Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (979)

Search Parameters:
Keywords = and satellite constellations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6693 KB  
Article
Bridging the Time-Space Scale Gap: A Physics-Informed UAV Upscaling Framework for Radiometric Validation of Microsatellite Constellations in Heterogeneous Built Environments
by Seung-Hwan Go, Dong-Ho Lee, Won-Ki Jo and Jong-Hwa Park
Drones 2026, 10(2), 99; https://doi.org/10.3390/drones10020099 - 30 Jan 2026
Abstract
The exponential rise in microsatellite constellations offers unprecedented temporal resolution for urban monitoring. However, ensuring the radiometric integrity of these sensors over heterogeneous built environments remains a critical challenge due to low signal-to-noise ratios and spectral uncertainties. Traditional vicarious calibration relies on homogeneous [...] Read more.
The exponential rise in microsatellite constellations offers unprecedented temporal resolution for urban monitoring. However, ensuring the radiometric integrity of these sensors over heterogeneous built environments remains a critical challenge due to low signal-to-noise ratios and spectral uncertainties. Traditional vicarious calibration relies on homogeneous pseudo-invariant calibration sites (PICS) in deserts, which fail to represent the spectral complexity and adjacency effects of urban landscapes. This study presents a novel triple-platform validation framework integrating ground (Hyperspectral), UAV (Multispectral), and satellite (Sentinel-2) data to bridge the “Point-to-Pixel” scale gap. We introduce a physics-informed “Double Calibration” protocol—combining the empirical line method with spectral response function convolution—and a block kriging spatial upscaling technique to mathematically model intra-pixel heterogeneity. Results from a 2025 campaign in a complex urban environment (Cheongju, Republic of Korea) demonstrate that simple point-averaging introduces significant representation errors (R20.46 with time lag). In contrast, our UAV-based block kriging approach recovered high correlations even with a 1-day time lag and dramatically improved the coefficient of determination (R2) under simultaneous acquisition conditions: from 0.68 to 0.92 in the blue band and to 0.96 in the NIR band. Furthermore, quantitative spatial analysis identified artificial grass as the most stable “Urban PICS” (σ0.020), whereas asphalt exhibited unexpected high spatial heterogeneity (σ> 0.09) due to surface aging and challenging conventional assumptions. This framework establishes a rigorous, scalable standard for validating “New Space” data products in complex urban domains. Full article
Show Figures

Figure 1

21 pages, 3207 KB  
Article
Reliability Case Study of COTS Storage on the Jilin-1 KF Satellite: On-Board Operations, Failure Analysis, and Closed-Loop Management
by Chunjuan Zhao, Jianan Pan, Hongwei Sun, Xiaoming Li, Kai Xu, Yang Zhao and Lei Zhang
Aerospace 2026, 13(2), 116; https://doi.org/10.3390/aerospace13020116 - 24 Jan 2026
Viewed by 167
Abstract
In recent years, the rapid development of commercial satellite projects, such as low-Earth orbit (LEO) communication and remote sensing constellations, has driven the satellite industry toward low-cost, rapid development, and large-scale deployment. Commercial off-the-shelf (COTS) components have been widely adopted across various commercial [...] Read more.
In recent years, the rapid development of commercial satellite projects, such as low-Earth orbit (LEO) communication and remote sensing constellations, has driven the satellite industry toward low-cost, rapid development, and large-scale deployment. Commercial off-the-shelf (COTS) components have been widely adopted across various commercial satellite platforms due to their advantages of low cost, high performance, and plug-and-play availability. However, the space environment is complex and hostile. COTS components were not originally designed for such conditions, and they often lack systematically flight-verified protective frameworks, making their reliability issues a core bottleneck limiting their extensive application in critical missions. This paper focuses on COTS solid-state drives (SSDs) onboard the Jilin-1 KF satellite and presents a full-lifecycle reliability practice covering component selection, system design, on-orbit operation, and failure feedback. The core contribution lies in proposing a full-lifecycle methodology that integrates proactive design—including multi-module redundancy architecture and targeted environmental stress screening—with on-orbit data monitoring and failure cause analysis. Through fault tree analysis, on-orbit data mining, and statistical analysis, it was found that SSD failures show a significant correlation with high-energy particle radiation in the South Atlantic Anomaly region. Building on this key spatial correlation, the on-orbit failure mode was successfully reproduced via proton irradiation experiments, confirming the mechanism of radiation-induced SSD damage and providing a basis for subsequent model development and management decisions. The study demonstrates that although individual COTS SSDs exhibit a certain failure rate, reasonable design, protection, and testing can enhance the on-orbit survivability of storage systems using COTS components. More broadly, by providing a validated closed-loop paradigm—encompassing design, flight verification and feedback, and iterative improvement—we enable the reliable use of COTS components in future cost-sensitive, high-performance satellite missions, adopting system-level solutions to balance cost and reliability without being confined to expensive radiation-hardened products. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 5472 KB  
Article
GRACE-FO Real-Time Precise Orbit Determination Using Onboard GPS and Inter-Satellite Ranging Measurements with Quality Control Strategy
by Shengjian Zhong, Xiaoya Wang, Min Li, Jungang Wang, Peng Luo, Yabo Li and Houxiang Zhou
Remote Sens. 2026, 18(2), 351; https://doi.org/10.3390/rs18020351 - 20 Jan 2026
Viewed by 157
Abstract
Real-Time Precise Orbit Determination (RTPOD) of Low Earth Orbit (LEO) satellites relies primarily on onboard GNSS observations and may suffer from degraded performance when observation geometry weakens or tracking conditions deteriorate within satellite formations. To enhance the robustness and accuracy of RTPOD under [...] Read more.
Real-Time Precise Orbit Determination (RTPOD) of Low Earth Orbit (LEO) satellites relies primarily on onboard GNSS observations and may suffer from degraded performance when observation geometry weakens or tracking conditions deteriorate within satellite formations. To enhance the robustness and accuracy of RTPOD under such conditions, a cooperative Extended Kalman Filter (EKF) framework that fuses onboard GNSS and inter-satellite link (ISL) range measurements is established, integrated with an iterative Detection, Identification, and Adaptation (DIA) quality control algorithm. By introducing high-precision ISL range measurements, the strategy increases observation redundancy, improves the effective observation geometry, and provides strong relative position constraints among LEO satellites. This constraint strengthens solution stability and convergence, while simultaneously enhancing the sensitivity of the DIA-based quality control to observation outliers. The proposed strategy is validated in a simulated real-time environment using Centre National d’Etudes Spatiales (CNES) real-time products and onboard observations of the GRACE-FO mission. The results demonstrate comprehensive performance enhancements for both satellites over the experimental period. For the GRACE-D satellite, which suffers from about 17% data loss and a cycle slip ratio several times higher than that of GRACE-C, the mean orbit accuracy improves by 39% (from 13.1 cm to 8.0 cm), and the average convergence time is shortened by 44.3%. In comparison, the GRACE-C satellite achieves a 4.2% mean accuracy refinement and a 1.3% reduction in convergence time. These findings reveal a cooperative stabilization mechanism, where the high-precision spatiotemporal reference is transferred from the robust node to the degraded node via inter-satellite range measurements. This study demonstrates the effectiveness of the proposed method in enhancing the robustness and stability of formation orbit determination and provides algorithmic validation for future RTPOD of LEO satellite formations or large-scale constellations. Full article
Show Figures

Figure 1

23 pages, 40663 KB  
Article
Time Series Analysis of Fucheng-1 Interferometric SAR for Potential Landslide Monitoring and Synergistic Evaluation with Sentinel-1 and ALOS-2
by Guangmin Tang, Keren Dai, Feng Yang, Weijia Ren, Yakun Han, Chenwen Guo, Tianxiang Liu, Shumin Feng, Chen Liu, Hao Wang, Chenwei Zhang and Rui Zhang
Remote Sens. 2026, 18(2), 304; https://doi.org/10.3390/rs18020304 - 16 Jan 2026
Viewed by 146
Abstract
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series [...] Read more.
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series monitoring capability, is still lacking. This study applies the Small Baseline Subset (SBAS-InSAR) method to conduct the first systematic processing and evaluation of 22 Fucheng-1 images acquired between 2023 and 2024. A total of 45 potential landslides were identified and subsequently validated through field investigations and UAV-based LiDAR data. Comparative analysis with Sentinel-1 and ALOS-2 indicates that Fucheng-1 demonstrates superior performance in small-scale deformation identification, temporal-variation characterization, and maintaining a high density of coherent pixels. Specifically, in the time-series InSAR-based potential landslide identification, Fucheng-1 identified 13 small-scale potential landslides, whereas Sentinel-1 identified none; the number of identifications is approximately 2.17 times that of ALOS-2. For time-series subsidence monitoring, the deformation magnitudes retrieved from Fucheng-1 are generally larger than those from Sentinel-1, mainly attributable to finer spatial sampling enabled by its higher spatial resolution and a higher maximum detectable deformation gradient. Moreover, as landslide size decreases, the advantages of Fucheng-1 in deformation identification and subsidence estimation become increasingly evident. Interferometric results further show that the number of high-coherence pixels for Fucheng-1 is 7–8 times that of co-temporal Sentinel-1 and 1.1–1.4 times that of ALOS-2, providing more high-quality observations for time-series inversion and thereby supporting a more detailed and spatially continuous reconstruction of deformation fields. Meanwhile, the orbital stability of Fucheng-1 is comparable to that of Sentinel-1, and its maximum detectable deformation gradient in mountainous terrain reaches twice that of Sentinel-1. Overall, this study provides the first systematic validation of the time-series InSAR capability of Fucheng-1 under complex terrain conditions, offering essential support and a solid foundation for the operational deployment of InSAR technologies based on China’s domestic SAR satellite constellation. Full article
Show Figures

Graphical abstract

25 pages, 65227 KB  
Article
SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference
by Yuyuan Liu, Hongfeng Long, Xinghui Sun, Yihui Zhao, Zhuo Chen, Yuebo Ma and Rujin Zhao
Remote Sens. 2026, 18(2), 299; https://doi.org/10.3390/rs18020299 - 16 Jan 2026
Viewed by 109
Abstract
With the deployment of mega-constellations, the proliferation of on-orbit Resident Space Objects (RSOs) poses a severe challenge to Space Situational Awareness (SSA). RSOs produce elongated and stripe-like signatures in long-exposure imagery as a result of their relative orbital motion. The accurate detection of [...] Read more.
With the deployment of mega-constellations, the proliferation of on-orbit Resident Space Objects (RSOs) poses a severe challenge to Space Situational Awareness (SSA). RSOs produce elongated and stripe-like signatures in long-exposure imagery as a result of their relative orbital motion. The accurate detection of these signatures is essential for critical applications like satellite navigation and space debris monitoring. However, on-orbit detection faces two challenges: the obscuration of dim RSOs by complex stray light interference, and their dense overlapping trajectories. To address these challenges, we propose the Shape-Aware Attention Network (SAANet), establishing a unified Shape-Aware Paradigm. The network features a streamlined Shape-Aware Feature Pyramid Network (SA-FPN) with structurally integrated Two-way Orthogonal Attention (TTOA) to explicitly model linear topologies, preserving dim signals under intense stray light conditions. Concurrently, we propose an Adaptive Linear Oriented Bounding Box (AL-OBB) detection head that leverages a Joint Geometric Constraint Mechanism to resolve the ambiguity of regressing targets amid dense, overlapping trajectories. Experiments on the AstroStripeSet and StarTrails datasets demonstrate that SAANet achieves state-of-the-art (SOTA) performance, achieving Recalls of 0.930 and 0.850, and Average Precisions (APs) of 0.864 and 0.815, respectively. Full article
Show Figures

Figure 1

13 pages, 3377 KB  
Article
Clock Synchronization with Kuramoto Oscillators for Space Systems
by Nathaniel Ristoff, Hunter Kettering and James Camparo
Time Space 2026, 2(1), 1; https://doi.org/10.3390/timespace2010001 - 15 Jan 2026
Viewed by 120
Abstract
As space systems evolve towards cis-lunar missions and beyond, the demand for precise yet low-size, -weight, and -power (SWaP) clocks and synchronization methods becomes increasingly critical. We introduce a novel clock synchronization approach based on the Kuramoto oscillator model that facilitates the creation [...] Read more.
As space systems evolve towards cis-lunar missions and beyond, the demand for precise yet low-size, -weight, and -power (SWaP) clocks and synchronization methods becomes increasingly critical. We introduce a novel clock synchronization approach based on the Kuramoto oscillator model that facilitates the creation of an ensemble timescale for satellite constellations. Unlike traditional ensembling algorithms, the proposed Kuramoto method leverages nearest-neighbor interactions to achieve collective synchronization. This method simplifies the communication architecture and data-sharing requirements, making it well suited for dynamically connected networks such as proliferated low Earth orbit (pLEO) and lunar or Martian constellations, where intersatellite links may frequently change. Through simulations incorporating realistic noise models for small-scale atomic clocks, we demonstrate that the Kuramoto ensemble can yield an improvement in stability on the order of 1/√N, while mitigating the impact of constellation fragmentation and defragmentation. The results indicate that the Kuramoto oscillator-based algorithm can potentially deliver performance comparable to established techniques like Equal Weights Frequency Averaging (EWFA), yet with enhanced scalability and resource efficiency critical for future spaceborne PNT and communication systems. Full article
Show Figures

Figure 1

25 pages, 10750 KB  
Article
LHRSI: A Lightweight Spaceborne Imaging Spectrometer with Wide Swath and High Resolution for Ocean Color Remote Sensing
by Bo Cheng, Yongqian Zhu, Miao Hu, Xianqiang He, Qianmin Liu, Chunlai Li, Chen Cao, Bangjian Zhao, Jincai Wu, Jianyu Wang, Jie Luo, Jiawei Lu, Zhihua Song, Yuxin Song, Wen Jiang, Zi Wang, Guoliang Tang and Shijie Liu
Remote Sens. 2026, 18(2), 218; https://doi.org/10.3390/rs18020218 - 9 Jan 2026
Viewed by 225
Abstract
Global water environment monitoring urgently requires remote sensing data with high temporal resolution and wide spatial coverage. However, current space-borne ocean color spectrometers still face a significant trade-off among spatial resolution, swath width, and system compactness, which limits the large-scale deployment of satellite [...] Read more.
Global water environment monitoring urgently requires remote sensing data with high temporal resolution and wide spatial coverage. However, current space-borne ocean color spectrometers still face a significant trade-off among spatial resolution, swath width, and system compactness, which limits the large-scale deployment of satellite constellations. To address this challenge, this study developed a lightweight high-resolution spectral imager (LHRSI) with a total mass of less than 25 kg and power consumption below 80 W. The visible (VIS) camera adopts an interleaved dual-field-of-view and detectors splicing fusion design, while the shortwave infrared (SWIR) camera employs a transmission-type focal plane with staggered detector arrays. Through the field-of-view (FOV) optical design, the instrument achieves swath widths of 207.33 km for the VIS bands and 187.8 km for the SWIR bands at an orbital altitude of 500 km, while maintaining spatial resolutions of 12 m and 24 m, respectively. On-orbit imaging results demonstrate that the spectrometer achieves excellent performance in both spatial resolution and swath width. In addition, preliminary analysis using index-based indicators illustrates LHRSI’s potential for observing chlorophyll-related features in water bodies. This research not only provides a high-performance, miniaturized spectrometer solution but also lays an engineering foundation for developing low-cost, high-revisit global ocean and water environment monitoring constellations. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

21 pages, 17692 KB  
Technical Note
In-Orbit Assessment of Image Quality Metrics for the LuTan-1 SAR Satellite Constellation
by Mingxia Zhang, Liyuan Liu, Aichun Wang, Qijin Han, Minghui Hou and Yanru Li
Remote Sens. 2026, 18(1), 180; https://doi.org/10.3390/rs18010180 - 5 Jan 2026
Viewed by 290
Abstract
LuTan-1(LT-1) is the first Chinese civil L-band satellite constellation for geohazard observation, comprising LT-1A and LT-1B satellites. By employing interferometric altimetry and differential deformation measurement technologies, it achieves high-precision topographic mapping and establishes sub-millimeter-level deformation monitoring capabilities. To meet the high-precision measurement requirements [...] Read more.
LuTan-1(LT-1) is the first Chinese civil L-band satellite constellation for geohazard observation, comprising LT-1A and LT-1B satellites. By employing interferometric altimetry and differential deformation measurement technologies, it achieves high-precision topographic mapping and establishes sub-millimeter-level deformation monitoring capabilities. To meet the high-precision measurement requirements for applications such as topographic surveying and deformation monitoring, this study systematically evaluates four categories of image quality metrics—geometric, radiometric, and polarimetric characteristics, as well as orbital and baseline quality—based on in-orbit test data from the twin satellites. The test results demonstrate that all image quality indicators of the LT-1 SAR satellites meet the design specifications, confirming that the imagery can provide robust spatial technical support for applications including geological hazard monitoring, land resource investigation, earthquake assessment, disaster prevention and mitigation, fundamental surveying and mapping, and forestry monitoring. Full article
(This article belongs to the Special Issue Spaceborne SAR Calibration Technology)
Show Figures

Graphical abstract

21 pages, 11735 KB  
Article
Low-Thrust Transfer Method for Full Orbital Element Convergence Using J2 Precession
by Zhengqing Fang, Roberto Armellin and Yingkai Cai
Astronautics 2026, 1(1), 4; https://doi.org/10.3390/astronautics1010004 - 5 Jan 2026
Viewed by 302
Abstract
Low-thrust propulsion systems have become mainstream for Low Earth Orbit (LEO) satellites due to their superior propellant efficiency, yet conventional low-thrust transfer strategies suffer from high computational costs and failure to achieve full orbital element convergence. To address these drawbacks, this paper proposes [...] Read more.
Low-thrust propulsion systems have become mainstream for Low Earth Orbit (LEO) satellites due to their superior propellant efficiency, yet conventional low-thrust transfer strategies suffer from high computational costs and failure to achieve full orbital element convergence. To address these drawbacks, this paper proposes a novel semi-analytical three-phase low-thrust transfer strategy that leverages J2 gravitational precession to realize convergence of all orbital elements for circular orbits. The core of the method lies in the design of two symmetric thrust arcs and an intermediate coasting period that utilizes J2 precession. By solving the resulting polynomial equation, the strategy achieves simultaneous controlled convergence of the Right Ascension of the Ascending Node (RAAN) and the argument of latitude (AOL). Simulation results demonstrate that the proposed method achieves significant fuel savings compared to direct transfer strategies, while simultaneously achieving superior computational speed. Extensive validation via 100,000 Monte Carlo simulations confirms the method’s scope of applicability, and the sufficient conditions for the existence of a solution are provided. It is further found that the proposed method is particularly well-suited for missions involving medium-to-high inclination orbits and large RAAN gaps, such as constellation deployment. In conclusion, this strategy provides a fuel-efficient and computationally fast solution for low-thrust transfer, establishing the basis for the operational management of future large-scale space systems equipped with low-thrust propulsion. Full article
(This article belongs to the Special Issue Feature Papers on Spacecraft Dynamics and Control)
Show Figures

Figure 1

18 pages, 3518 KB  
Article
A Scalable Solution for Node Mobility Problems in NDN-Based Massive LEO Constellations
by Miguel Rodríguez Pérez, Sergio Herrería Alonso, José Carlos López Ardao and Andrés Suárez González
Sensors 2026, 26(1), 309; https://doi.org/10.3390/s26010309 - 3 Jan 2026
Viewed by 404
Abstract
In recent years, there has been increasing investment in the deployment of massive commercial Low Earth Orbit (LEO) constellations to provide global Internet connectivity. These constellations, now equipped with inter-satellite links, can serve as low-latency Internet backbones, requiring LEO satellites to act not [...] Read more.
In recent years, there has been increasing investment in the deployment of massive commercial Low Earth Orbit (LEO) constellations to provide global Internet connectivity. These constellations, now equipped with inter-satellite links, can serve as low-latency Internet backbones, requiring LEO satellites to act not only as access nodes for ground stations, but also as in-orbit core routers. Due to their high velocity and the resulting frequent handovers of ground gateways, LEO networks highly stress mobility procedures at both the sender and receiver endpoints. On the other hand, a growing trend in networking is the use of technologies based on the Information Centric Networking (ICN) paradigm for servicing IoT networks and sensor networks in general, as its addressing, storage, and security mechanisms are usually a good match for IoT needs. Furthermore, ICN networks possess additional characteristics that are beneficial for the massive LEO scenario. For instance, the mobility of the receiver is helped by the inherent data-forwarding procedures in their architectures. However, the mobility of the senders remains an open problem. This paper proposes a comprehensive solution to the mobility problem for massive LEO constellations using the Named-Data Networking (NDN) architecture, as it is probably the most mature ICN proposal. Our solution includes a scalable method to relate content to ground gateways and a way to address traffic to the gateway that does not require cooperation from the network routing algorithm. Moreover, our solution works without requiring modifications to the actual NDN protocol itself, so it is easy to test and deploy. Our results indicate that, for long enough handover lengths, traffic losses are negligible even for ground stations with just one satellite in sight. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks: 3rd Edition)
Show Figures

Figure 1

25 pages, 3798 KB  
Article
Soil MoistureRetrieval from TM-1 GNSS-R Reflections with Auxiliary Geophysical Variables: A Multi-Cluster and Seasonal Evaluation
by Yu Jin, Min Ji, Naiquan Zheng, Zhihua Zhang, Penghui Ding and Qian Zhao
Land 2026, 15(1), 36; https://doi.org/10.3390/land15010036 - 24 Dec 2025
Viewed by 359
Abstract
Current passive microwave satellites like SMAP still face limitations in observational frequency and responsiveness in regions with frequent cloud cover, dense vegetation, or complex terrain, making it difficult to achieve continuous global monitoring with high spatio-temporal resolution. To enhance global high-frequency monitoring capabilities, [...] Read more.
Current passive microwave satellites like SMAP still face limitations in observational frequency and responsiveness in regions with frequent cloud cover, dense vegetation, or complex terrain, making it difficult to achieve continuous global monitoring with high spatio-temporal resolution. To enhance global high-frequency monitoring capabilities, this study utilizes global reflectivity data provided by the Tianmu-1 (TM-1) constellation since 2023, combined with multiple auxiliary variables, including NDVI, VWC, precipitation, and elevation, to develop a 9 km resolution soil moisture retrieval model. Several spatial clustering and temporal partitioning strategies are incorporated for systematic evaluation. Additionally, since the publicly available TM-1 L1 reflectivity data does not provide separable polarization channels, this study uses DDM/specular point reflectivity as the primary observable quantity for modeling and mitigates non-soil factor interference by introducing multi-source priors such as NDVI, VWC, precipitation, terrain, and roughness. Unlike SMAP’s “single orbit daily fixed local time” observation mode, TM-1, leveraging multi-constellation and multi-orbit reflection geometry, offers more balanced temporal sampling and availability in cloudy, rainy, and mid-to-high latitude regions. This enables temporal gap filling and rapid event response (such as moisture transitions within hours after precipitation events) during periods of SMAP’s quality masking or intermittent data loss. Results indicate that the model combining LC-cluster with seasonal partitioning delivers the best performance at the cluster level, achieving a correlation coefficient (R) of 0.8155 and an unbiased RMSE (ubRMSE) of 0.0689 cm3/cm3, with a particularly strong performance in barren and shrub ecosystems. Comparisons with SMAP and ISMN datasets show that TM-1 is consistent with mainstream products in trend tracking and systematic error control, providing valuable support for global and high-latitude studies of dynamic hydrothermal processes due to its more balanced mid- and high-latitude orbital coverage. Full article
Show Figures

Figure 1

23 pages, 1218 KB  
Article
Energy-Efficient End-to-End Optimization for UAV-Assisted IoT Data Collection and LEO Satellite Offloading in SAGIN
by Tie Liu, Chenhua Sun, Yasheng Zhang and Wenyu Sun
Electronics 2026, 15(1), 24; https://doi.org/10.3390/electronics15010024 - 21 Dec 2025
Viewed by 284
Abstract
The rapid advancement of low-Earth-orbit (LEO) satellite constellations and unmanned aerial vehicles (UAVs) has positioned space–air–ground integrated networks as a key enabler of large-scale IoT services. However, ensuring reliable end-to-end operation remains challenging due to heterogeneous IoT–UAV link conditions and rapidly varying satellite [...] Read more.
The rapid advancement of low-Earth-orbit (LEO) satellite constellations and unmanned aerial vehicles (UAVs) has positioned space–air–ground integrated networks as a key enabler of large-scale IoT services. However, ensuring reliable end-to-end operation remains challenging due to heterogeneous IoT–UAV link conditions and rapidly varying satellite visibility. This work proposes a two-stage optimization framework that jointly minimizes UAV energy consumption during IoT data acquisition and ensures stable UAV–LEO offloading through a demand-aware satellite association strategy. The first stage combines gradient-based refinement with combinatorial path optimization, while the second stage triggers handover only when the remaining offloading demand cannot be met. Simulation results show that the framework reduces UAV energy consumption by over 20% and shortens flight distance by more than 30% in dense deployments. For satellite offloading, the demand-aware strategy requires only 2–3 handovers—versus 7–9 under greedy selection—and lowers packet loss from 0.47–0.60% to 0.13–0.20%. By improving both stages simultaneously, the framework achieves consistent end-to-end performance gains across varying IoT densities and constellation sizes, demonstrating its practicality for future SAGIN deployments. Full article
Show Figures

Figure 1

26 pages, 7065 KB  
Article
Wide-Area Spectrum Sensing for Space Targets Based on Low-Earth Orbit Satellite Constellations: A SRFlow Model for Electromagnetic Spectrum Map Reconstruction
by You Fu, Youchen Fan, Liu Yi, Shunhu Hou, Yufei Niu and Shengliang Fang
Remote Sens. 2026, 18(1), 11; https://doi.org/10.3390/rs18010011 - 19 Dec 2025
Viewed by 376
Abstract
To address the need for wide-area electromagnetic spectrum sensing of space targets from sparse Low-Earth Orbit constellation observations, this paper proposes SRFlow, a flow-matching generative model. We first construct a high-fidelity dataset covering diverse scenarios via STK-MATLAB co-simulation. By integrating multi-source priors and [...] Read more.
To address the need for wide-area electromagnetic spectrum sensing of space targets from sparse Low-Earth Orbit constellation observations, this paper proposes SRFlow, a flow-matching generative model. We first construct a high-fidelity dataset covering diverse scenarios via STK-MATLAB co-simulation. By integrating multi-source priors and an iterative measurement injection strategy, SRFlow achieves high-quality reconstruction of full spectrum maps from sparse measurements. Experiments demonstrate that SRFlow significantly outperforms state-of-the-art baselines, including the physics-informed diffusion model RMDM, in both reconstruction accuracy (NMSE/SSIM) and computational efficiency (parameters/inference time), under both known and unknown target-position conditions. Moreover, it trains nearly an order of magnitude faster than diffusion models. This work contributes the first dedicated dataset for space-based spectrum sensing, introduces the accurate and efficient SRFlow model, and establishes a rigorous benchmark for future research. Full article
Show Figures

Figure 1

26 pages, 31516 KB  
Article
Hierarchical Load-Balanced Routing Optimization for Mega-Constellations via Geographic Partitioning
by Guinian Feng, Yutao Xu, Yang Zhao and Wei Zhang
Appl. Sci. 2025, 15(24), 13080; https://doi.org/10.3390/app152413080 - 11 Dec 2025
Viewed by 591
Abstract
Large-scale Low Earth Orbit (LEO) satellite constellations have become critical infrastructure for global communications, yet routing optimization remains challenging. Due to high-speed satellite mobility and limited local perception capabilities, traditional shortest-path algorithms struggle to adapt to dynamic topology changes and effectively handle random [...] Read more.
Large-scale Low Earth Orbit (LEO) satellite constellations have become critical infrastructure for global communications, yet routing optimization remains challenging. Due to high-speed satellite mobility and limited local perception capabilities, traditional shortest-path algorithms struggle to adapt to dynamic topology changes and effectively handle random fluctuations in traffic loads and inter-satellite link states. Meanwhile, as constellation scales expand, centralized routing mechanisms face deployment difficulties due to high communication latency and computational complexity. To address these issues, this paper proposes a hierarchical load-balanced routing optimization algorithm based on geographic partitioning. The algorithm divides the constellation into multiple regions by latitude and longitude, establishing a hierarchical cooperative decision mechanism: the upper layer handles inter-region routing decisions while the lower layer manages intra-region routing optimization. Within regions, a load-aware K-shortest paths algorithm enables path diversification, achieving global coordination through cross-region information sharing and dynamic path selection, thereby reducing end-to-end routing latency while enhancing adaptability to dynamic environments and balancing routing performance with system scalability. In simulation scenarios with a Starlink-like architecture of 1512 satellites, experimental results demonstrate that compared to shortest-path routing, the algorithm reduces end-to-end latency by 14.1% and average satellite load by 15.9%. Under dynamic load scenarios with incrementally increasing user traffic, the algorithm maintains stable performance, validating its robustness under traffic fluctuations and link state variations. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 10327 KB  
Article
Particle Swarm Optimization for Orbital Configuration of Satellite Constellations in Geostationary Orbit
by Peilin Li, Chengyuan Liu, Guodong Xu and Xinzhu Sun
Aerospace 2025, 12(12), 1095; https://doi.org/10.3390/aerospace12121095 - 9 Dec 2025
Viewed by 343
Abstract
The geostationary orbit (GEO), a finite one-dimensional longitudinal resource, has emerged as a critical research focus driven by the rapid development of global communication systems. This scarcity motivates current research efforts toward multi-satellite collocation within single longitudinal slots. This article investigates the optimization [...] Read more.
The geostationary orbit (GEO), a finite one-dimensional longitudinal resource, has emerged as a critical research focus driven by the rapid development of global communication systems. This scarcity motivates current research efforts toward multi-satellite collocation within single longitudinal slots. This article investigates the optimization design problem of configurations at fixed longitudes in GEO. First, a kinematic model describing the relative fixed-point motion of geostationary satellites was established. Subsequently, the long-term stability conditions of these fixed-point configurations under J2 perturbations were analyzed, with collocation flight stability and passive flight safety formulated as design constraints. The particle swarm optimization (PSO) algorithm was employed to design circular and straight-line spatial configurations, and their corresponding Kepler orbital elements were numerically simulated. Comparative analysis confirmed that circular configurations demonstrate superior stability compared to straight-line configurations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop