The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
Abstract
:1. Introduction
2. Geological Setting
3. Sample Descriptions
4. Results
4.1. Zircon U-Pb Geochronology Result and Lu-Hf Isotopes
4.2. Whole-Rock Major Oxide and Trace Elements
4.2.1. Major Oxide
4.2.2. Trace Elements
5. Discussion
5.1. Petrogenesis
5.1.1. Volcanic Rocks
5.1.2. Granites
5.2. Early–Middle Devonian Magmatism in the SBOB
5.3. Transition from Advancing to Retreating Accretionary Orogens in the SBOB During the Early–Middle Devonian
6. Conclusions
- The crystallization age of volcanic rock from Wudaomingshui is 411.5 ± 2.8 Ma (MSWD = 0.43, n = 12), and the granite has crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13). The εHf(t) values of granites are −2.5 to 3.3 with TDM2 ages from 1310 to 1013 Ma.
- The Wudaomingshui volcanics are calc-alkaline basalt-basaltic andesite with low SiO2 contents (47.35~55.59 wt.%), generated from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Granites are high-K calc-alkaline I-type felsic rocks, originating from the partial melting of the lower crust, and influenced by the mantle. The upper crust also affected the formation of granite.
- Wudaomingshui volcanic rocks and granites were formed in the tectonic switching process from advancing to retreating subduction. Combined with the regional geological background, these findings indicate that the transformation from advancing to retreating accretionary orogenesis occurred in the southern Beishan Orogenic Belt during the Early–Middle Devonian.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Şengör, A.M.C.; Natal’In, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Sunal, G.; Natal’in, B.A.; Voo, R.V.D. The Altaids: A review of twenty-five years of knowledge accumulation. Earth-Sci. Rev. 2022, 228, 104013. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroöner, A.; Badarch, G. Tectonic Models for Accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Han, C.M.; Liu, W.; Wan, B.; Zhang, J.E.; Ao, S.J.; Zhang, Z.Y.; Song, D.F. Late Paleozoic to Early Triassic Multiple Roll-Back and oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Xu, W.; Xu, X.Y.; Lu, J.C.; Niu, Y.Z.; Chen, G.C.; Shi, J.Z.; Dang, B.; Song, B.; Zhang, Y.X.; Zhang, Q. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Sci. 2019, 44, 2775–2793, (In Chinese with English abstract). [Google Scholar]
- Zhao, G.C.; Wang, Y.J.; Huang, B.C.; Dong, Y.P.; Li, S.Z.; Zhang, G.W.; Li, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
- Zheng, R.G.; Zheng, J.Y.; Xiao, W.J.; Zhang, J. Long-lived subduction retreating led to continental rifting along the northern Gondwana: Insights from Devonian igneous rocks and ophiolite in the Beishan orogenic collage. Lithos 2023, 454, 107236. [Google Scholar] [CrossRef]
- Zhu, J.; Lv, X.B.; Peng, S.G. U-Pb zircon geochronology, geochemistry and tectonic implications of the early Devonian granitoids in the Liuyuan area, Beishan, NW China. Geosci. J. 2016, 20, 609–625. [Google Scholar] [CrossRef]
- Saktura, W.M.; Buckman, S.; Nutman, A.P.; Belousova, E.A.; Yan, Z.; Aitchison, J.C. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos 2017, 294, 20–38. [Google Scholar] [CrossRef]
- He, Z.Y.; Zhang, Z.M.; Zong, K.Q.; Hua, X.; Klemd, R. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos 2014, 196, 1–13. [Google Scholar] [CrossRef]
- Wu, L.; Zhai, X.; Wang, E.; Chen, W.; Song, G.; Zheng, F.; Zhao, J.; Wang, J.; Wang, H. Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks. Minerals 2023, 13, 1468. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans.−R. Soc. Edinb. 2000, 91, 181–194. [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Sun, S.; Li, J.L.; Huang, B.C.; Han, C.M.; Yuan, C.; Sun, M.; Chen, H.L. A Tale of Amalgamation of Three Permo−Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef]
- Huang, B.T.; Wang, G.Q.; Li, X.M.; Bu, T.; Dong, Z.C.; Zhu, T. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks. Precambrian Res. 2022, 376, 106686. [Google Scholar] [CrossRef]
- Song, D.F.; Xiao, W.J.; Zeng, H.; Mao, Q.G.; Ao, S.J. Accretionary orogenic processes of the Beishan orogenic belt. Geol. Bull. China 2024, 43, 2131–2150, (In Chinese with English abstract). [Google Scholar]
- Xiao, W.J.; Mao, Q.G.; Windley, B.F.; Han, C.M.; Qu, J.F.; Zhang, J.E.; Ao, S.J.; Guo, Q.Q.; Cleven, N.R.; Lin, S.F.; et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am. J. Sci. 2010, 310, 1553–1594. [Google Scholar] [CrossRef]
- Mao, Q.G.; Xiao, W.J.; Windley, B.F.; Han, C.M.; Qu, J.F.; Ao, S.J.; Zhang, J.E.; Guo, Q.Q. The Liuyuan complex in the Beishan, NW China: A Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids. Geol. Mag. 2011, 149, 483–506. [Google Scholar] [CrossRef]
- Wu, L. Paleo-Oceanic Basin Convergence Process in the Southern Margin of the Middle Central Asian Orogenic Belt: Petrogeochemical and Geochronological Evidence. Doctoral Dissertation, Lanzhou University, Lanzhou, China, 2024. (In Chinese with English abstract). [Google Scholar]
- Mao, Q.G.; Xiao, W.J.; Fang, T.H.; Wang, J.B.; Han, C.M.; Sun, M.; Yuan, C. Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: Implications for early Paleozoic slab–melting and crustal growth in the southern Altaids. Gondwana Res. 2012, 22, 534–553. [Google Scholar] [CrossRef]
- Ao, S.J.; Xiao, W.J.; Han, C.M.; Li, X.H.; Qu, J.F.; Zhang, J.E.; Guo, Q.Q.; Tian, Z.H. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the Southern Altaids. Geol. Mag. 2012, 149, 606–625. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Tong, Y.; Hong, D.W.; Ouyang, Z.X. Identification of the Early Devonian Shuangfengshan A-type granitesin Liuyuan area of Beishan and its implications to tectonic evolution. Acta Petrol. Mineral. 2009, 28, 407–422, (In Chinese with English abstract). [Google Scholar]
- Guo, Q.Q.; Xiao, W.J.; Hou, Q.L.; Windley, B.F.; Han, C.M.; Yian, Z.H.; Song, D.F. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt. Lithos 2014, 184, 361–378. [Google Scholar] [CrossRef]
- Wang, E.; Zhai, X.; Chen, W.; Wu, L.; Song, G.; Wang, Y.; Guo, Z.; Zhao, J.; Wang, J. Late Devonian A-Type Granites from the Beishan, Southern Central Asia Orogenic Belt: Implications for Closure of the Paleo-Asia Ocean. Minerals 2023, 13, 565. [Google Scholar] [CrossRef]
- Yang, Z.X.; Ding, S.H.; Zhang, J.; Fan, X.X.; Kong, W.Q.; Zhao, J.C.; Jing, D.L. The discovery of Early Devonian adakites in Beishan orogenic belt and its geological significance. Acta Petrol. Mineral. 2021, 40, 185–201, (In Chinese with English abstract). [Google Scholar]
- Song, D.F.; Xiao, W.J.; Han, C.M.; Li, J.L.; Qu, J.F.; Guo, Q.Q.; Lin, L.N.; Wang, Z.M. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Res. 2013, 227, 368–388. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Teng, X.J.; Tian, J.; Duan, X.L. Geochemical characteristics, isotopic ages and tectonic environment of Sangejing Formation in Beishan orogenic belt, Inner Mongolia. Geol. Bull. China 2020, 39, 1461–1473, (In Chinese with English abstract). [Google Scholar]
- Tao, G.H.; Li, X.F.; Chen, W.L.; Chen, W.; Lu, G.; Hao, C.; Pan, S.; Wu, K.N. The geochemical characteristics and tectonic significance of Devonian bimodal volcanic rocks in Yemaquan area of Beishan, Inner Mongolia. Geol. Bull. China 2022, 41, 1783–1797, (In Chinese with English abstract). [Google Scholar]
- Ao, S.J.; Xiao, W.J.; Windley, B.F.; Mao, Q.G.; Han, C.M.; Zhang, J.E.; Yang, L.K.; Geng, J.Z. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology. Gondwana Res. 2015, 30, 224–235. [Google Scholar] [CrossRef]
- He, Z.Y.; Klemdb, R.; Yana, L.L.; Zhang, Z.M. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt. Earth-Sci. Rev. 2018, 185, 1–14. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Chung, S.L.; Xiao, W.J.; Hou, Q.L.; Li, S. Petrogenesis and tectonic implications of late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd–Sr–Hf isotopic constraints. Lithos 2017, 278, 84–96. [Google Scholar] [CrossRef]
- Xie, W.; Song, X.Y.; Deng, Y.F.; Wang, Y.S.; Ba, D.H.; Zheng, W.Q.; Li, X.B. Geochemistry and petrogenetic implications of a Late Devonian mafic–ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos 2012, 144, 209–230. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In Andesites: Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; Wiley: Hoboken, NJ, USA, 1982; pp. 528–548. [Google Scholar]
- Whiteford, D.G.; Nicholls, I.A.; Taylor, S.R. Spatial variations in the geochemistry of quaternary lavas across the Sunda arc in Java and Bali. Contrib. Mineral. Petrol. 1979, 70, 341–356. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 35–643. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Hofmann, P.F. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 1988, 16, 543–603. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Bender, J.F.; Bence, A.E.; Hanson, G.N.; Taylor, S.R. Petrogenesis of basalts from the famous area: Mid-Atlantic ridge. Earth Planet. Sci. Lett. 1977, 36, 133–156. [Google Scholar] [CrossRef]
- Dostal, J.; Owen, J.V. Cretaceous alkaline lamprophyres from northeastern Czech Republic: Geochemistry and petrogenesis. Geol. Rundsch. 1998, 87, 67–77. [Google Scholar] [CrossRef]
- Raeisi, D.; Gholoizade, K.; Nayebi, N.; Babazadeh, S. Geochemistry and mineral composition of lamprophyre dikes, central Iran: Implications for petrogenesis and mantle evolution. J. Earth Syst. Sci. 2019, 128, 74. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, M.F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem. Geol. 2008, 248, 83–103. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, M.F.; Keays, R.R. Geochemical constraints on the origin of the Permian Baimazhai mafic–ultramafic intrusion, SW China. Contrib. Mineral. Petrol. 2006, 152, 309–321. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Liao, X.Y.; Gai, Y.S.; Ma, T.; Wang, C. Geochemistry, Sr-Nd-Pb Isotopic Compositions and Zircon U-Pb Geochronology of Neoproterozoic Mafic Dyke in the Douling Complex, South Qinling Belt, China. J. Earth Sci. 2020, 31, 237–248. [Google Scholar] [CrossRef]
- Stefan, W.; Carsten, M.; Klaus, M. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust–mantle system. Earth Planet. Sci. Lett. 2003, 205, 309–324. [Google Scholar]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical finger printing of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Xia, L.Q.; Li, X.M. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Res. 2019, 64, 43–67. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M.; Davidson, J.P.; Eggins, S.M. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 2001, 192, 331–346. [Google Scholar] [CrossRef]
- Jeremy, P.; Richard, S.; Robert, K. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Econ. Geol. Bull. Soc. Econ. Geol. 2007, 102, 537–576. [Google Scholar]
- McKenzie, D.; O’Nions, R.K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Alvaro, J.J.; Pouclet, A.; Ezzouhairi, H.; Abderrahmane, S. Early Neoproterozoic rift-related magmatism in the Anti-Atlas margin of the West African craton, Morocco. Precambrian Res. 2014, 255, 433–442. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, Q.T.; Kapsiotis, A.; Xia, B. Early cretaceous ophiolites of the Yarlung Zangbo Suture Zone: Insights from dolerites and peridotites from the Baer upper mantle suite, SW Tibet (China). Int. Geol. Rev. 2017, 59, 1–19. [Google Scholar] [CrossRef]
- Yang, G.X.; Li, Y.J.; Xiao, W.J.; Sun, Y. Petrogenesis and tectonic implications of the middle Silurian volcanic rocks in northern West Junggar, NW China. Int. Geol. Rev. 2014, 56, 869–884. [Google Scholar] [CrossRef]
- Kouankap, D.; Pierre, W.; Mufur, A.M.; Ganno, S. Contrasting Ba-Sr Granitoids from Bamenda Area, NW Cameroon: Sources Characteristics and Implications for the Evolution of the Pan African Fold Belt. J. Geosci. Geomat. 2018, 6, 65–76. [Google Scholar] [CrossRef]
- Ye, X.Q.; Xu, Z.T.; Sun, L.Y.; Li, Z.W.; Li, M.M.; Jia, L. Genesis and Tectonic Significance of Miocene Tephrite in Laohushan Volcanic Area, Jilin Province. Earth Sci. 2024, 49, 1352–1366, (In Chinese with English abstract). [Google Scholar]
- Bu, T.; Wang, G.Q.; Huang, B.T.; Guo, L.; Zou, X. Petrogenesis and tectonic significances of Early Devonian granites in Huangqiuquan area from the northern Beishan Orogenic Belt, NW China. Geol. Rev. 2024, 70, 2193–2211, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Bonin, B. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos 2007, 97, 129. [Google Scholar] [CrossRef]
- Pitcher W, S. Granite type and tectonic environment. Mt. Build. Process. 1982, 4, 19–40. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan fold belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238, (In Chinese with English abstract). [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 2014, 192, 208–225. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.M.; Qing, M.; Li, W.; Carranza, E.J.M.; Guo, X.; Zeng, G.Z. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nangetan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234, 47–60. [Google Scholar] [CrossRef]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282, 33–44. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Backwell Scientific Publications: Boston, MA, USA, 1985; pp. 209–230. [Google Scholar]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Jung, S.; Pfänder, J.A. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, A12O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 2007, 19, 859–870. [Google Scholar] [CrossRef]
- Lassiter, J.C.; DePaolo, D.J. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Mahoney, J.J., Coffin, M.F., Eds.; American Geophysical Union: Washington, DC, USA, 1997; pp. 335–356. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 2013, 125, 14–32. [Google Scholar] [CrossRef]
- Niu, Y.Z.; Li, C.Y.; Shi, G.R.; Lu, J.C.; Xu, W.; Shi, J.Z. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure. J. Asian Earth Sci. 2018, 167, 11–32. [Google Scholar] [CrossRef]
- Cawood, P.A.; Kröner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 2009, 318, 1–36. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, C.J.; Xiu, S.Z. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrol. Sin. 2001, 17, 413–421, (In Chinese with English abstract). [Google Scholar]
- Collins, W.J.; Belousova, E.A.; Kemp, A.I.; Murphy, J.B. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 2011, 4, 333–337. [Google Scholar] [CrossRef]
- Ding, J.; Han, C.; Xiao, W.; Wang, Z.; Song, D. Geochronology, geochemistry and Sr-Nd isotopes of the granitic rocks associated with tungsten deposits in Beishan district, NW China, Central Asian Orogenic Belt: Petrogenesis, metallogenic and tectonic implications. Ore Geol. Rev. 2017, 89, 441–462. [Google Scholar] [CrossRef]
- Cawood, P.A.; Leitch, E.C.; Merle, R.E.; Nemchin, A.A. Orogenesis without collision: Stabilizing the Terra Australis accretionary orogen, eastern Australia. Geol. Soc. Am. Bull. 2011, 123, 2240–2255. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatim, collision tectonics. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Song, D.; Xiao, W.; Windley, B.F.; Han, C.; Tian, Z. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt. Lithos 2015, 224, 195–213. [Google Scholar] [CrossRef]
- Liang, J.W.; Chen, Y.L.; Zhang, W.Q.; Wang, G.Q.; Yu, J.Y.; Li, X.M. Detrital Zircon Dating of Devonian and Geological Significance of the Devonian Sangejing Formation in Beishan Area, Gansu Province. Geol. Sci. Technol. Inf. 2014, 33, 1–9, (In Chinese with English abstract). [Google Scholar]
- Song, D.; Xiao, W.; Han, C.; Tian, Z.H. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China. Tectonophysics 2014, 632, 224–243. [Google Scholar] [CrossRef]
- Cleven, N.; Lin, S.F.; Guilmette, C.; Xiao, W.J.; Davis, B. Petrogenesis and implications for tectonic setting of Cambrian supra subduction-zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China. J. Asian Earth Sci. 2015, 113 Pt 1, 369–390. [Google Scholar] [CrossRef]
- Mao, Q.G.; Xiao, W.J.; Ao, S.J.; Yang, H. Subduction Initiation of the Southern Branch of the Paleo-Asian Ocean in the Middle Ordovician in the Southern Beishan Orogen. Earth Space Sci. 2023, 10, e2022EA002350. [Google Scholar] [CrossRef]
- Yu, J.Y.; Li, X.G.; Wang, G.Q.; Wu, P.; Yan, Q.J. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance. Geol. Bull. China 2012, 31, 2038–2045, (In Chinese with English abstract). [Google Scholar]
- Meng, Y.; Zhang, X.; Bai, J.; Wang, K.; Qi, Y.; Zhao, H.; Han, Y. Petrogenesis and Geochronology of the Shazuoquan Ophiolite, Beishan Orogenic Belt: Constraints on the Evolution of the Beishan Ocean. Minerals 2023, 13, 1067. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Vley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fie-big, J.; et al. Further characterization of the 91500-zircon crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Gunther, D.; Wu, F.Y. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequili-brated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High precision Hf isotope measurements of MORB and OIB by thermal isnisation mass spectrometry: Insights into the depleted mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonicmantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarede, F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Bao, Z.A.; Chen, L.; Zong, C.L.; Yuan, H.L.; Chen, K.Y.; Dai, M.N. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. Int. J. Mass Spectrom. 2017, 421, 255–262. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, Y.; Tu, X.L.; Hu, G.Q.; Zeng, W. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochemical 2002, 31, 289–294. [Google Scholar]
- Gao, J.J.; Liu, J.H.; Li, X.G.; Yan, Q.S.; Wang, X.J.; Wang, H.M. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method. Acta Oceanol. Sin. 2017, 36, 113–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Wang, Y.; Yan, J.; Yang, Z.; Li, K.; Liu, Z.; Wang, Z.; Wu, L. The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite. Minerals 2025, 15, 632. https://doi.org/10.3390/min15060632
He T, Wang Y, Yan J, Yang Z, Li K, Liu Z, Wang Z, Wu L. The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite. Minerals. 2025; 15(6):632. https://doi.org/10.3390/min15060632
Chicago/Turabian StyleHe, Tongtong, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang, and Lei Wu. 2025. "The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite" Minerals 15, no. 6: 632. https://doi.org/10.3390/min15060632
APA StyleHe, T., Wang, Y., Yan, J., Yang, Z., Li, K., Liu, Z., Wang, Z., & Wu, L. (2025). The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite. Minerals, 15(6), 632. https://doi.org/10.3390/min15060632