Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = andesite and basalt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 20293 KiB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 546
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

20 pages, 10834 KiB  
Article
Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
by Qing Liu, Cui Liu, Jixu Liu, Jinfu Deng and Shipan Tian
Appl. Sci. 2025, 15(15), 8139; https://doi.org/10.3390/app15158139 - 22 Jul 2025
Viewed by 180
Abstract
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow [...] Read more.
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow basalt from Dadingzi Mountain yields a concordant age of 117.5 ± 2.1 Ma (MSWD = 3.6). Integrating previous studies, we identify three distinct basalt phases. The Late Triassic basalt (210 Ma–230 Ma) is characterized as komatites–melilitite, exhibiting features of island arc basalt, as well as some characteristics of E-MORB. It also contains high-magnesium lava, suggesting that it may be a product of a juvenile arc. The Middle Jurassic basalt (around 159 Ma–172 Ma) consists of a combination of basalt and magnesium andesite, displaying features of oceanic island basalt and mid-ocean ridge basalt. Considering the contemporaneous sedimentary rocks as hemipelagic continental slope deposits, it is inferred that these basalts were formed in an arc environment associated with oceanic subduction, likely as a result of subduction of the young oceanic crust. The Early Cretaceous basalt (around 117 Ma) occurs in pillow structures, exhibiting some characteristics of oceanic island basalt but also showing transitional features towards a continental arc. Considering the regional distribution of the rocks, it is inferred that this basalt likely formed in a back-arc basin. Integrating the formation ages, nature, and tectonic attributes of the various structural units within the RSAC, as well as previous research, it is inferred that subduction of the Paleo-Pacific Ocean had already begun during the Late Triassic and continued into the Early Cretaceous without cessation. Full article
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 181
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

22 pages, 4738 KiB  
Article
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
by Tongtong He, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang and Lei Wu
Minerals 2025, 15(6), 632; https://doi.org/10.3390/min15060632 - 10 Jun 2025
Viewed by 321
Abstract
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the [...] Read more.
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the southern margin of the CAOB and Paleo-Asian Ocean. We present zircon U-Pb chronology, in situ Lu-Hf isotopes, and whole-rock geochemistry data for Early–Middle Devonian volcanic rocks in the Sangejing Formation and granites from the Shuangyingshan-Huaniushan (SH) unit in the SBOB. The Wudaomingshiu volcanic rocks (Ca. 411.5 Ma) are calc-alkaline basalt-basaltic andesites with low SiO2 (47.35~55.59 wt.%) and high TiO2 (1.46~4.16 wt.%) contents, and are enriched in LREEs and LILEs (e.g., Rb, Ba, and Th), depleted in HREEs and HFSEs (Nb, Ta, and Ti), and weakly enriched in Zr-Hf. These mafic rocks are derived from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Wudaomingshui’s high-K calc-alkaline I-type granite has a crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13), high Na2O (3.46~3.96 wt.%) and MgO (1.25~1.68 wt.%) contents, and a high DI differentiation index (70.69~80.45); it is enriched in LREEs and LILEs (e.g., Rb, Ba, and Th) and depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti). Granites have variable zircon εHf(t) values (−2.5~3.3) with Mesoproterozoic TDM2 ages (1310~1013 Ma) and originated from lower crustal melting with mantle inputs and minor upper crustal assimilation. An integrated analysis of magmatic suites in the SBOB, including rock assemblages, geochemical signatures, and zircon εHf(t) values (−2.5 to +3.3), revealed a tectonic transition from advancing to retreating subduction during the Early–Middle Devonian. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

21 pages, 4010 KiB  
Article
Determining Key Parameters in Rock Properties for the Design of Hydroelectric Projects: A Case Study in Morona Santiago, Ecuador
by Walter David Becerra Moreira, Antonella Zulema Tupac Yupanqui, Maurizio Mulas and Luis Jorda-Bordehore
Geotechnics 2025, 5(2), 32; https://doi.org/10.3390/geotechnics5020032 - 23 May 2025
Viewed by 613
Abstract
Subsurface characterisation is a fundamental aspect of the planning and design of hydroelectric projects, as it enables the assessment of the technical and geotechnical feasibility of the proposed infrastructure, ensuring its stability and functionality. This study focuses on the characterisation of rock masses [...] Read more.
Subsurface characterisation is a fundamental aspect of the planning and design of hydroelectric projects, as it enables the assessment of the technical and geotechnical feasibility of the proposed infrastructure, ensuring its stability and functionality. This study focuses on the characterisation of rock masses from boreholes in the “Santa Rosa” and “El Rosario” areas, located in Morona Santiago, Ecuador, to determine key parameters for the design of hydroelectric projects. Field and laboratory tests were conducted, including uniaxial compression tests, indirect tensile–Brazilian tests, point load tests, tilt tests, and geomechanical classifications using the RMR and Q systems. The results show that igneous rocks, such as basalt and andesite, exhibit mechanical properties ranging from moderate to high, with uniaxial compressive strengths exceeding 120 MPa in the case of basalt, classifying it as a strong rock. In contrast, metamorphic rocks, such as chert, exhibit lower strength, with values ranging between 69.69 MPa and 90.63 MPa, classifying them as moderately strong. The RMR and Q index values indicate a variable rock mass quality, ranging from excellent in diorite and granite sectors to low in areas with significant discontinuities and alterations. Additionally, variations in basic friction angles were identified, ranging from 18° to 38°, which directly influence the stability of the proposed structures. In conclusion, this study highlights the importance of geomechanical characterisation in ensuring the technical feasibility of hydroelectric projects, providing key information for the design and development of safe and sustainable infrastructure in the region. Full article
Show Figures

Figure 1

22 pages, 17789 KiB  
Article
Mafic Enclaves Reveal Multi-Magma Storage and Feeding of Shangri-La Lavas at the Nevados de Chillán Volcanic Complex
by Camila Pineda, Gloria Arancibia, Valentina Mura, Diego Morata, Santiago Maza and John Browning
Minerals 2025, 15(4), 418; https://doi.org/10.3390/min15040418 - 17 Apr 2025
Cited by 1 | Viewed by 718
Abstract
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the [...] Read more.
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the SW and NE of the main alignment). Our study of the Shangri-La volcano, which is located between the two subcomplexes, in alignment with the satellite cones, and which produced dacitic lavas with basaltic andesitic enclaves, sheds light on the compositional and structural diversity of the volcanic complex. Detailed petrography along with mineral chemistry allows us to suggest partial hybridization between the enclaves and the host lavas and that mixing processes are related to the generation of the Shangri-La volcano and to other volcanic products generated in the complex. This is supported by mixing trends between the enclaves and the most differentiated units from Las Termas. We argue the presence of two main magma storage areas genetically related to crustal structures. A dacitic reservoir (~950 °C) is fed along NW-SE structures, whereas a deeper mafic reservoir (>1100 °C) utilizes predominantly NE-SW structures. We suggest that the intersection between these sets of structures facilitates magma ascent and controls the Nevados de Chillán plumbing system dynamics. Full article
Show Figures

Figure 1

29 pages, 27225 KiB  
Article
Paleo-Asian Ocean Ridge Subduction: Evidence from Volcanic Rocks in the Fuyun–Qinghe Area, Southern Margin of the Chinese Altay
by Jixu Liu, Cui Liu, Qing Liu, Zhaohua Luo, Yong Liu, Chenghao Zhou, Xu Guo, Xianghui Yu and Miao Wang
Appl. Sci. 2025, 15(7), 3736; https://doi.org/10.3390/app15073736 - 28 Mar 2025
Viewed by 394
Abstract
The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point [...] Read more.
The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point for geological research. In this paper, field investigation, petrology, mineralogy, and petrography studies were conducted on volcanic rocks in the Fuyun–Qinghe area, southern margin of the Chinese Altay, and the paper provided new zircon LA-ICP-MS dating data, Lu-Hf isotope data, and whole-rock geochemical data of the basaltic to andesitic volcanic rocks. Thus, the formation age, petrogenesis, and tectonic setting of these rocks were discussed, which was of great significance to reveal the nature of the PAO Plate. The findings showed that the basaltic andesitic volcanic breccia was formed at 382.9 ± 3.4 Ma, the basalt was 401.7 ± 4.7 Ma, and the andesites were 405.1 ± 5.6 Ma and 404.8 ± 6.7 Ma, which indicated that the above rocks were formed in the Early–Middle Devonian. The volcanic rock assemblages were hawaiite, mugearite, potassic trachybasalt, basaltic andesite, andesite, benmoreite, etc., which contained labeled magmatic rocks such as adakite, sub-boninite, niobium-enriched arc basalt (NEAB), picrite, high-magnesium andesite (HMA), and magnesium andesite (MA). Comprehensive analysis indicated that magma probably mainly originated from three sources: (1) partial melting of the PAO slab, (2) partial melting of the overlying garnet–spinel lherzolite mantle peridotite metasomatized by subducting-related fluids (melts), and (3) a possible input of the asthenosphere. Comparative analysis with modern analogs (e.g., Chile Triple Junction) indicates that ridge subduction of the PAO had existed in the Fuyun–Qinghe area during the Early–Middle Devonian. Based on available evidence, we tentatively named the oceanic plates in this region the central Fuyun–Qinghe Ridge and the Junggar Ocean Plates, separated by the ridge on both sides. Although the ocean had a certain scale, it had entered the climax period of transition from ocean to continent. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

39 pages, 48972 KiB  
Article
Volcanic Response to Post-Pan-African Orogeny Delamination: Insights from Volcanology, Precise U-Pb Geochronology, Geochemistry, and Petrology of the Ediacaran Ouarzazate Group of the Anti-Atlas, Morocco
by Mohamed Achraf Mediany, Nasrrddine Youbi, Mohamed Ben Chra, Oussama Moutbir, Ismail Hadimi, João Mata, Jörn-Frederik Wotzlaw, José Madeira, Miguel Doblas, Ezz El Din Abdel Hakim Khalaf, Rachid Oukhro, Warda El Moume, Jihane Ounar, Abdelhak Ait Lahna, Moulay Ahmed Boumehdi and Andrey Bekker
Minerals 2025, 15(2), 142; https://doi.org/10.3390/min15020142 - 31 Jan 2025
Cited by 1 | Viewed by 1980
Abstract
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. [...] Read more.
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. Two eruptive cycles are identified based on volcanological and geochemical signatures. The first cycle comprises a diverse volcanic succession of basalts, basaltic andesites, andesites, dacites, and rhyolitic crystal-rich tuffs and ignimbrites, exhibiting arc calc-alkaline affinities. These mafic magmas were derived from a lithospheric mantle metasomatized by subduction-related fluids and are associated with the gravitational collapse of the Pan-African Orogen. The second cycle is marked by bimodal volcanism, featuring tholeiitic basalts sourced from the asthenospheric mantle and felsic intraplate magmas. These units display volcanological characteristics typical of facies models for continental basaltsuccessions and continental felsic volcanoes. Precise CA-ID-TIMS U-Pb zircon dating constrains the volcanic activity to 575–557 Ma, reflecting an 18-million-year period of lithospheric thinning, delamination, and asthenospheric upwelling. This progression marks the transition from orogen collapse to continental rifting, culminating in the breakup of the Rodinia supercontinent and the opening of the Iapetus Ocean. The TVF exemplifies the dynamic interplay between lithospheric and asthenospheric processes during post-collisional tectonic evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 2345 KiB  
Article
Study of Ultrasound-Assisted Low-Pressure Closed Acid Digestion Method for Trace Element Determination in Rock Samples by Inductively Coupled Plasma Mass Spectrometry
by Xijuan Tan, Yunxiu Ren, Ting Liang and Denghong Wang
Molecules 2025, 30(2), 342; https://doi.org/10.3390/molecules30020342 - 16 Jan 2025
Cited by 1 | Viewed by 805
Abstract
In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO3–HF with [...] Read more.
In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO3–HF with a ratio of 2:1, rock powder samples of 50 mg were completely decomposed in 12 h at 140 °C after 4 h of ultrasonic treatment with or without pressure relief procedure. The element extraction efficiency of this method was evaluated via the yielded relative errors (REs) of the trace elements in a series of geological standard reference materials (SRMs) with compositions from basic to acidic. It was found that the contents of trace elements (i.e., 36 metal elements from Li to U) in basalt BCR-2, diabase W-2a, andesite AGV-2, granodiorite GSP-2, and granite GSR-1 were comparable with the reported reference values, giving REs with absolute values less than 10%. It was also found that clear solutions without sample powder residues by naked-eye observation can be obtained when using the low-pressure closed decomposition method without ultrasonic pretreatment. The quantification results, however, were found to be negatively biased for most of the studied trace elements, and, in particular, the content bias of Zr in SRM GSP-2 was down to −86.28% due to the low extraction efficiency of refractory minerals of the low-pressure closed digestion method. By applying this proposed digestion strategy, the decomposition property of the ternary combination of HNO3–HF–mannitol in terms of trace element quantification accuracy was also investigated. Results showed that the concentrations of trace elements in the studied SRMs were consistent with the reference values, giving REs within ±6.94%, which revealed that there was no deterioration of extraction efficiencies of trace elements and neglected mass interferences from mannitol. This study demonstrated the essential role of ultrasound irradiation in rock sample decomposition to achieve the high extraction efficiency of trace elements under a low-pressure environment, and the developed approach with promising future applications in geoscience exhibited considerable merits, including a high extraction efficiency, feasible digestion process, less time consumption, and lower safety associated risks. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 5743 KiB  
Article
Geochemical Discrimination of Agate in Diverse Volcanic Host Rocks Through Machine Learning Methods
by Peng Zhang, Bo-Chao Wang, Xiao-Wen Huang and Xi Xi
Minerals 2025, 15(1), 32; https://doi.org/10.3390/min15010032 - 30 Dec 2024
Cited by 1 | Viewed by 941
Abstract
The formation of agate is related to syngenetic or epigenetic magmatic hydrothermal fluids. Trace elements incorporated during the alteration of host rocks caused by hydrothermal magmatic fluids precipitate during their crystallization, reflecting the characteristics of the host rocks. While prior research has yielded [...] Read more.
The formation of agate is related to syngenetic or epigenetic magmatic hydrothermal fluids. Trace elements incorporated during the alteration of host rocks caused by hydrothermal magmatic fluids precipitate during their crystallization, reflecting the characteristics of the host rocks. While prior research has yielded extensive trace element data to differentiate agate types found in volcanic rocks, there remains a need for a more efficient method to identify the host volcanic rock of alluvial agate. In this study, a two-stage Random Forest approach was employed to classify the chemical compositions of agate originating from rhyolite, andesite, and basalt, with the aim of facilitating the determination of the host volcanic rock for unknown alluvial agate samples. A dataset comprising 203 agate compositional analyses, sourced from 16 distinct locations, was compiled and labeled for the purpose of training the Random Forest model. The classification results indicate that the developed models exhibit high accuracy (0.9524) and an F1 score of 0.9512, demonstrating their superior performance and efficiency. The feature importance analysis of these models reveals that U, Sb, and Sr contents are particularly crucial for discriminating between different types of volcanic rocks hosting agate. Furthermore, this study introduces a novel discriminant plot utilizing linear discriminant analysis (LDA) to evaluate the host volcanic rock of agate based on trace element data. Verifying the trace element data of agate samples related to basalt based on actual measurements shows that both the Random Forest (with accuracy of 0.813) and LDA plot underscore the effectiveness of using the trace elements found in alluvial agate for the identification of the host volcanic rock. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

19 pages, 17860 KiB  
Article
The Petrogenesis of Devonian Volcanism and Its Tectonic Significance in the Kalatag Area, Eastern Tianshan, Xinjiang, China
by Zhijie Ma, Fengmei Chai, Mingjian Cao, Xiaodong Song, Haipei Wang, Dongmei Qi and Qigui Mao
Minerals 2024, 14(12), 1195; https://doi.org/10.3390/min14121195 - 24 Nov 2024
Viewed by 1052
Abstract
The Kalatag mineralization belt is an important metallogenic belt of polymetallic mineral deposits in the northern part of eastern Tianshan, and its age and tectonic setting are still controversial. We identified a set of Devonian volcanic rocks hosted in the Early Palaeozoic package [...] Read more.
The Kalatag mineralization belt is an important metallogenic belt of polymetallic mineral deposits in the northern part of eastern Tianshan, and its age and tectonic setting are still controversial. We identified a set of Devonian volcanic rocks hosted in the Early Palaeozoic package of dominantly marine sediments with a small amount of terrestrial rocks. This study presents petrological, U–Pb geochronology, and geochemical data for the volcanic rocks. The ages of the rhyolite (407.2 ± 1.9 Ma) and basaltic andesite (380.4 ± 2.8 Ma) suggests that the Kalatag belt is a Devonian volcanic succession. These rocks consist mainly of marine calc–alkaline lava, tuff, pyroclastic rocks, and minor terrestrial basaltic andesite. The lavas are characterized by the enrichment of light rare earth elements and strongly depleted in Nb and Ta, typical of island arc magmatic rocks. The volcanic rocks probably originated from the partial melting of the mafic lower crust which was modified by subducted slab-related fluids. During their ascent through the crust, these volcanic rocks underwent variable extents of fractional crystallization (rhyolites) and crustal contamination (basaltic andesites). Combined with the results of previous studies, we suggest that the Devonian rocks formed in an island arc related to the northward subduction of the Northern Tianshan Ocean with a crustal thickness of ~35–40 km. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

20 pages, 25703 KiB  
Article
The Subduction-Related Metavolcanic Rocks of Maroua, Northern Cameroon: New Insights into a Neoproterozoic Continental Arc Along the Northern Margin of the Central African Fold Belt
by Pierre Christel Biakan à Nyotok, Merlin Gountié Dedzo, Diddi Hamadjoda Djamilatou, Nils Lenhardt, Moussa Ngarena Klamadji, Periclex Martial Fosso Tchunte and Pierre Kamgang
Geosciences 2024, 14(11), 298; https://doi.org/10.3390/geosciences14110298 - 5 Nov 2024
Viewed by 1346
Abstract
The metavolcanic rocks around Maroua in the Far North Region of Cameroon are located at the northern margin of the Central African Fold Belt (CAFB) and have not been studied to date. The petrographic and whole-rock geochemical data presented in this paper highlight [...] Read more.
The metavolcanic rocks around Maroua in the Far North Region of Cameroon are located at the northern margin of the Central African Fold Belt (CAFB) and have not been studied to date. The petrographic and whole-rock geochemical data presented in this paper highlight their magma genesis and geodynamic evolution. The lavas are characterized by basaltic, andesitic, and dacitic compositions and belong to the calc-alkaline medium-K and low-K tholeiite series. The mafic samples are essentially magnesian, while the felsic samples are ferroan. On a chondrite-normalized REE diagram, mafic and felsic rocks display fractionated patterns, with light REE enrichment and heavy REE depletion (LaN/YbN = 1.41–5.38). The felsic samples display a negative Eu anomaly (Eu/Eu* = 0.59–0.87), while the mafic lavas are characterized by a positive Eu anomaly (Eu/Eu* = 1.03–1.35) or an absence thereof. On a primitive mantle-normalized trace element diagram, the majority of the samples exhibit negative Ti and Nb–Ta anomalies (0.08–0.9 and 0.54–0.74, respectively). These characteristic features exhibited by the metavolcanic rocks of Maroua are similar to those of subduction-zone melts. This subduction would have taken place after the convergence between the Congo craton (Adamawa-Yadé domain) and the Saharan craton (Western Cameroonian domain). Petrological modelling using major and trace elements suggests a derivation of the Maroua volcanics from primitive parental melts generated by the 5–10% partial melting of a source containing garnet peridotite, probably generated during the interaction between the subducted continental crust and the lithospheric mantle and evolved chemically through fractional crystallization and assimilation. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

29 pages, 5946 KiB  
Article
Geochronology, Geochemical Characterization and Tectonic Background of Volcanic Rocks of the Longjiang Formation in the Lengjimanda Plate Area, Middle Da Hinggan Mountains
by Shi-Chang Wang, Yu-Jie Hao, Lu Shi, Zhen Tang and Shuang Zhu
Minerals 2024, 14(7), 719; https://doi.org/10.3390/min14070719 - 16 Jul 2024
Cited by 1 | Viewed by 1065
Abstract
The Lengjimanda plate is situated in the middle section of the Da Hinggan mountains, in the eastern section of the Tianshan Xingmeng orogenic belt. To determine the formation age of the volcanic rocks in the Longjiang formation in this area, to explore their [...] Read more.
The Lengjimanda plate is situated in the middle section of the Da Hinggan mountains, in the eastern section of the Tianshan Xingmeng orogenic belt. To determine the formation age of the volcanic rocks in the Longjiang formation in this area, to explore their origin and tectonic background, and to reconstruct the geodynamic evolution of the region, this study conducted petrological, zircon U–Pb geochronological, geochemical, and isotopic analyses of the volcanic rocks in the Longjiang formation. The Longjiang formation’s volcanic rocks are primarily composed of trachyandesite, trachyte trachydacite, and andesite, which are intermediate basic volcanic rocks. They are enriched in large-ion lithophile elements, are depleted in high-field-strength elements, are significantly fractionated between light and heavy rare earth elements, and exhibit a moderate negative Eu anomaly in most samples. The results of the LA–ICP–MS zircon U–Pb dating indicate that the volcanic rocks in this group were formed in the Early Cretaceous period at 129.1 ± 0.82 Ma. The zircon εHf(t) ranges from +1.13 to +43.77, the tDM2 ranges from +655 to +1427 Ma, the initial Sr ratio (87Sr/86Sr)i ranges from 0.7030 to 0.7036, and the εNd(t) ranges from +2.1 to +6.6. Based on the geochemical compositions and isotopic characteristics of the rocks, the initial magma of the volcanic rocks in the Longjiang formation originated from the partial melting of basaltic crustal materials, with a source material inferred to be depleted mantle-derived young crustal. These rocks were formed in a superimposed post-collisional and continental arc environment, possibly associated with the Mongol-Okhotsk Ocean closure and the oblique subduction of the Pacific plate. This study addresses a research gap regarding the volcanic rocks of the Longjiang formation in this area. Its findings can be applied to exploration and prospecting in the region. Full article
Show Figures

Figure 1

27 pages, 5945 KiB  
Article
Middle Silurian–Middle Devonian Magmatic Rocks in the Eastern Segment of the Northern Margin of the North China Craton: Implications for Regional Tectonics
by Bin Li, Jingsheng Chen, Fan Yang, Miao Liu, Yanqing Zang and Chao Zhang
Minerals 2024, 14(7), 641; https://doi.org/10.3390/min14070641 - 23 Jun 2024
Cited by 1 | Viewed by 1344
Abstract
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian [...] Read more.
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian tectonic evolution in the eastern segment of the northern margin of the North China Craton (NCC). Zircon U-Pb dating results show that the Ximangzhang tonalite formed in the Late Silurian (425 ± 6 Ma); the basalt, andesite, and metamorphic olivine-bearing basalt in the Fangniugou volcanic rocks formed in the Middle Silurian (428 ± 6.6 Ma) and Middle Devonian (388.4 ± 3.9 Ma, and 384.1 ± 4.9 Ma). The Late Silurian tonalites are characterized by high SiO2 and Na2O and low K2O, MgO, FeOT, and TiO2, with an A/CNK ratio of 0.91–1.00, characteristic of calc-alkaline I-type granite. They are enriched in Rb, Ba, Th, U, and K, and depleted in Nb, Sr, P, and Ti, with positive εNd(t) (+0.35) and εHf(t) (+0.44 to +6.31) values, suggesting that they mainly originated from the partial melting of Meso–Neoproterozoic accretionary lower crustal material (basalt). The Middle Silurian basalts are characterized by low SiO2, P2O5, TiO2, and Na2O and high Al2O3, FeOT, and K2O, enriched in Rb, Ba, Th, U, and K and depleted in Nb, Ta, Sr, P, and Ti, indicative of shoshonitic basalt. The Late Silurian tonalites have positive εNd(t) (+4.91 to +6.18) values and primarily originated from depleted mantle magmas metasomatized by subduction fluids, supplemented by a small amount of subducted sediments and crustal materials. The Middle Devonian volcanic rocks exhibit low SiO2, TiO2, and Na2O and high K2O, and MgO, enriched in Rb, K, and LREEs and depleted in Nb, Ta, Sr, and HREEs, characteristic of shoshonitic volcanic rocks. Their εNd(t) (+2.11 to +3.77) and εHf(t) (+5.90 to +11.73) values are positive. These characteristics indicate that the Middle Devonian volcanic rocks primarily originated from depleted mantle magmas metasomatized by subduction fluids, with the addition of crustal materials or subducted sediments during their formation. Based on regional geological data, it is believed that the study area underwent the following evolutionary stages during the Silurian–Devonian period: (1) active continental margin stage of southward subduction of the Paleo–Asian Ocean (PAO) (443–419 Ma); (2) arc-continent collision stage (419–405 Ma); (3) post-collision extension stage (404–375 Ma); (4) active continental margin stage, with the PAO plate subducting southward once again (375–360 Ma). Full article
Show Figures

Figure 1

25 pages, 14193 KiB  
Article
Agates of the Lece Volcanic Complex (Serbia): Mineralogical and Geochemical Characteristics
by Zoran Miladinović, Vladimir Simić, Nenad Nikolić, Nataša Jović Orsini and Milena Rosić
Minerals 2024, 14(5), 511; https://doi.org/10.3390/min14050511 - 14 May 2024
Cited by 2 | Viewed by 1784
Abstract
Agate veins and nodules occur in the Lece Volcanic Complex (Oligocene-Miocene) situated in the south of Serbia and occupying an area of 700 km2. This volcanic complex is composed predominantly of andesites, with sporadic occurrences of andesite-basalts, dacites and latites, and [...] Read more.
Agate veins and nodules occur in the Lece Volcanic Complex (Oligocene-Miocene) situated in the south of Serbia and occupying an area of 700 km2. This volcanic complex is composed predominantly of andesites, with sporadic occurrences of andesite-basalts, dacites and latites, and features agate formations that have been very little investigated. This study focuses on five selected agate occurrences within the Lece Volcanic Complex, employing optical microscopy, scanning electron microscopy (SEM), X-ray powder diffraction analysis, inductively coupled plasma mass spectrometry (ICP-MS), and Fourier transform infrared spectroscopy (FTIR). In three localities (Rasovača, Mehane, and Ždraljevići), agate mineralization is directly related to distinct fault zones with strong local brecciation. In the other two localities (Vlasovo and Sokolov Vis), the agate is found in nodular form and does not show any connection with fracture zones. The silica phases of the Lece volcanic agates consist of cristobalite and tridymite, length-fast chalcedony, quartzine (length-slow chalcedony), and macrocrystalline quartz. Vein agates show a frequent alternation between length-fast chalcedony and quartz bands. Nodular agates consist primarily of length-fast chalcedony, occasionally containing notable quantities of opal-CT, absent in vein agates. Microtextures present in vein agates include crustiform, colloform, comb, mosaic, flamboyant, and pseudo-bladed. Jigsaw puzzle quartz microtexture supports the recrystallization of previously deposited silica in the form of opal or chalcedony from hydrothermal fluids. Growth lines in euhedral quartz (Bambauer quartz) point to agate formations in varying physicochemical conditions. These features indicate epithermal conditions during the formation of hydrothermal vein agates. Due to intense hydrothermal activity, vein agate host rocks are intensively silicified. Vein agates are also enriched with typical ore metallic elements (especially Pb, Co, As, Sb, and W), indicating genetic relation with the formation of polymetallic ore deposits of the Lece Volcanic Complex. In contrast, nodular agates have a higher content of major elements of host rocks (Al2O3, MgO, CaO, Na2O, and K2O), most probably mobilized from volcanic host rocks. Organic matter, present in both vein and nodular agate with filamentous forms found only in nodular agate, suggests formation in near-surface conditions. Full article
Show Figures

Figure 1

Back to TopTop