Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = amorphous metallic fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2196 KiB  
Article
Solar Fabric Based on Amorphous Silicon Thin Film Solar Cells on Flexible Textiles
by Jonathan Plentz, Uwe Brückner, Gabriele Schmidl, Annett Gawlik, Klaus Richter and Gudrun Andrä
Energies 2025, 18(6), 1448; https://doi.org/10.3390/en18061448 - 15 Mar 2025
Viewed by 924
Abstract
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An [...] Read more.
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An array of solar cells consisting of an a-Si:H layer stack with a highly p-type/intrinsic/highly n-type doping profile was deposited onto it. Silver was used as the back contact with indium tin oxide (ITO) as the front contact. The best solar cells show an efficiency of 3.9% with an open-circuit voltage of 876 mV and a short-circuit current density of 11.4 mA/cm2. The high series resistance limits the fill factor to 39%. The potential of the textile solar cells is shown by the achieved pseudo fill factor of 79% when neglecting the series resistance, resulting in a pseudo efficiency of 7.6%. With four textile solar cells connected in a series, an open-circuit voltage of about 3 V is achieved. Full article
(This article belongs to the Special Issue Recent Advances in Solar Cells and Photovoltaics)
Show Figures

Figure 1

17 pages, 4300 KiB  
Article
Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles
by Carlos David Grande-Tovar, Jorge Ivan Castro Castro, Lemy Vanessa Barba-Rosado, Paula A. Zapata, Daniel Insuasty and Carlos-Humberto Valencia-Llano
Molecules 2025, 30(2), 276; https://doi.org/10.3390/molecules30020276 - 12 Jan 2025
Cited by 1 | Viewed by 3348
Abstract
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and [...] Read more.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion. Combining these polymers optimizes their advantages while adding metal oxide nanoparticles like calcium oxide (CaO NPs) enhances antimicrobial properties by damaging bacterial membranes. In this study, we obtained the formation of CaO NPs by calcinating eggshells, which were mixed in a polymeric network of CS and PVA to obtain four different membrane formulations for subdermal tissue regeneration. The spherical nanoparticles measured 13.43 ± 0.46 nm in size. Their incorporation into the membranes broadened the hydroxyl bands in the Fourier transform infrared (FTIR) analysis at 3331 cm⁻1. X-ray diffraction (XRD) analysis showed changes in the crystalline structure, with new diffraction peaks at 2θ values of 7.2° for formulations F2, F3, and F4, likely due to the increased amorphous nature and concentration of CaO NPs. Additionally, higher CaO NPs concentrations led to a reduction in thermal properties and crystallinity. Scanning electron microscopy (SEM) revealed a heterogeneous morphology with needle-like structures on the surface, resulting from the uniform dispersion of CaO NPs among the polymer chains and the solvent evaporation process. A histological examination of the implanted membranes after 60 days indicated their biocompatibility and biodegradability, facilitated by incorporating CaO NPs. During the degradation process, the material fragmented and was absorbed by inflammatory cells, which promoted the proliferation of collagen fibers and blood vessels. These findings highlight the potential of incorporating CaO NPs in soft tissue regeneration scaffolds. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 4640 KiB  
Article
Effect of Amorphous Metallic Fibers on Thermal and Mechanical Properties of Lightweight Aggregate Cement Mortars Containing Carbon Nanotubes
by Se-Jin Choi, Jae-In Lee, Chae-Young Kim, Joo-Ho Yoon and Kwan-Ho Kim
Materials 2024, 17(22), 5449; https://doi.org/10.3390/ma17225449 - 8 Nov 2024
Viewed by 993
Abstract
Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous [...] Read more.
Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous metallic fibers (AMFs). A thermal property test indicated that the peak temperature of the C1A1 and C1A2 samples using AMFs was approximately 91.5–93.8 °C (approximately 57.2–61.1% higher than the C1A0 sample without AMFs). The time to reach the peak temperature was approximately 15–27 min (21.1–38.0% of that for the C1A0 sample). The 28-day split tensile strength of the sample using 20 kg/m3 of the AMFs was approximately 3.6–3.8 MPa (approximately 46.1–50.0% higher than that of CNT-only samples). The 56-day flexural strength of the C2A2 sample using 0.2% CNTs and 20 kg/m3 AMFs was the highest at approximately 11.2 MPa (approximately 24.4% higher than that of the control sample). The results of this study indicate that using CNTs and AMFs can enhance the strength and reduce the brittleness of lightweight aggregate cement mortar. Furthermore, the performance of the cement mortar is significantly improved when combined with AMFs compared to using CNTs alone. Full article
Show Figures

Figure 1

13 pages, 3626 KiB  
Article
Discovering Halite Traces on a Victim’s Clothing through a Forensic Geoscience Analytical Approach: A Suspicious Case in Italy
by Marcelo da Silveira Tortolero Araujo Lourenço, Rosa Maria Di Maggio, Chiara Germinario, Celestino Grifa, Francesco Izzo, Alessio Langella and Mariano Mercurio
Forensic Sci. 2024, 4(3), 396-408; https://doi.org/10.3390/forensicsci4030024 - 5 Aug 2024
Viewed by 1705
Abstract
This suspect case focuses on investigating the presence of halite (NaCl) crystals on the clothing of a deceased individual to determine whether they resulted from immersion in seawater or residual absorption after immersion (i.e., the crystals were left on the clothing after contact [...] Read more.
This suspect case focuses on investigating the presence of halite (NaCl) crystals on the clothing of a deceased individual to determine whether they resulted from immersion in seawater or residual absorption after immersion (i.e., the crystals were left on the clothing after contact with the victim’s wet body). Thirteen clothing samples were collected from various garments worn by the victim and were subjected to optical stereomicroscopy, Scanning Electron Microscopy (SEM), coupled with Energy Dispersive Spectroscopy (EDS), and Simultaneous Thermal Analysis (STA). Optical stereomicroscopy revealed numerous white-colored, vitreous, and greasy luster microcrystals dispersed between fabric fibers, with higher concentrations observed near the hem seams and metal rivets. These microcrystals exhibited predominantly cubic and irregular morphologies. Additionally, sandy particles and organic elements, such as plant fragments and micro seashells, were detected, indicative of coastal environment exposure. SEM-EDS analysis confirmed the presence mainly of sodium and chlorine in stoichiometric ratios consistent with halite, with crystals exhibiting amorphous, needle-shaped, or cubic morphologies. Furthermore, STA analysis identified weight loss events attributed to organic decomposition and halite decomposition at high temperatures, corroborating SEM-EDS findings. The distribution and characteristics of halite crystals, along with other trace elements, support the hypothesis of immersion in seawater while wearing clothing. Specifically, the higher concentrations of halite crystals near thicker fabric portions and metal rivets suggest slower drying rates and longer evaporation times, indicative of immersion rather than residual absorption after swimming. This finding not only helps in determining the victim’s exposure to seawater but also establishes a methodology for distinguishing between different sources of halite residue on clothing. Overall, the comprehensive mineralogical characterization of halite crystals on clothing samples, using best practices of forensic mineralogy, provides valuable forensic insights related to the circumstances that led to the victim’s death. This approach aided investigators in reconstructing the sequence of events, enhancing the accuracy of forensic reconstructions. Moreover, this study contributes to the broader field of forensic geoscience by demonstrating the practical applications of mineralogical analysis in criminal investigations, potentially guiding future research and improving investigative techniques in similar cases. Full article
(This article belongs to the Special Issue The Role of Forensic Geology in Criminal Investigations)
Show Figures

Figure 1

19 pages, 10793 KiB  
Article
CaCO3-Infused Carbon Fiber Aerogels: Synthesis and Characterization
by Cristina Mosoarca, Iosif Hulka, Pavel Șchiopu, Florina S. Rus and Radu Bănică
Ceramics 2024, 7(2), 777-795; https://doi.org/10.3390/ceramics7020051 - 6 Jun 2024
Viewed by 2310
Abstract
Carbon aerogels represent a distinctive category of high surface area materials derived from sol-gel chemistry. Functionalizing these aerogels has led to the development of composite aerogels with the potential for a wider range of applications. In this study, the technique of lyophilization was [...] Read more.
Carbon aerogels represent a distinctive category of high surface area materials derived from sol-gel chemistry. Functionalizing these aerogels has led to the development of composite aerogels with the potential for a wider range of applications. In this study, the technique of lyophilization was employed to fabricate aerogel composites consisting of inorganic salts and cellulosic fibers. Cellulose carbonization can occur through chemical dehydration by heat treatment in an inert atmosphere. X-ray diffraction analysis spectra and scanning electron microscopy images indicate that the formed polymeric composites contain partially carbonized cellulose fibers, amorphous carbon, and calcium carbonates. CaCO3 primarily forms through the reaction of CaCl2, which moistens cellulose or amorphous carbon fibers with CO2 in ammonia fumes. The water loss in 3D structures was analyzed using thermogravimetric analysis, Fourier Transform Infrared Spectroscopy, and ultraviolet-visible-near-infrared spectroscopy. Depending on the synthesis method, 3D structures can be created from partially or completely dehydrated cellulose fibers. The aerogels were examined for their ability to support the growth of bacterial biofilm and then adorned with metal silver and AgCl to produce bactericidal products. Due to their open pores and CaCO3 content, these aerogels can serve as durable and environmentally friendly thermal insulators with bactericidal properties, as well as a medium for absorbing acidic gases. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 5518 KiB  
Article
Microstructure and Phase Composition Changes in Polymer Fiber-Modified Thermacoat™ Lining Exposed to Contact with Liquid Steel
by Marcin Prochwicz, Malgorzata Pomorska, Lukasz Maj and Jerzy Morgiel
Coatings 2024, 14(2), 183; https://doi.org/10.3390/coatings14020183 - 31 Jan 2024
Cited by 1 | Viewed by 1094
Abstract
Multicomponent clay and cenosphere linings protecting ceramic parts exposed to contact with liquid metal during continuous steel casting (CSC) are intended to diminish thermo-mechanical stresses at the beginning of this process. They are effective in their role, but due to their brittle nature, [...] Read more.
Multicomponent clay and cenosphere linings protecting ceramic parts exposed to contact with liquid metal during continuous steel casting (CSC) are intended to diminish thermo-mechanical stresses at the beginning of this process. They are effective in their role, but due to their brittle nature, parts of them come off during transport or mounting. The admixture of polypropylene fibers into linings helps to alleviate problems with handling such parts, though the interaction of such a modified material with liquid steel should be re-assessed. The present experiment involved the preparation of a crucible with a Thermacoat™ (Vesuvius, Skawina, Poland) lining with the addition of Belmix™ (Belgian Fibers Group NV, Mouscron, Belgium) fibers and filling it with a drop of liquid steel. Next, the crucible was sectioned and the changes in its microstructure and phase composition were investigated with optical, scanning and transmission electron microscopy (OM/SEM/TEM) methods. This showed that the modified lining retained its non-wetting property against the steel of the non-modified material. The part with the lining, being in direct contact with the liquid steel, developed a highly porous layer filled with AlSiOx amorphous flakes with some larger blocky Al2O3 and SiO2 particles. Right below this, a heat-affected zone (HAZ) consisting of fine γ-Al2O3 platelets immersed in amorphous silica was formed. Some of the voids with a size corresponding to polymer fiber diameter carried significant carbon deposits on their walls. The performed investigation indicated that the polymer fiber-modified linings were capable of withstanding at least short-term contact with liquid steel without instantaneous defragmentation, i.e., they retained the good high-temperature properties of the non-modified material. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 4927 KiB  
Article
A Novel Nickel-Plated Carbon Fiber Insert in Aluminum Joints with Thermoplastic ABS Polymer or Stainless Steel
by Yoshitake Nishi, Kouhei Sagawa, Michael C. Faudree, Helmut Takahiro Uchida, Masae Kanda, Satoru Kaneko, Michelle Salvia, Yoshihito Matsumura and Hideki Kimura
Materials 2023, 16(17), 5777; https://doi.org/10.3390/ma16175777 - 23 Aug 2023
Cited by 1 | Viewed by 2054
Abstract
New types of hybrid aluminum joints: Al-acrylonitrile butadiene styrene (ABS) carbon fiber reinforced thermoplastic polymer (CFRTP) designated Al/Ni-CFP/ABS, and Al-18-8 Stainless steel, Al/Ni-CFP/18-8, by Ni-plated carbon fiber plug (Ni-CFP) insert not before seen in the literature have been fabricated. [...] Read more.
New types of hybrid aluminum joints: Al-acrylonitrile butadiene styrene (ABS) carbon fiber reinforced thermoplastic polymer (CFRTP) designated Al/Ni-CFP/ABS, and Al-18-8 Stainless steel, Al/Ni-CFP/18-8, by Ni-plated carbon fiber plug (Ni-CFP) insert not before seen in the literature have been fabricated. The goal is to take advantage of extremely high ~6 mm CF surface area for high adhesion, to enhance the safety level of aircraft and other parts. This is without fasteners, chemical treatment, or glue. First, the CFP is plated with Ni. Second, the higher melting point half-length is spot welded to the CFP; and third, the remaining half-length is fabricated. The ultimate tensile strength (UTS) of Al/Ni-CFP/ABS was raised 15 times over that of Al/ABS. Normalized cUTS according to CFP cross-section by Rule of Mixtures for cAl/Ni-CFP/18-8 was raised over that of cAl/Ni-CFP/18-8 from 140 to 360 MPa. Resistance energy to tensile deformation, UT, was raised 12 times from Al/ABS to Al/Ni-CFP/ABS, and 6 times from Al/CFP/18-8 to Al/Ni-CFP/18-8. Spot welding allows rapid melting followed by rapid solidification for amorphous metal structures minimizing grain boundaries. The Ni-coating lowers or counters the effects of brittle Al4C3 and FexC formation at the interface and prevents damage by impingement to CFs, allowing joints to take on more of the load. Full article
Show Figures

Figure 1

17 pages, 6316 KiB  
Article
Experimental Study on Compressive and Flexural Performance of Lightweight Cement-Based Composites Reinforced with Hybrid Short Fibers
by Cong-Thuat Dang, My Pham and Ngoc-Hieu Dinh
Materials 2023, 16(12), 4457; https://doi.org/10.3390/ma16124457 - 19 Jun 2023
Cited by 3 | Viewed by 1918
Abstract
This paper aims to experimentally study the compressive and flexural characteristics of cement-based composites developed for fabricating thin, lightweight, and high-performance components of buildings. Expanded hollow glass particles with a 0.25–0.5 mm particle size were used as lightweight fillers. Hybrid fibers made of [...] Read more.
This paper aims to experimentally study the compressive and flexural characteristics of cement-based composites developed for fabricating thin, lightweight, and high-performance components of buildings. Expanded hollow glass particles with a 0.25–0.5 mm particle size were used as lightweight fillers. Hybrid fibers made of amorphous metallic (AM) and nylon fibers were used to reinforce the matrix with a total volume fraction of 1.5%. The primary test parameters included the expanded glass-to-binder (EG/B) ratio, the fiber volume content ratio, and the length of the nylon fibers in the hybrid system. The experimental results demonstrate that the EG/B ratio and the volume dosage of the nylon fibers exhibited insignificant effects on the compressive strength of the composites. Additionally, the utilization of nylon fibers with a longer length of 12 mm resulted in a slight compressive strength reduction of approximately 13% compared to that of the 6 mm nylon fibers. Further, the EG/G ratio exhibited an insignificant effect on the flexural behavior of lightweight cement-based composites in terms of their initial stiffness, strength, and ductility. Meanwhile, the increasing AM fiber volume fraction in the hybrid system from 0.25% to 0.5% and 1.0% improved flexural toughness by 42.8% and 57.2%, respectively. In addition, the nylon fiber length significantly affected the deformation capacity at the peak load and the residual strength in the post-peak stage. Full article
(This article belongs to the Special Issue Geopolymers and Fiber-Reinforced Concrete Composites)
Show Figures

Figure 1

20 pages, 43002 KiB  
Article
High Performance Concretes with Highly Reactive Rice Husk Ash and Silica Fume
by Andres Salas Montoya, Chul-Woo Chung and Ji-Hyun Kim
Materials 2023, 16(11), 3903; https://doi.org/10.3390/ma16113903 - 23 May 2023
Cited by 11 | Viewed by 2906
Abstract
The search for new sources of high-quality non-crystalline silica as a construction material for high-performance concrete has attracted the interest of researchers for several decades. Numerous investigations have shown that highly reactive silica can be produced from rice husk, an agricultural waste that [...] Read more.
The search for new sources of high-quality non-crystalline silica as a construction material for high-performance concrete has attracted the interest of researchers for several decades. Numerous investigations have shown that highly reactive silica can be produced from rice husk, an agricultural waste that is abundantly available in the world. Among others, the production of rice husk ash (RHA) by chemical washing with hydrochloric acid prior to the controlled combustion process has been reported to provide higher reactivity because such a process removes alkali metal impurities from RHA and provides an amorphous structure with higher surface area. This paper presents an experimental work in which a highly reactive rice husk ash (TRHA) is prepared and evaluated as a replacement for Portland cement in high-performance concretes. The performance of RHA and TRHA was compared with that of conventional silica fume (SF). Experimental results showed that the increase in compressive strength of concrete with TRHA was clearly observed at all ages, generally higher than 20% of the strength obtained with the control concrete. The increase in flexural strength was even more significant, showing that concrete with RHA, TRHA and SF increased by 20%, 46%, and 36%, respectively. Some synergistic effect was observed when polyethylene–polypropylene fiber was used for concrete with TRHA and SF. The chloride ion penetration results also indicated that the use of TRHA had similar performance compared to that of SF. Based on the results of statistical analysis, the performance of TRHA is found to be identical to that of SF. The use of TRHA should be further promoted considering the economic and environmental impact that will be achieved by utilizing agricultural waste. Full article
Show Figures

Figure 1

29 pages, 12644 KiB  
Review
Metallic Glass-Reinforced Metal Matrix Composites: Design, Interfaces and Properties
by Konstantinos Georgarakis, Dina V. Dudina and Vyacheslav I. Kvashnin
Materials 2022, 15(23), 8278; https://doi.org/10.3390/ma15238278 - 22 Nov 2022
Cited by 17 | Viewed by 3443
Abstract
When metals are modified by second-phase particles or fibers, metal matrix composites (MMCs) are formed. In general, for a given metallic matrix, reinforcements differing in their chemical nature and particle size/morphology can be suitable while providing different levels of strengthening. This article focuses [...] Read more.
When metals are modified by second-phase particles or fibers, metal matrix composites (MMCs) are formed. In general, for a given metallic matrix, reinforcements differing in their chemical nature and particle size/morphology can be suitable while providing different levels of strengthening. This article focuses on MMCs reinforced with metallic glasses and amorphous alloys, which are considered as alternatives to ceramic reinforcements. Early works on metallic glass (amorphous alloy)-reinforced MMCs were conducted in 1982–2005. In the following years, a large number of composites have been obtained and tested. Metallic glass (amorphous alloy)-reinforced MMCs have been obtained with matrices of Al and its alloys, Mg and its alloys, Ti alloys, W, Cu and its alloys, Ni, and Fe. Research has been extended to new compositions, new design approaches and fabrication methods, the chemical interaction of the metallic glass with the metal matrix, the influence of the reaction products on the properties of the composites, strengthening mechanisms, and the functional properties of the composites. These aspects are covered in the present review. Problems to be tackled in future research on metallic glass (amorphous alloy)-reinforced MMCs are also identified. Full article
(This article belongs to the Special Issue Powder Metallurgy: Materials and Processing)
Show Figures

Figure 1

22 pages, 6424 KiB  
Article
Mechanical Performance of Amorphous Metallic Fiber-Reinforced and Rubberized Thin Bonded Cement-Based Overlays
by Ayesha Javed, Syed Asad Ali Gillani, Wasim Abbass, Muhammad Rizwan Riaz, Rashid Hameed, Safeer Abbas, Abdelatif Salmi and Ahmed Farouk Deifalla
Sustainability 2022, 14(13), 8226; https://doi.org/10.3390/su14138226 - 5 Jul 2022
Cited by 5 | Viewed by 2791
Abstract
To improve the flexural behavior of thin bonded cement-based overlays, this study was carried out on the use of repair material incorporating amorphous metallic fibers (AMFs) in combination with the rubber aggregates obtained from grinding of worn-out tires. For this study, sixteen mortar [...] Read more.
To improve the flexural behavior of thin bonded cement-based overlays, this study was carried out on the use of repair material incorporating amorphous metallic fibers (AMFs) in combination with the rubber aggregates obtained from grinding of worn-out tires. For this study, sixteen mortar mix compositions were prepared to contain AMFs and/or rubber aggregates to be used as overlay material while the substrate used was plain cement mortar. Rubber aggregates were incorporated at three different replacement ratios (i.e., 10%, 20% and 30%) by an equivalent volume of sand, and AMFs were added in three different dosages (i.e., 10 kg/m3, 20 kg/m3 and 30 kg/m3). In this study, composite beams (500 × 100 × 140 mm) comprising substrate (500 × 100 × 100 mm) and repair layer (500 × 100 × 40 mm) were prepared and investigated under flexural loading. Experimental results showed that the increase in rubber content resulted in a decrease compressive strength, flexural strength and modulus of elasticity. Rubberized fiber-reinforced cementitious composites (30R30F) exhibited higher flexural toughness and the flexural toughness improved up to 400%. Toughness and maximum deflection of composite beams enhanced significantly due to synergetic effect of AMF and rubber aggregates. It was observed that before peak load, rubber plays its role by delaying the micro-crack propagation. Results also revealed that the steel fibers reinforcement plays an important role in restraining the crack openings under flexure loading. In the post-peak region, steel fibers control the cracks from propagating further by bridging action and provide higher post-peak residual strength. Full article
(This article belongs to the Special Issue Concrete with Recycled and Sustainable Materials)
Show Figures

Figure 1

13 pages, 3323 KiB  
Article
The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue
by Yajie Guo, Yongjie Liu, Yanrong Liu, Chunrui Zhang, Kelun Jia, Jibo Su and Ke Wang
Catalysts 2022, 12(7), 739; https://doi.org/10.3390/catal12070739 - 4 Jul 2022
Cited by 9 | Viewed by 2865
Abstract
Non-noble-metal-based chalcogenides are promising candidates for hydrogen evolution reaction (HER) by harnessing the architectural design and the synergistic effect between the elements. Herein, a porous bimetallic selenide (NiFeSe) nanocube deposited on carbon fiber paper (NiFeSe/CFP) was synthesized through a facile selenization reaction based [...] Read more.
Non-noble-metal-based chalcogenides are promising candidates for hydrogen evolution reaction (HER) by harnessing the architectural design and the synergistic effect between the elements. Herein, a porous bimetallic selenide (NiFeSe) nanocube deposited on carbon fiber paper (NiFeSe/CFP) was synthesized through a facile selenization reaction based on Prussian blue analogues (PBAs) as precursors. The NiFeSe/CFP exhibited excellent HER activity with an overpotential of just 186 mV for a current density of 10 mA cm−2 in 1.0 M KOH at ambient temperature, similar to most of the state-of-the-art transition metal chalcogenides. The corresponding Tafel slope was calculated to be 52 mV dec−1, indicating fast discharge of the proton during the HER. Furthermore, the catalyst could endure long-term catalytic tests and showed remarkable durability. The enhanced electrocatalytic performance of NiFeSe/CFP is attributed to the unique 3D porous configuration inherited from the PBA templates, enhanced charge transfer occurring at the heterogeneous interface due to the synergistic effect between the bimetallic phases, and the high conductivity improved by the formation of amorphous carbon shells during the selenization. These findings prove that the combination of inexpensive metal–organic framework precursors and hybrid metallic compounds is a feasible way to realize the performance enhancement of non-noble-metal-based chalcogenides towards alkaline HER. Full article
Show Figures

Figure 1

9 pages, 3691 KiB  
Article
Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers
by Shuang Su, Yongjiang Huang, Jiapeng Zhang, Lunyong Zhang, Huan Wang, Zhiliang Ning and Jianfei Sun
Metals 2022, 12(6), 918; https://doi.org/10.3390/met12060918 - 27 May 2022
Cited by 7 | Viewed by 1945
Abstract
Here, melt-extracted Ni- and Fe-based amorphous metallic fibers (AMFs) were annealed below their glass transition temperatures. The tensile behaviors and microstructures of the melt-extracted and the annealed AMF samples were studied. For melt-extracted Ni- and Fe-based samples, the difference of fracture angles can [...] Read more.
Here, melt-extracted Ni- and Fe-based amorphous metallic fibers (AMFs) were annealed below their glass transition temperatures. The tensile behaviors and microstructures of the melt-extracted and the annealed AMF samples were studied. For melt-extracted Ni- and Fe-based samples, the difference of fracture angles can be attributed to their difference of parameter α in the unified tensile fracture criterion. The revolution in the microstructure and mechanical properties induced by annealing treatment has been interpreted in detail. Prolonging the annealing time or increasing the annealing temperature can lead to an increase in fracture stresses of both Ni- and Fe-based AMFs. It was demonstrated that the increase in the fracture stresses of annealed AMFs is caused by the free volume annihilation in annealing processing. Full article
(This article belongs to the Special Issue Development and Application of Microscale Metallic Fibers)
Show Figures

Figure 1

14 pages, 5468 KiB  
Article
Penetration Gain Study of a Tungsten-Fiber/Zr-Based Metallic Glass Matrix Composite
by Feng Zhou, Chengxin Du, Zhonghua Du, Guangfa Gao, Chun Cheng and Xiaodong Wang
Crystals 2022, 12(2), 284; https://doi.org/10.3390/cryst12020284 - 18 Feb 2022
Cited by 13 | Viewed by 2998
Abstract
A tungsten fiber/Zr-based bulk metallic glass matrix composite (Wf/Zr-MG) is a potential penetrator material. To compare and analyze the penetration behavior of Wf/Zr-MG and a tungsten heavy alloy (WHA), a penetration experiment into the 30CrMnMo homogeneous armor target plate (RHA) is conducted in [...] Read more.
A tungsten fiber/Zr-based bulk metallic glass matrix composite (Wf/Zr-MG) is a potential penetrator material. To compare and analyze the penetration behavior of Wf/Zr-MG and a tungsten heavy alloy (WHA), a penetration experiment into the 30CrMnMo homogeneous armor target plate (RHA) is conducted in the present paper, by using a 37 mm smooth bore artillery with an impact velocity of 1550 ± 40 m/s. Unlike the penetrator made of WHA, the self-sharpening phenomenon was observed in the nose of the Wf/Zr-MG rod. The experimental results indicate that the penetration ability of Wf/Zr-MG rod is approximately 10% higher than that of the WHA rod when the impact velocity is 1550 ± 40 m/s. The combined findings on the microscopic morphology, composition, hardness distribution around the crater, and the macroscopic structure of the penetrator residual show that under this impact velocity, the Wf/Zr-MG material shows amorphous gasification. The Wfs outside the rod shows bending and backflow, resulting in the maintenance of the self-sharpening nose of the penetrator during the penetration process. Moreover, the hardness peak around the crater formed by the Wf/Zr-MG rod is lower, and the penetration crater is straighter, indicating that the Wf/Zr-MG rod has a stronger slag removal ability, lower penetration resistance, and higher penetration efficiency. It is an ideal penetrator material. Full article
Show Figures

Figure 1

16 pages, 4581 KiB  
Article
Electromagnetic Wave Shielding Properties of Amorphous Metallic Fiber-Reinforced High-Strength Concrete Using Waveguides
by Sangkyu Lee, Gyuyong Kim, Hongseop Kim, Minjae Son, Yaechan Lee, Yoonseon Choi, Jongmyung Woo and Jeongsoo Nam
Materials 2021, 14(22), 7052; https://doi.org/10.3390/ma14227052 - 20 Nov 2021
Cited by 7 | Viewed by 2586
Abstract
In this study, high-strength concrete containing hooked-end steel or amorphous metallic fibers was fabricated, and the electrical conductivity and electromagnetic shielding effectiveness were evaluated after 28 and 208 days based on considerations of the influences of the moisture content. Amorphous metallic fibers, which [...] Read more.
In this study, high-strength concrete containing hooked-end steel or amorphous metallic fibers was fabricated, and the electrical conductivity and electromagnetic shielding effectiveness were evaluated after 28 and 208 days based on considerations of the influences of the moisture content. Amorphous metallic fibers, which have the same length and length/equivalent diameter ratio as hooked-end steel fibers, were favored for the formation of a conductive network because they can be added in large quantities owing to their low densities. These fibers have a large specific surface area as thin plates. The electromagnetic shielding effectiveness clearly improved as the electrical conductivity increased, and it can be expected that the shielding effectiveness will approach the saturation level when the fiber volume fraction of amorphous metallic fibers exceeds 0.5 vol.%. Meanwhile, it is necessary to reduce the amount of moisture to conservatively evaluate the electromagnetic shielding performance. In particular, when 0.5 vol.% of amorphous metallic fibers was added, a shielding effectiveness of >80 dB (based on a thickness of 300 mm) was achieved at a low moisture content after 208 days. Similar to the electrical conductivity, excellent shielding effectiveness can be expected from amorphous metallic fibers at low contents compared to that provided by hooked-end steel fibers. Full article
(This article belongs to the Special Issue Research of Mechanical Behavior of Cement and Concrete Composites)
Show Figures

Figure 1

Back to TopTop