 | Viewed by 2591
Abstract
An innovative strategy has been developed to activate the basal planes in molybdenum disulfide (MoS2) to improve their electrocatalytic activity by controlling surface electron accumulation (SEA) through aging, annealing, and nitrogen-plasma treatments. The optimal hydrogen evolution reaction (HER) performance was obtained [...] Read more.
An innovative strategy has been developed to activate the basal planes in molybdenum disulfide (MoS2) to improve their electrocatalytic activity by controlling surface electron accumulation (SEA) through aging, annealing, and nitrogen-plasma treatments. The optimal hydrogen evolution reaction (HER) performance was obtained on the surface treated with nitrogen-plasma for 120 s. An overpotential of 0.20 V and a Tafel slope of 120 mV dec−1 were achieved for the optimized condition. The angle-resolved photoemission spectroscopy measurement confirmed the HER efficiency enhanced by the SEA conjugated with the sulfur vacancy active sites in the MoS2 basal planes. This study provides new insight into optimizing MoS2 catalysts for energy applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

13 pages, 2070 KiB  
Article
Evolution of Mn1−xGexBi2Te4 Electronic Structure under Variation of Ge Content
by Tatiana P. Estyunina, Alexander M. Shikin, Dmitry A. Estyunin, Alexander V. Eryzhenkov, Ilya I. Klimovskikh, Kirill A. Bokai, Vladimir A. Golyashov, Konstantin A. Kokh, Oleg E. Tereshchenko, Shiv Kumar, Kenya Shimada and Artem V. Tarasov
Nanomaterials 2023, 13(14), 2151; https://doi.org/10.3390/nano13142151 - 24 Jul 2023
Cited by 10 | Viewed by 2123
Abstract
One of the approaches to manipulate MnBi2Te4 properties is the magnetic dilution, which inevitably affects the interplay of magnetism and band topology in the system. In this work, we carried out angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory [...] Read more.
One of the approaches to manipulate MnBi2Te4 properties is the magnetic dilution, which inevitably affects the interplay of magnetism and band topology in the system. In this work, we carried out angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations for analysing changes in the electronic structure of Mn1xGexBi2Te4 that occur under parameter x variation. We consider two ways of Mn/Ge substitution: (i) bulk doping of the whole system; (ii) surface doping of the first septuple layer. For the case (i), the experimental results reveal a decrease in the value of the bulk band gap, which should be reversed by an increase when the Ge concentration reaches a certain value. Ab-initio calculations show that at Ge concentrations above 50%, there is an absence of the bulk band inversion of the Te pz and Bi pz contributions at the Γ-point with significant spatial redistribution of the states at the band gap edges into the bulk, suggesting topological phase transition in the system. For case (ii) of the vertical heterostructure Mn1xGexBi2Te4/MnBi2Te4, it was shown that an increase of Ge concentration in the first septuple layer leads to effective modulation of the Dirac gap in the absence of significant topological surface states of spatial redistribution. The results obtained indicate that surface doping compares favorably compared to bulk doping as a method for the Dirac gap value modulation. Full article
Show Figures

Figure 1

13 pages, 2946 KiB  
Article
Thickness-Dependent Evolutions of Surface Reconstruction and Band Structures in Epitaxial β–In2Se3 Thin Films
by Qinghao Meng, Fan Yu, Gan Liu, Junyu Zong, Qichao Tian, Kaili Wang, Xiaodong Qiu, Can Wang, Xiaoxiang Xi and Yi Zhang
Nanomaterials 2023, 13(9), 1533; https://doi.org/10.3390/nano13091533 - 3 May 2023
Cited by 4 | Viewed by 3127
Abstract
Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane [...] Read more.
Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane ferroelectricity. In this article, we realized the molecular beam epitaxial (MBE) growth of β–In2Se3 films on bilayer graphene (BLG) substrates with precisely controlled thickness. Combining in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) measurements, we found that the four-monolayer β–In2Se3 is a semiconductor with a (9 × 1) reconstructed superlattice. In contrast, the monolayer β–In2Se3/BLG heterostructure does not show any surface reconstruction due to the interfacial interaction and moiré superlattice, which instead results in a folding Dirac cone at the center of the Brillouin zone. In addition, we found that the band gap of In2Se3 film decreases after potassium doping on its surface, and the valence band maximum also shifts in momentum after surface potassium doping. The successful growth of high-quality β–In2Se3 thin films would be a new platform for studying the 2D ferroelectric heterostructures and devices. The experimental results on the surface reconstruction and band structures also provide important information on the quantum confinement and interfacial effects in the epitaxial β–In2Se3 films. Full article
(This article belongs to the Special Issue 2D Semiconductor Nanomaterials and Heterostructures)
Show Figures

Figure 1

10 pages, 1003 KiB  
Article
Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor
by Hiroshi Kamimura, Masaaki Araidai, Kunio Ishida, Shunichi Matsuno, Hideaki Sakata, Kenji Sasaoka, Kenji Shiraishi, Osamu Sugino, Jaw-Shen Tsai and Kazuyoshi Yamada
Condens. Matter 2023, 8(2), 33; https://doi.org/10.3390/condmat8020033 - 4 Apr 2023
Cited by 2 | Viewed by 2668
Abstract
First-principles calculations for underdoped La2−xSrxCuO4 (LSCO) have revealed a Fermi surface consisting of spin-triplet (KS) particles at the antinodal Fermi-pockets and spin-singlet (SS) particles at the nodal Fermi-arcs in the presence of AF local order. By performing [...] Read more.
First-principles calculations for underdoped La2−xSrxCuO4 (LSCO) have revealed a Fermi surface consisting of spin-triplet (KS) particles at the antinodal Fermi-pockets and spin-singlet (SS) particles at the nodal Fermi-arcs in the presence of AF local order. By performing a unique method of calculating the electronic-spin state of overdoped LSCO and by measurement of the spin-correlation length by neutron inelastic scattering, the origin of the phase-diagram, including the pseudogap phase in the high temperature superconductor, Sr-doped copper-oxide LSCO, has been elucidated. We have theoretically solved the long-term problem as to why the angle-resolved photoemission spectroscopy (ARPES) has not been able to observe Fermi pockets in the Fermi surface of LSCO. As a result, we show that the pseudogap region is bounded below the characteristic temperature T*(x) and above the superconducting transition temperature Tc(x) in the T vs. x phase diagram, where both the AF order and the KS particles in the Fermi pockets vanish at T*(x), whilst KS particles contribute to d-wave superconductivity below Tc. We also show that the relationship T*(xc) = Tc(xc) holds at xc = 0.30, which is consistent with ARPES experiments. At T*(x), a phase transition occurs from the pseudogap phase to an unusual metallic phase in which only the SS particles exist. Full article
Show Figures

Figure 1

12 pages, 1821 KiB  
Article
AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop
by Conrad H. Stansbury and Alessandra Lanzara
Software 2023, 2(1), 121-132; https://doi.org/10.3390/software2010005 - 18 Feb 2023
Viewed by 2897
Abstract
Scientific data acquisition is a problem domain that has been underserved by its computational tools despite the need to efficiently use hardware, to guarantee validity of the recorded data, and to rapidly test ideas by configuring experiments quickly and inexpensively. High-dimensional physical spectroscopies, [...] Read more.
Scientific data acquisition is a problem domain that has been underserved by its computational tools despite the need to efficiently use hardware, to guarantee validity of the recorded data, and to rapidly test ideas by configuring experiments quickly and inexpensively. High-dimensional physical spectroscopies, such as angle-resolved photoemission spectroscopy, make these issues especially apparent because, while they use expensive instruments to record large data volumes, they require very little acquisition planning. The burden of writing data acquisition software falls to scientists, who are not typically trained to write maintainable software. In this paper, we introduce AutodiDAQt to address these shortfalls in the scientific ecosystem. To ground the discussion, we demonstrate its merits for angle-resolved photoemission spectroscopy and high bandwidth spectroscopies. AutodiDAQt addresses the essential needs for scientific data acquisition by providing simple concurrency, reproducibility, retrospection of the acquisition sequence, and automated user interface generation. Finally, we discuss how AutodiDAQt enables a future of highly efficient machine-learning-in-the-loop experiments and analysis-driven experiments without requiring data acquisition domain expertise by using analysis code for external data acquisition planning. Full article
Show Figures

Figure 1

12 pages, 1625 KiB  
Article
Biofunctionalization of Porous Titanium Oxide through Amino Acid Coupling for Biomaterial Design
by Paolo Canepa, Danijela Gregurec, Nara Liessi, Silvia Maria Cristina Rotondi, Sergio Enrique Moya, Enrico Millo, Maurizio Canepa and Ornella Cavalleri
Materials 2023, 16(2), 784; https://doi.org/10.3390/ma16020784 - 13 Jan 2023
Cited by 4 | Viewed by 2196
Abstract
Porous transition metal oxides are widely studied as biocompatible materials for the development of prosthetic implants. Resurfacing the oxide to improve the antibacterial properties of the material is still an open issue, as infections remain a major cause of implant failure. We investigated [...] Read more.
Porous transition metal oxides are widely studied as biocompatible materials for the development of prosthetic implants. Resurfacing the oxide to improve the antibacterial properties of the material is still an open issue, as infections remain a major cause of implant failure. We investigated the functionalization of porous titanium oxide obtained by anodic oxidation with amino acids (Leucine) as a first step to couple antimicrobial peptides to the oxide surface. We adopted a two-step molecular deposition process as follows: self-assembly of aminophosphonates to titanium oxide followed by covalent coupling of Fmoc-Leucine to aminophosphonates. Molecular deposition was investigated step-by-step by Atomic Force Microscopy (AFM) and X-ray Photoemission Spectroscopy (XPS). Since the inherent high roughness of porous titanium hampers the analysis of molecular orientation on the surface, we resorted to parallel experiments on flat titanium oxide thin films. AFM nanoshaving experiments on aminophosphonates deposited on flat TiO2 indicate the formation of an aminophosphonate monolayer while angle-resolved XPS analysis gives evidence of the formation of an oriented monolayer exposing the amine groups. The availability of the amine groups at the outer interface of the monolayer was confirmed on both flat and porous substrates by the following successful coupling with Fmoc-Leucine, as indicated by high-resolution XPS analysis. Full article
Show Figures

Figure 1

34 pages, 771 KiB  
Review
Methods of Modeling of Strongly Correlated Electron Systems
by Roman Kuzian
Nanomaterials 2023, 13(2), 238; https://doi.org/10.3390/nano13020238 - 5 Jan 2023
Cited by 3 | Viewed by 2704
Abstract
The discovery of high-Tc superconductivity in cuprates in 1986 moved strongly correlated systems from exotic worlds interesting only for pure theorists to the focus of solid-state research. In recent decades, the majority of hot topics in condensed matter physics (high- [...] Read more.
The discovery of high-Tc superconductivity in cuprates in 1986 moved strongly correlated systems from exotic worlds interesting only for pure theorists to the focus of solid-state research. In recent decades, the majority of hot topics in condensed matter physics (high-Tc superconductivity, colossal magnetoresistance, multiferroicity, ferromagnetism in diluted magnetic semiconductors, etc.) have been related to strongly correlated transition metal compounds. The highly successful electronic structure calculations based on density functional theory lose their predictive power when applied to such compounds. It is necessary to go beyond the mean field approximation and use the many-body theory. The methods and models that were developed for the description of strongly correlated systems are reviewed together with the examples of response function calculations that are needed for the interpretation of experimental information (inelastic neutron scattering, optical conductivity, resonant inelastic X-ray scattering, electron energy loss spectroscopy, angle-resolved photoemission, electron spin resonance, and magnetic and magnetoelectric properties). The peculiarities of (quasi-) 0-, 1-, 2-, and 3- dimensional systems are discussed. Full article
Show Figures

Figure 1

12 pages, 2698 KiB  
Article
Temperature-Driven Twin Structure Formation and Electronic Structure of Epitaxially Grown Mg3Sb2 Films on Mismatched Substrates
by Sen Xie, Yujie Ouyang, Wei Liu, Fan Yan, Jiangfan Luo, Xianda Li, Ziyu Wang, Yong Liu and Xinfeng Tang
Nanomaterials 2022, 12(24), 4429; https://doi.org/10.3390/nano12244429 - 12 Dec 2022
Cited by 6 | Viewed by 2151
Abstract
Mg3Sb2-based compounds are one type of important room-temperature thermoelectric materials and the appropriate candidate of type-II nodal line semimetals. In Mg3Sb2-based films, compelling research topics such as dimensionality reduction and topological states rely on the [...] Read more.
Mg3Sb2-based compounds are one type of important room-temperature thermoelectric materials and the appropriate candidate of type-II nodal line semimetals. In Mg3Sb2-based films, compelling research topics such as dimensionality reduction and topological states rely on the controllable preparation of films with high crystallinity, which remains a big challenge. In this work, high quality Mg3Sb2 films are successfully grown on mismatched substrates of sapphire (000l), while the temperature-driven twin structure evolution and characteristics of the electronic structure are revealed in the as-grown Mg3Sb2 films by in situ and ex situ measurements. The transition of layer-to-island growth of Mg3Sb2 films is kinetically controlled by increasing the substrate temperature (Tsub), which is accompanied with the rational manipulation of twin structure and epitaxial strains. Twin-free structure could be acquired in the Mg3Sb2 film grown at a low Tsub of 573 K, while the formation of twin structure is significantly promoted by elevating the Tsub and annealing, in close relation to the processes of strain relaxation and enhanced mass transfer. Measurements of scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) elucidate the intrinsic p-type conduction of Mg3Sb2 films and a bulk band gap of ~0.89 eV, and a prominent Fermi level downshift of ~0.2 eV could be achieved by controlling the film growth parameters. As elucidated in this work, the effective manipulation of the epitaxial strains, twin structure and Fermi level is instructive and beneficial for the further exploration and optimization of thermoelectric and topological properties of Mg3Sb2-based films. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

Back to TopTop