AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop
Abstract
:1. Introduction
2. Materials and Methods
Composability
3. Results
3.1. Analysis-in-the-Loop: Applications to ARPES
3.2. Application to NanoXPS
3.3. Application to Pump-Probe ARPES
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celestre, R.; Nowrouzi, K.; Shapiro, D.A.; Denes, P.; Joseph, P.M.; Schmid, A.; Padmore, H.A. Nanosurveyor 2: A compact instrument for nano-tomography at the advanced light source. J. Phys. Conf. Ser. 2017, 849, 012047. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y. Single particle cryo-EM-How did it get here and where will it go. Science 2018, 361, 876. [Google Scholar] [CrossRef] [Green Version]
- Egelman, E.H. The current revolution in cryo-EM. Biophys. J. 2016, 110, 1008. [Google Scholar] [CrossRef] [Green Version]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol 2019, 21, 72. [Google Scholar] [CrossRef]
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinera magic: Multiphoton microscopy in the bioscience. Nat. Biotechnol. 2003, 21, 1369. [Google Scholar] [CrossRef]
- Wang, H.; Rivenson, Y.; Jin, Y.; Wei, Z.; Gao, R.; Günaydın, H.; Bentolila, L.A.; Kural, C.; Ozcan, A. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 2019, 16, 103. [Google Scholar] [CrossRef]
- Damascelli, A.; Hussain, Z.; Shen, Z.X. Angle resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003, 75, 473. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Moreschini, L.; Lanzara, A. Present and future trends in spin ARPES. Europhys. Lett. 2021, 134, 57001. [Google Scholar] [CrossRef]
- Stansbury, C.; Lanzara, A. PyARPES: An analysis framework for multimodal angle resolved photoemission spectroscopies. SoftwareX 2020, 11, 100472. [Google Scholar] [CrossRef]
- Day, R.P.; Zwartsenberg, B.; Elfimov, I.S.; Damascelli, A. Computational framework chinook for angle-resolved photoemission spectroscopy. NPJ Quantum Mater. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Oh, D.; Huh, S.; Song, D.; Jeong, S.; Kwon, J.; Kim, M.; Kim, D.; Ryu, H.; Jung, J.; et al. Deep learning-based statistical noise reduction for multidimensional spectral data. Rev. Sci. Instrum. 2021, 92, 073901. [Google Scholar] [CrossRef]
- Peng, H.; Gao, X.; He, Y.; Li, Y.; Ji, Y.; Liu, C.; Ekahana, S.A.; Pei, D.; Liu, Z.; Shen, Z.; et al. Super resolution convolutional neural network for feature extraction inn spectroscopic data. Rev. Sci. Instrum. 2020, 91, 033905. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Shen, Z.-X. Visualizing dispersive features in 2D image via minimum gradient method. Rev. Sci. Instrum. 2017, 88, 073903. [Google Scholar] [CrossRef] [Green Version]
- Avila, J.; Asensio, M.C. First NaanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials. Synchrotron Radiat News 2014, 27, 24. [Google Scholar]
- Bostwick, A.; Rotenberg, E.; Avila, J.; Asensio, M.C. Zooming in electronic structure: NanoARPES at SOLEIL and ALS. Synchrotron Radiat. News 2012, 25, 19. [Google Scholar] [CrossRef]
- Rotenberg, E.; Bostwick, A. MicroARPES and nanoARPES at diffraction-limited light sources: Opporttuniities and performance gains. J. Synchrotron Radiat. 2014, 21, 1048. [Google Scholar] [CrossRef]
- Jozwiak, C.; Graf, J.; Lebedev, G.; Andresen, N.; Schmid, A.K.; Fedorov, A.V.; Gabaly, F.E.; Wan, W.; Lanzara, A.; Hussain, Z. A high efficiency spin-reesolved photoemission nspectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 2010, 81, 053904. [Google Scholar] [CrossRef] [Green Version]
- Medjanik, K.; Fedchenko, O.; Chernov, S.; Kutnyakhov, D.; Ellguth, M.; Oelsner, A.; Schönhense, B.; Peixoto, T.R.F.; Lutz, P.; Min, C.-H.; et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 2017, 16, 615–621. [Google Scholar] [CrossRef]
- Kutnyakhov, D.; Xian, R.P.; Dendzik, M.; Heber, M.; Pressacco, F.; Agustsson, S.Y.; Wenthaus, L.; Meyer, H.; Gieschen, S.; Mercurio, G.; et al. Time and momentum resolved photoemission studies using time of flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 2020, 91, 013109. [Google Scholar] [CrossRef]
- Kastl, C.; Chen, C.T.; Koch, R.J.; Schuler, B.; Kuykendall, T.R.; Bostwick, A.; Jozwiak, C.; Seyller, T.; Rotenberg, E.; Weber-Bargioni, A.; et al. Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der Waals epitaxy. 2D Mater. 2018, 5, 045010. [Google Scholar] [CrossRef]
- Wilson, N.R.; Nguyen, P.V.; Seyler, K.; Rivera, P.; Marsden, A.J.; Laker, Z.P.L.; Constantinescu, G.C.; Kandyba, V.; Barinov, A.; Hine, N.D.M.; et al. Determination of band offsets, hybridization and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832. [Google Scholar] [CrossRef] [Green Version]
- Stansbury, C.H.; Utama, M.I.B.; Fatuzzo, C.G.; Regan, E.C.; Wang, D.; Xiang, Z.; Ding, M.; Watanabe, K.; Taniguchi, T.; Blei, M.; et al. Visualizing electron localization of WS2/WSe2 moire’ superlattices in momentum space. Sci. Adv. 2021, 7, eabf4387. [Google Scholar] [CrossRef]
- Utama, M.I.B.; Koch, R.J.; Lee, K.; Leconte, N.; Li, H.; Zhao, S.; Jiang, L.; Zhu, J.; Watanabe, K.; Taniguchi, T.; et al. Visualizaation of the flaat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 2020, 1, 184–188. [Google Scholar]
- Lisi, S.; Lu, X.; Benschop, T.; de Jong, T.A.; Stepanov, P.; Duran, J.R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 2021, 17, 189. [Google Scholar] [CrossRef]
- Ulstrup, S.; Koch, R.J.; Singh, S.; McCreary, K.M.; Jonker, B.T.; Robinson, J.T.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Katoch, J.; et al. Direct observation of minibands in a twisted graphene/WS2 bilayer. Sci. Adv. 2020, 6, eaay6104. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.V.; Teutsch, N.C.; Wilson, N.P.; Kahn, J.; Xia, X.; Graham, A.J.; Kandyba, V.; Giampietri, A.; Barinov, A.; Constantinescu, G.C.; et al. Visualizing electrostatic gating effects in two dimensional heterostructures. Nature 2019, 572, 220–222. [Google Scholar] [CrossRef] [Green Version]
- Joucken, F.; Avila, J.; Ge, Z.; Quezada-Lopez, V.; Yi, H.; Le Goff, R.; Baudin, E.; Davenport, J.L.; Watanabe, K.; Taniguchi, T.; et al. Visualizing the Effect of an electrostatic gate with angle resolved photoemission spectroscopy. Nano Lett. 2019, 19, 2682. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.J.H.; Muzzio, R.; Majchrzak, P.; Pakdel, S.; Curcio, D.; Volckaert, K.; Biswas, D.; Gobbo, J.; Singh, S.; Robinson, J.T.; et al. Observation of electrically tunable van hove singularities in twisted bilayer graphene from nanoARPES. Adv. Mater. 2020, 32, 2001656. [Google Scholar] [CrossRef]
- Melton, C.N.; Noack, M.M.; Ohta, T.; Beechem, T.E.; Robinson, J.; Zhang, X.; Bostwick, A.; Jozwiak, C.; Koch, R.J.; Zwart, P.H.; et al. K-means-driven Gaussian process data collection for angle resolved photoemission spectroscopy. Mach. Learn. Sci. Technol. 2020, 1, 045015. [Google Scholar] [CrossRef]
- Noack, M.M.; Yager, K.G.; Fukuto, M.; Doerk, G.S.; Li, R.; Sethian, J.A. A Kriging-based approach to autonomous experimentation with applications to x-ray scattering. Sci. Rep. 2019, 9, 11809. [Google Scholar] [CrossRef] [Green Version]
- Flores-Leonar, M.M.; Mejía-Mendoza, L.M.; Aguilar-Granda, A.; Sanchez-Lengeling, B.; Tribukait, H.; Amador-Bedolla, C.; Aspuru-Guzik, A. Materials Acceleration platforms: On the way to autonomous experimentation. Curr. Opin. Green Sustain. Chem. 2020, 25, 100370. [Google Scholar] [CrossRef]
- Castle, J.E.; Baker, M.A. The feasibility of an XPS expert system demonstrated by a rule set for carbon contamination. J. Electron Spectrosc. Relat. Phenom. 1999, 105, 245–256. [Google Scholar] [CrossRef]
- Zahl, P.; Bierkandt, M.; Schröder, S.; Klust, A. The flexible and modern open source scanning probe microscopy software package GXSM. Rev. Sci. Instrum. 2003, 74, 1222. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [Green Version]
- Jermain, C.; Minhhai; Rowlands, G.; Girard, H.-L.; Schippers, C.; Schneider, M.; Chweiser; Buchner, C.; Spirito, D.; Feinstein, B.; et al. Ralph-Group/Pymeasure: PyMeasure 0.8; Zenodo; Organisation Europenne Pour la Recherche Nucleaire: Geneva, Switzerland, 2020. [Google Scholar]
- Bogdanowicz, N.; Rogers, C.; Zakv; Wheeler, J.; Pelissier, S.; Marazzi, F.; Eedm; Galinskiy, I.; Abril, N. Mabuchilab/Instrumental: 0.6; Zenodo; Organisation Europenne Pour la Recherche Nucleaire: Geneva, Switzerland, 2020. [Google Scholar]
- Koerner, L. Instrbuilder: A python package for electrical instrument control. J. Open Source Softw. 2019, 4, 1172. [Google Scholar] [CrossRef]
- Rowlands, G.; Ribeill, G.; Ryan, C.; Ware, M.; Johnson, B.; Kalfus, B.; Fallek, S.; Hai, M.; Mcgurrin, R.; Ellard, D.; et al. Auspex. 2021. Available online: https://github.com/BBN-Q/Auspex (accessed on 21 January 2020).
- Weber, S.J. PyMoDAQ: An open-source python-based software for modular data acquisition. Rev. Sci. Instrum. 2021, 92, 045104. [Google Scholar] [CrossRef]
- The Lanzara Group. Available online: https://github.com/chstan/arpes (accessed on 16 January 2023).
- Koerner, L.J.; Caswell, T.A.; Allan, D.B.; Campbell, S.I. A python data control and acquisition suite for reproducible research. IEEE Trans. Instrum. Meas. 2020, 69, 1698. [Google Scholar] [CrossRef]
- The LabRAD Authors, LabRAD (n.d.). Available online: https://github.com/labrad/pylabrad (accessed on 16 January 2023).
- The Bluesky Authors, Bluesky. 2021. Available online: https://blueskyproject.io (accessed on 16 January 2023).
- Reber, T.J.; Plumb, N.C.; Waugh, J.A.; Dessau, D.S. Effects, determination and correction of count rate nonlinearity in multi-channel analog electron detectors. Rev. Sci. Instrum. 2014, 85, 043907. [Google Scholar] [CrossRef] [Green Version]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.J.; et al. SciPy1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261. [Google Scholar] [CrossRef] [Green Version]
- Hamman, J.; Hoyer, S. Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar]
- Wes McKinney, W. Pyton for Data Analysis; O’Reilly Media Inc.: Sebastapol, CA, USA, 2011. [Google Scholar]
- Miles, A.; Kirkham, J.; Durant, M.; Bourbeau, J.; Onalan, T.; Hamman, J.; Patel, Z.; Shikharsg; Rocklin, M.; Dussin, R.; et al. Zarr-Developers/Zarr-Python: V2.4.0; Zenodo; Organisation Europenne Pour la Recherche Nucleaire: Geneva, Switzerland, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stansbury, C.H.; Lanzara, A. AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop. Software 2023, 2, 121-132. https://doi.org/10.3390/software2010005
Stansbury CH, Lanzara A. AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop. Software. 2023; 2(1):121-132. https://doi.org/10.3390/software2010005
Chicago/Turabian StyleStansbury, Conrad H., and Alessandra Lanzara. 2023. "AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop" Software 2, no. 1: 121-132. https://doi.org/10.3390/software2010005
APA StyleStansbury, C. H., & Lanzara, A. (2023). AutodiDAQt: Simple Scientific Data Acquisition Software with Analysis-in-the-Loop. Software, 2(1), 121-132. https://doi.org/10.3390/software2010005