SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference
Highlights
- A novel Shape-Aware Attention Network (SAANet) is proposed, establishing a unified paradigm to effectively resolve the challenges of complex stray light interference and dense overlapping trajectories.
- SAANet achieves state-of-the-art performance in challenging scenarios with intense stray light interference and dense trajectories, demonstrating superior precision with APs of 0.864 and 0.815 on benchmark datasets.
- This study provides a high-precision and robust technical solution for Space Situational Awareness (SSA), enhancing the ability to monitor and manage the increasingly crowded space environment.
Abstract
1. Introduction
1.1. Challenge 1: Complex Stray Light Interference
1.2. Challenge 2: Dense and Overlapping Trajectories
1.3. Limitations of Existing Methods
- We construct a specialized framework by integrating a streamlined Dense Nested Attention Network (DNANet) encoder with a Shape-Aware Feature Pyramid Network (SA-FPN). This design structurally embeds Two-way Orthogonal Attention (TTOA) to explicitly model linear topologies, efficiently preserving dim signals and overcoming complex interference bottlenecks.
- We propose an Adaptive Linear Oriented Bounding Box (AL-OBB) head. By formulating a joint geometric constraint mechanism via collinearity and aspect ratio, this strategy achieves precise target separation and localization, effectively resolving ambiguities in dense and intersecting scenarios.
- We perform extensive validation on the AstroStripeSet and StarTrails datasets. Results demonstrate that SAANet achieves SOTA performance, exhibiting superior accuracy and robustness compared to existing methods.
2. Materials and Methods
2.1. Traditional Unsupervised Methods for SRTD
2.2. Semi-Supervised Methods for Object Detection
2.3. Fully Supervised Methods for Object Detection
2.4. Summary of Related Works and Research Gap
3. Proposed Framework

3.1. DNANet Encoder
3.1.1. Dense Nested Interactive Module
3.1.2. Cascaded Channel and Spatial Attention Module
3.2. Shape-Aware Feature Pyramid
3.3. Adaptive Linear Oriented Bounding Box
3.3.1. Adaptive Point Learning
3.3.2. Joint Geometric Constraint Mechanism
3.4. Loss Function
3.4.1. Classification Loss
3.4.2. Localization Loss
3.4.3. Spatial Constraint Loss
4. Experiment
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Evaluation Metrics
4.1.3. Implementation Details
4.2. Comparative Experiments
4.2.1. Analysis on AstroStripeSet
4.2.2. Analysis on StarTrails Dataset
4.2.3. Ablation Study
4.2.4. Model Efficiency Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Chen, T.; Liu, J.; Liu, Y.; An, Q. Dim Space Target Detection via Convolutional Neural Network in Single Optical Image. IEEE Access 2022, 10, 52306–52318. [Google Scholar] [CrossRef]
- Li, M.D.; Xiao, S.P.; Chen, S.W. Polarimetric ISAR Space Target Structure Recognition Based on Embedded Scattering Mechanism and Semi-Supervised Representation Learning. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5102019. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Q.y.; He, Q.g.; Chen, L.t.; Chen, X.w. Review on Hypervelocity Impact of Advanced Space Debris Protection Shields. Thin-Walled Struct. 2024, 200, 111874. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Xu, Z.; Li, Y.; Liu, W. Space Target Extraction and Detection for Wide-Field Surveillance. Astron. Comput. 2020, 32, 100408. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Y.; Zhou, Q.; Zhang, X. Effectiveness of Semi-Supervised Learning and Multi-Source Data in Detailed Urban Landuse Mapping with a Few Labeled Samples. Remote Sens. 2022, 14, 648. [Google Scholar] [CrossRef]
- Wu, D.; Dell’Elce, L.; Rosengren, A.J. RSO Proper Elements: Concept, Methods, and Application to Maneuver Detection. Adv. Space Res. 2024, 73, 64–84. [Google Scholar] [CrossRef]
- Felt, V.; Fletcher, J. Seeing Stars: Learned Star Localization for Narrow-Field Astrometry. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 8282–8290. [Google Scholar] [CrossRef]
- Fu, Z.; Lei, Y.; Tang, X.; Xu, T.; Tian, G.; Gao, S.; Du, J.; Yang, X. Oriented Clustering Reppoints for Resident Space Objects Detection in Time Delay Integration Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5650715. [Google Scholar] [CrossRef]
- Lévesque, M.P. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 1–4 September 2009. [Google Scholar]
- Hilton, S.; Sabatini, R.; Gardi, A.; Ogawa, H.; Teofilatto, P. Space traffic management: Towards safe and unsegregated space transport operations. Prog. Aerosp. Sci. 2019, 105, 98–125. [Google Scholar] [CrossRef]
- Lu, K.; Li, H.; Lin, L.; Zhao, R.; Liu, E.; Zhao, R. A Fast Star-Detection Algorithm under Stray-Light Interference. Photonics 2023, 10, 889. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, C.; Yang, W.; Kang, Z.; Li, Z. Automatic Space Debris Extraction Channel Based on Large Field of View Photoelectric Detection System. Publ. Astron. Soc. Pac. 2022, 134, 024503. [Google Scholar] [CrossRef]
- Levesque, M.P.; Buteau, S. Image Processing Technique for Automatic Detection of Satellite Streaks; Defense Technical Information Center: Fort Belvoir, VA, USA, 2007. [Google Scholar]
- Chen, Z.; Wang, R.; Xu, Y. Semi-Supervised Remote Sensing Building Change Detection with Joint Perturbation and Feature Complementation. Remote Sens. 2024, 16, 3424. [Google Scholar] [CrossRef]
- Guan, D.; Xing, Y.; Huang, J.; Xiao, A.; El Saddik, A.; Lu, S. S2Match: Self-paced Sampling for Data-Limited Semi-Supervised Learning. Pattern Recognit. 2025, 159, 111121. [Google Scholar] [CrossRef]
- Liu, L.; Niu, Z.; Li, Y.; Sun, Q. Multi-Level Convolutional Network for Ground-Based Star Image Enhancement. Remote Sens. 2023, 15, 3292. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, S.; Pu, T.; Peng, Z. AGPCNet: Attention-Guided Pyramid Context Networks for Infrared Small Target Detection. arXiv 2021, arXiv:2111.03580. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, C.; Yang, W.; Kang, Z.; Fan, C.; Li, Z. Space Debris Automation Detection and Extraction Based on a Wide-field Surveillance System. Astrophys. J. Suppl. Ser. 2022, 259, 4. [Google Scholar] [CrossRef]
- Cegarra Polo, M.; Yanagisawa, T.; Kurosaki, H. Real-Time Processing Pipeline for Automatic Streak Detection in Astronomical Images Implemented in a Multi-GPU System. Publ. Astron. Soc. Jpn. 2022, 74, 777–790. [Google Scholar] [CrossRef]
- Xi, J.; Wen, D.; Ersoy, O.K.; Yi, H.; Yao, D.; Song, Z.; Xi, S. Space Debris Detection in Optical Image Sequences. Appl. Opt. 2016, 55, 7929–7940. [Google Scholar] [CrossRef]
- Filho, J.; Duarte, P.; Gordo, P.; Peixinho, N.; Melicio, R.; Valério, D.; Gafeira, R. Space Surveillance Payload Camera Breadboard: Star Tracking and Debris Detection Algorithms. Adv. Space Res. 2023, 72, 4215–4228. [Google Scholar] [CrossRef]
- Sajjadi, M.; Javanmardi, M.; Tasdizen, T. Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates, Inc.: New York, NY, USA, 2016; Volume 29. [Google Scholar]
- Lee, D.H. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. In Proceedings of the ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Sohn, K.; Zhang, Z.; Li, C.L.; Zhang, H.; Lee, C.Y.; Pfister, T. A Simple Semi-Supervised Learning Framework for Object Detection. arXiv 2020, arXiv:2005.04757. [Google Scholar] [CrossRef]
- Liu, Y.C.; Ma, C.Y.; He, Z.; Kuo, C.W.; Chen, K.; Zhang, P.; Wu, B.; Kira, Z.; Vajda, P. Unbiased Teacher for Semi-Supervised Object Detection. arXiv 2021, arXiv:2102.09480. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Z.; Hu, H.; Wang, J.; Wang, L.; Wei, F.; Bai, X.; Liu, Z. End-to-End Semi-Supervised Object Detection with Soft Teacher. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3060–3069. [Google Scholar]
- Tarvainen, A.; Valpola, H. Mean Teachers Are Better Role Models: Weight-averaged Consistency Targets Improve Semi-Supervised Deep Learning Results. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Zhu, Z.; Zia, A.; Li, X.; Dan, B.; Ma, Y.; Long, H.; Lu, K.; Liu, E.; Zhao, R. Collaborative Static-Dynamic Teaching: A Semi-Supervised Framework for Stripe-like Space Target Detection. Remote Sens. 2025, 17, 1341. [Google Scholar] [CrossRef]
- Jia, P.; Liu, Q.; Sun, Y. Detection and Classification of Astronomical Targets with Deep Neural Networks in Wide-field Small Aperture Telescopes. Astron. J. 2020, 159, 212. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for Infrared Small Object Detection. IEEE Trans. Image Process. 2023, 32, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Sun, H.; Bai, J.; Yang, F.; Bai, X. Receptive-Field and Direction Induced Attention Network for Infrared Dim Small Target Detection with a Large-Scale Dataset IRDST. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000513. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense Nested Attention Network for Infrared Small Target Detection. arXiv 2022, arXiv:2106.00487. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Shen, Z.; Wang, K.; Zhang, X. Convolutional Long-Short Term Memory Network for Space Debris Detection and Tracking. Knowl.-Based Syst. 2024, 304, 112535. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Hu, K.; Zhu, J. Oriented RepPoints for Aerial Object Detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1819–1828. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. ISNet: Shape Matters for Infrared Small Target Detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 867–876. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Rivest, J.F.; Fortin, R.A. Detection of dim targets in digital infrared imagery by morphological image processing. Opt. Eng. 1996, 35, 1886–1893. [Google Scholar] [CrossRef]
- Deshpande, S.D.; Er, M.H.; Venkateswarlu, R.; Chan, P. Max-mean and max-median filters for detection of small targets. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 18–23 July 1999. [Google Scholar]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale Vessel Enhancement Filtering. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, Cambridge, MA, USA, 11–13 October 1998; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar]
- Xie, F.; Yang, D.; Yang, Y.; Wang, T.; Zhang, K. Infrared Small Target Detection Using Directional Derivative Correlation Filtering and a Relative Intensity Contrast Measure. Remote Sens. 2025, 17, 1921. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Yin, Z.; Xie, Y.; Wei, H.; Chang, Z.; Li, W.; Zhang, D. mmRotation: Unlocking Versatility of a Single mmWave Radar via Azimuth Panning and Elevation Tilting. IEEE Trans. Mob. Comput. 2025, 24, 6045–6061. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, R.; Zheng, B.; Wang, H.; FU, Y. Infrared Small Target Detection with Scale and Location Sensitivity. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 17490–17499. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, L.; Tan, F.; Xi, Y.; Zheng, H.; Li, N. ISTDU-Net: Infrared Small-Target Detection U-Net. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7506205. [Google Scholar] [CrossRef]
- Kou, R.; Wang, C.; Yu, Y.; Peng, Z.; Yang, M.; Huang, F.; Fu, Q. LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5621313. [Google Scholar] [CrossRef]
- Li, W.; Yang, W.; Hou, Y.; Liu, L.; Liu, Y.; Li, X. SARATR-X: Toward Building a Foundation Model for SAR Target Recognition. IEEE Trans. Image Process. 2025, 34, 869–884. [Google Scholar] [CrossRef]









| Type | Network | Earth Light | Sun Light | Moon Light | Mix Light | Total | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gts | Dets | Rec | AP | Gts | Dets | Rec | AP | Gts | Dets | Rec | AP | Gts | Dets | Rec | AP | Gts | Dets | Rec | AP | ||
| Traditional | TopHat [39] | 100 | 38 | 0.330 | 0.330 | 100 | 24 | 0.200 | 0.254 | 100 | 41 | 0.360 | 0.349 | 100 | 36 | 0.310 | 0.351 | 400 | 139 | 0.303 | 0.321 |
| MaxMedian [40] | 100 | 31 | 0.280 | 0.255 | 100 | 22 | 0.200 | 0.258 | 100 | 40 | 0.340 | 0.341 | 100 | 33 | 0.240 | 0.229 | 400 | 126 | 0.265 | 0.271 | |
| Frangi [42] | 100 | 117 | 0.650 | 0.242 | 100 | 157 | 0.630 | 0.266 | 100 | 275 | 0.550 | 0.205 | 100 | 225 | 0.510 | 0.143 | 400 | 774 | 0.585 | 0.214 | |
| LCM [41] | 100 | 114 | 0.330 | 0.197 | 100 | 20 | 0.100 | 0.106 | 100 | 61 | 0.140 | 0.112 | 100 | 112 | 0.200 | 0.078 | 400 | 307 | 0.193 | 0.123 | |
| DDCF [43] | 100 | 106 | 0.600 | 0.400 | 100 | 98 | 0.620 | 0.450 | 100 | 93 | 0.710 | 0.583 | 100 | 122 | 0.520 | 0.261 | 400 | 419 | 0.613 | 0.478 | |
| Deep Learning | Resnet50 [44] | 100 | 115 | 0.830 | 0.764 | 100 | 112 | 0.880 | 0.783 | 100 | 109 | 0.870 | 0.779 | 100 | 114 | 0.930 | 0.778 | 400 | 450 | 0.877 | 0.778 |
| ISNet [36] | 100 | 106 | 0.830 | 0.753 | 100 | 113 | 0.910 | 0.828 | 100 | 108 | 0.880 | 0.797 | 100 | 108 | 0.860 | 0.641 | 400 | 435 | 0.877 | 0.754 | |
| MSHNet [45] | 100 | 108 | 0.740 | 0.642 | 100 | 109 | 0.780 | 0.665 | 100 | 105 | 0.740 | 0.687 | 100 | 88 | 0.570 | 0.483 | 400 | 410 | 0.707 | 0.646 | |
| ISTDUNet [46] | 100 | 119 | 0.870 | 0.767 | 100 | 115 | 0.920 | 0.821 | 100 | 112 | 0.930 | 0.865 | 100 | 124 | 0.870 | 0.720 | 400 | 470 | 0.897 | 0.771 | |
| LW-IRSTNet [47] | 100 | 131 | 0.690 | 0.551 | 100 | 113 | 0.720 | 0.678 | 100 | 118 | 0.730 | 0.664 | 100 | 130 | 0.530 | 0.464 | 400 | 492 | 0.668 | 0.566 | |
| SARATRNet [48] | 100 | 121 | 0.750 | 0.682 | 100 | 131 | 0.730 | 0.673 | 100 | 122 | 0.800 | 0.779 | 100 | 128 | 0.670 | 0.597 | 400 | 502 | 0.738 | 0.681 | |
| SAANet (Ours) | 100 | 102 | 0.920 | 0.881 | 100 | 101 | 0.910 | 0.856 | 100 | 99 | 0.960 | 0.893 | 100 | 104 | 0.930 | 0.835 | 400 | 406 | 0.930 | 0.864 | |
| Type | Network | Gts | Dets | Recall | AP |
|---|---|---|---|---|---|
| Traditional | Top-Hat [39] | 7774 | 1376 | 0.317 | 0.337 |
| Max-Median [40] | 7774 | 934 | 0.210 | 0.252 | |
| Frangi [42] | 7774 | 1934 | 0.407 | 0.391 | |
| LCM [41] | 7774 | 857 | 0.202 | 0.258 | |
| DDCF [43] | 7774 | 2947 | 0.333 | 0.332 | |
| Deep Learning | Resnet50 [44] | 7774 | 7215 | 0.794 | 0.711 |
| ISNet [36] | 7774 | 8012 | 0.821 | 0.752 | |
| MSHNet [45] | 7774 | 8080 | 0.817 | 0.739 | |
| ISTDUNet [46] | 7774 | 9150 | 0.838 | 0.805 | |
| LW-IRSTNet [47] | 7774 | 6956 | 0.847 | 0.773 | |
| SARATRNet [48] | 7774 | 7084 | 0.801 | 0.730 | |
| SAANet (Ours) | 7774 | 7965 | 0.850 | 0.815 |
| Network | Module | Average Metrics | ||||||
|---|---|---|---|---|---|---|---|---|
| SA-FPN | CSAM | AL-OBB | AstroStripe | StarTrails | ||||
| Recall | AP | Recall | AP | |||||
| Baseline | - | - | - | - | 0.785 | 0.650 | 0.827 | 0.709 |
| ✓ | ✓ | - | - | 0.875 | 0.735 | 0.821 | 0.776 | |
| ✓ | ✓ | - | ✓ | 0.890 | 0.742 | 0.830 | 0.784 | |
| ✓ | ✓ | ✓ | - | 0.910 | 0.824 | 0.832 | 0.790 | |
| ✓ | - | ✓ | ✓ | 0.913 | 0.830 | 0.842 | 0.804 | |
| - | ✓ | ✓ | ✓ | 0.920 | 0.836 | 0.839 | 0.803 | |
| ✓ | ✓ | ✓ | ✓ | 0.930 | 0.864 | 0.850 | 0.815 | |
| Network | Params (M) ↓ | FLOPs (G) ↓ | FPS ↑ |
|---|---|---|---|
| ResNet50 [44] | 36.60 | 22.14 | 27.3 |
| ISNet [36] | 8.23 | 26.09 | 26.9 |
| MSHNet [45] | 11.25 | 107.89 | 15.8 |
| LW-IRSTNet [47] | 7.31 | 103.06 | 17.2 |
| ISTDUNet [46] | 8.04 | 415.43 | 9.9 |
| SARATRNet [48] | 75.06 | 45.73 | 37.5 |
| SAANet (Ours) | 11.22 | 105.92 | 16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, Y.; Long, H.; Sun, X.; Zhao, Y.; Chen, Z.; Ma, Y.; Zhao, R. SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference. Remote Sens. 2026, 18, 299. https://doi.org/10.3390/rs18020299
Liu Y, Long H, Sun X, Zhao Y, Chen Z, Ma Y, Zhao R. SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference. Remote Sensing. 2026; 18(2):299. https://doi.org/10.3390/rs18020299
Chicago/Turabian StyleLiu, Yuyuan, Hongfeng Long, Xinghui Sun, Yihui Zhao, Zhuo Chen, Yuebo Ma, and Rujin Zhao. 2026. "SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference" Remote Sensing 18, no. 2: 299. https://doi.org/10.3390/rs18020299
APA StyleLiu, Y., Long, H., Sun, X., Zhao, Y., Chen, Z., Ma, Y., & Zhao, R. (2026). SAANet: Detecting Dense and Crossed Stripe-like Space Objects Under Complex Stray Light Interference. Remote Sensing, 18(2), 299. https://doi.org/10.3390/rs18020299

