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Abstract: Non-noble-metal-based chalcogenides are promising candidates for hydrogen evolution
reaction (HER) by harnessing the architectural design and the synergistic effect between the elements.
Herein, a porous bimetallic selenide (NiFeSe) nanocube deposited on carbon fiber paper (NiFeSe/CFP)
was synthesized through a facile selenization reaction based on Prussian blue analogues (PBAs) as
precursors. The NiFeSe/CFP exhibited excellent HER activity with an overpotential of just 186 mV
for a current density of 10 mA cm−2 in 1.0 M KOH at ambient temperature, similar to most of the
state-of-the-art transition metal chalcogenides. The corresponding Tafel slope was calculated to be
52 mV dec−1, indicating fast discharge of the proton during the HER. Furthermore, the catalyst could
endure long-term catalytic tests and showed remarkable durability. The enhanced electrocatalytic
performance of NiFeSe/CFP is attributed to the unique 3D porous configuration inherited from
the PBA templates, enhanced charge transfer occurring at the heterogeneous interface due to the
synergistic effect between the bimetallic phases, and the high conductivity improved by the formation
of amorphous carbon shells during the selenization. These findings prove that the combination of
inexpensive metal–organic framework precursors and hybrid metallic compounds is a feasible way to
realize the performance enhancement of non-noble-metal-based chalcogenides towards alkaline HER.

Keywords: transition metal chalcogenides; hydrogen-evolution reaction; Prussian blue analogue;
multi-component hybrid structures

1. Introduction

Water splitting powered by intermittent solar and wind energy is widely recognized
as a sustainable clean energy storage system because of the depletion of fossil fuels [1–5].
The hydrogen evolution reaction (HER), as an indispensable half-reaction to water splitting,
requires highly active electrocatalysts to ensure high energy efficiency [6,7]. Although
precious metals, including Pt, Ir, Ru, Pd, and Rh and their alloys, exhibit favorable HER
activity, their practical application is hampered owing to their low reserves and high
cost [8,9]. The design of earth-abundant and cost-effective catalysts with outstanding
performance has received considerable effort.

Currently, transition metal sulfides [7,10], phosphides [6,11], nitride [12–14] and se-
lenides [15,16] are the most investigated catalysts for the HER. Among these, the transition
metal chalcogenides (TMCs) have shown great potential as a large-scale applicable catalyst
benefiting from their excellent intrinsic activity and stability in both acidic and alkaline
solutions [17,18]. However, the state-of-the-art TMC catalysts still required relatively high
overpotentials, particularly in a strong basic electrolyte. In previous works, we have found
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that the catalytic performance of NiS2 and NiSe2 could be remarkably enhanced by tuning
the morphology [19,20]. Apart from this strategy, it has been recently proven that multi-
component hybrid structures exhibited enhanced HER performance compared with their
single-component counterparts owing to the beneficial electronic interaction and synergistic
effects between the different interfaces [21–23]. For instance, FeNiSe nanosheets developed
through a selenization process on vertically oriented layered double hydroxides (LDHs)
exhibit better HER activity than Ni3Se2 [16], implying the incorporation of Fe atoms is
a feasible method to modify the HER performance. Similarly, Co-doped nickel selenide
derived from zeolitic imidazolate framework-67 (ZIF-67) precursor shows higher catalytic
activity than the nickel selenide [22]. The synergistic effects of multi-phases, the porous
nanostructures stemming from the metal–organic framework (MOF) and the integration
of catalysts with conductivity substrates were found to accelerate HER. These results sug-
gest that a combination of rational chemical and structural design is a potential way to
further improve the performances of TMC catalysts. Despite widely used MOFs such as
ZIF [22,24,25] and MIL [26,27] as precursors, Prussian blue analogues (PBAs) are a kind
of MOF with a relatively low price. It has been demonstrated that the construction of
three-dimensional (3D) architectures from TMC nanomaterials prepared with PBAs as a
template also effectively boosted the HER activity due to their relative abundance of highly
active sites brought about by high porosity [28–30].

Enlightened by the literature mentioned above, in the present work, we synthesized
nickel–iron diselenide (NiFeSe) nanocubes (NCs), which were converted from PBA precur-
sors deposited on carbon fiber paper (CFP). For HER in 1.0 M KOH at ambient temperature,
the NiFeSe/CFP catalyst requires an overpotential of only 186 mV to sustain a current
density of 10 mA cm−2. The remarkable activity of the synthesized NiFeSe/CFP can be
assigned to its appropriate electronic structure and desired nanostructure inherited from
the PBA precursor. Moreover, the NiFeSe/CFP displayed high stability during 20 h in
alkaline HER conditions. Its good stability is believed to benefit from the residual carbon
shell that serves as a protection layer to prevent structural change during electrocatalysis.

2. Results and Discussion
2.1. Microstructure and Phase Identification

As demonstrated here, the NiFe selenides based on PBA CNs were facilely synthesized
by selenizing pre-deposited PBA NiFe NCs (Figure 1). First, the typical FESEM images
displayed successful synthesis of NiFe PBA NCs with a uniform size distribution, well-
defined cubic morphology and smooth surface through the CV electrochemical deposition
method (Figure 2a,b). After selenization treatment, the NiFe PBA NCs were converted
to NiFeSe NCs, which inherited the uniform cubic morphology with a rough surface
(Figure 2c). A single cube consisted of multiple particles with an average size of ~25 nm and
visible hollow voids, as can be seen in the TEM images (Figure 2d,e). The transformations
from PBA precursors to porous nanostructures are commonly observed during pyrolysis
processes due to the nonequilibrium interdiffusion process [31]. On the other hand, the
pyrolysis gas (NH3, H2O) gradually released in the selenization promotes the formation
of a hierarchical porous structure, which facilitates the efficient diffusion of electrolytes
and benefits the exposure of more active sites [24]. Notably, the TEM images also revealed
the existence of an amorphous carbon shell about 5 nm outside the cube. The residual
carbon was also reported in previous works based on PBA precursors [32]. The HRTEM
image revealed distinct lattice fringes with interplanar spacings of 0.268 nm and 0.181 nm,
respectively, which corresponded to the (210) and (311) planes of the NiSe2. Furthermore,
the interplanar distances of 0.270 nm and 0.265 nm were attributed to the (112) and (112)
planes of the Fe2NiSe4, respectively (Figure 2f). The high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) and associated elemental mapping
images confirmed that the Se, Ni, Fe, O and C elements were distributed evenly in NiFeSe
NCs (Figure 2g). The corresponding EDS spectrum is presented in Figure S1. The atomic
ratio of Ni, Fe and Se was 3.29:5.59:17.77. Additionally, FeSe NCs as control-group samples
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were also synthesized by similarly altering the precursor (Figure S2a,b). The magnified
SEM images demonstrated that the FeSe NCs were uniformly deposited on the CFP. The
samples kept a Fe/Se ratio of ~2:1 according to the EDS characterization (Figure S2c),
suggesting that FeSe2 NCs were successfully prepared.
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(d,e) TEM, and (f) HRTEM images of NiFeSe/CFP. (g) HAADF-STEM and elemental mapping images
of selected NiFeSe NCs.
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The phase composition of the selenides for NCs was further investigated. In the
XRD pattern of the NiFe-based precursor, the distinctive peaks at 17.7◦, 25.2◦ and 35.9◦,
respectively, correspond to the (200), (220) and (400) planes of Ni2Fe(CN)6, as shown in
Figure S3 (ICDD: 01-075-0037), which is in accordance with a previous report [33]. The NiFe-
based precursor completely changed into bimetallic selenides after selenization, which was
verified via the XRD pattern of NiFeSe/CFP (Figure 3a). The NiFeSe/CFP catalyst was well
indexed to a mixture of the cubic-pyrite NiSe2 (ICDD: 04-003-1991) and Fe2NiSe4 (ICDD:
01-089-1968) crystal phases. The peaks at 2θ values of 33.6◦, 36.9◦ and 50.7◦ were attributed
to the (210), (211) and (311) planes of NiSe2. The peaks at 2θ values of 33.2◦, 33.9◦ and
44.0◦ were attributed to the (202), (114) and (114) planes of Fe2NiSe4. This result further
confirmed the formation of NiSe2/Fe2NiSe4 on CFP, as revealed by the HRTEM image. For
comparison, the crystal structure of the FeSe/CFP was also characterized. The peaks at
2θ values of 34.9◦, 36.2◦ and 48.2◦ were assigned to the (111), (120) and (211) planes FeSe2
(Figure S2d). Generally, during the selenization process, the cyanide tends to decompose at
~300 ◦C. The metal ions are reduced by the liberation of CN groups to the metallic state
and then react with Se to form heterometallic selenides [34].

The chemical composition and valence states of the as-prepared NiFeSe/CFP were
further examined via XPS. The survey spectrum in Figure S4 confirmed the existence of Ni,
Fe, Se and O elements in the NiFeSe NCs, which coincided with the result of EDS results.
In addition, the C and N elements were also detected, which came from the decomposition
of the CN group in the PBA precursors. Although the appearance of C peaks in the survey
spectra may also be related to the CFP substrates, the existence of N species commonly
indicates the formation of residual carbon, according to the results provided by Varnell
et al. [35]. For the Ni 2p3/2 region (Figure 3b), the peaks at ~853.5 eV corresponded to
the Ni2+ species, which further verified the formation of NiSe2. The binding energies
of Ni 2p3/2 located at 853.9 and 855.7 eV, respectively, are the characteristics of nickel
oxides [36,37]. For the Fe 2p3/2 region (Figure 3c), the deconvoluted peak centered at
707.0 eV was assigned to the Fe-Se bonds; the peaks at 708.5 eV and 710.6 eV were deemed
as the Fe-O bonds [38]. In the Se 3d high-resolution spectrum (Figure 3d), the peak at
58.4 eV was ascribed to the oxidation state of the Se species caused by surface oxidation in
ambient air, while the major peak at 55.4 eV (Se 3d5/2) was attributed to the Se bonded to
Ni or Fe in the form of metallic selenide. The O 1s high-resolution spectrum (Figure 3e)
was deconvoluted into three peaks, which could be explained by the coexistence of Se-O,
M-O (M=Ni and Fe) and hydroxyl (-OH) groups. The formation mechanism of -OH groups
is not clear and deserves to be investigated in future work, but it is considered to promote
the absorption of H2O in alkaline solutions due to hydrogen bonding effects [39].
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2.2. HER Performance Testing

We investigated the HER activities of NiFeSe/CFP in 1.0 M KOH at room temperature.
Figure 4a shows the LSV polarization curves of catalyzed HER at a scan rate of 5 mV s−1.
It can be easily observed that the bare CFP (black curves) showed a very small capaci-
tive and no significant faradic current at 500 mV applied potential. Relatively, the NiFe
PBA/CFP (green curves) and FeSe/CFP (red curves) required the overpotential of 445 mV
and 423 mV, respectively, to drive the current density of 10 mA cm−2. The NiFeSe/CFP
displayed a substantially smaller overpotential of 186 mV at 10 mA cm−2, as predicted
(purple curves). This value is comparable to most of the state-of-the-art TMCs catalysts
(Table S2). Notably, there is still a gap between the NiFeSe/CFP and industrial Ra-Ni [40];
thus, further enhancement of the performance of TMCs is urgently needed. Compared
with FeSe/CFP, NiFeSe/CFP exhibited remarkably enhanced activity, indicating that the
synergetic electronic interactions between the different components formed a better elec-
tronic structure and reduced HER energy barriers [41]. To assess HER kinetics, the Tafel
slope was calculated. The observed Tafel slope for NiFe PBA/CFP was around 116 mV
dec−1, as shown in Figure 4b. FeSe/CFP had a Tafel slope of roughly 81 mV dec−1, whereas
NiFeSe/CFP had a Tafel slope of 52 mV dec−1. The Volmer–Heyrovsky mechanism [42],
which consists of a quick discharge of a proton and a slow coupling of the discharged
proton with an extra proton [Had + H3O+ + e− → H2 + H2O], had a minimal Tafel slope
of 51.63 mV dec−1. As per the EIS, the faster electrode reaction kinetics of NiFeSe/CFP
was more apparent. At an overpotential of 532 mV, the Nyquist plots of NiFeSe/CFP
(purple curves), FeSe/CFP (red curves) and NiFe PBA/CFP (green curve) are shown in
Figure 4c. The EIS analysis suggested that the NiFeSe/CFP electrode had a lower charge
transfer resistance (Rct 4.6 Ω) than FeSe/CFP (6.9 Ω) and NiFe PBA/CFP (12.5 Ω), implying
that the electron transfer and catalytic kinetics during HER are favorable. This is due to
the distinctive electronic structure and the ohmic contact of the NiFeSe/CFP [43]. For an
advanced electrocatalyst, a large surface area is required. We tested the electrochemical
Cdl of the catalysts using the CV method (Figure S5) to evaluate the ECSA. As shown in
Figure 4d, the Cdl of NiFeSe/CFP was 0.41 mF cm−2, which was larger than FeSe/CFP
and NiFe PBA/CFP. The same sequence is also observed in Figure S6, in which LSV curves
are normalized against the ECSA. The mass activity for HER at selected potentials for
NiFeSe/CFP possessed the highest value of 24.5 A g−1, which significantly outperforms
NiSe2/CFP and NiS2/CFP, as reported in our previous works [19,20].

Robust operational stability is another crucial prerequisite for an HER catalyst. We
used CV and constant current measurements to evaluate the NiFeSe/CFP electrode for this
purpose. After 1000 CV cycles, the polarization curve was almost identical to that of the
initial one (Figure 4e, solid lines), showing a very small negative shift (Figure 4e, dotted
lines). Moreover, the potential in 1.0 M KOH needed to achieve 10 mA cm−2 increased
slightly at first 1 h but stayed stable within 20 h (Figure 4f). The remaining amorphous
carbon may enhance durability [44,45]. The morphology, composition and structure of the
NiFeSe/CFP after the long-time HER operations for 20 h were systematically investigated.
It can be seen that NiFeSe NCs preserved their initial morphology after the stability test
(Figure S7), regardless of the rougher surface. The elemental mapping images (Figure 5a)
demonstrated an even distribution of the Ni, Fe, Se and O elements in NCs, implying
no aggregation of particles during the reaction. The corresponding EDS spectrum in
FESEM (Figure 5b) displayed an acceptable proportional change in atomic composition
compared with the selenides before HER. Additionally, the phase structure remained
virtually unaltered, as confirmed by XRD (Figure 5c). These facts clearly pointed to the
high HER stability of the NiFeSe/CFP. Similarly, the comparison between the XPS fine
spectra before and after testing showed no significant change with respect to Ni 2p, Fe 2p
and Se 3d of NiFeSe/CFP (Figure 5d–f), apart from the increase in Se-O peaks due to the
surface oxidation of Se in strongly alkaline solutions [46].
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The outstanding HER performance of the NiFeSe/CFP can be mainly attributed to
the following factors: (i) the porous architecture of NiFeSe/CFP inherited from the PBA
precursors enable the larger number of exposed active sites; (ii) the synergistic effects in the
bimetallic phase enhance charge transfer occurring at the heterogeneous interface; (iii) the
existence of amorphous carbon layer improves the conductivity and reaction kinetics;
(iv) the surface -OH groups promote the adsorption of initial H2O, accelerating the HER
catalytic activity [47–49].
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3. Materials and Methods
3.1. Preparation of Electrodes

The CFP substrates were cleaned via ultrasonication with Milli-Q water for 15 min.
CFP pretreatment and subsequent electrodeposition were performed with an electrochemi-
cal workstation (Shanghai Chenhua, CHI 760E) in a classical three-electrode configuration
using a platinum wire and Ag/AgCl electrode (saturated with KCl) as counter electrode
and reference electrode, respectively. To enhance hydrophilicity, the CFP electrodes were
activated by conducting cyclic voltammetry (CV) treatments in 2.0 M H2SO4 aqueous
solution with a scan range from 0.2 to 1.2 V (vs. Ag/AgCl) at a rate of 50 mV s−1 until a
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stable CV profile was reached. The samples were further rinsed thoroughly with Milli-Q
water before electrodeposition of the PBA precursor. The exposed geometric area of the
CFP electrodes was 1.0 cm2.

3.2. Electrodeposition of NiFe PBA/CFP and Fe PBA/CFP Precursors

NiFe PBA catalyst was electrodeposited onto CFP substrates in a potassium nitrate
buffer containing Ni(II) and Fe(III) ions. The 0.6 mM nickel(II) nitrate (Ni(NO3)2·6H2O,
99.5%, Aladdin, Shanghai, China) and0.6 mM iron(III) cyanide (K3Fe(CN)6, 99.5%, Al-
addin, Shanghai, China) were sequentially added into the potassium nitrate buffer solution
(KNO3, 99.5%, Aladdin, Shanghai, China). The NiFe PBA precursors were deposited on
a CFP substrate for 200 consecutive cycles at 50 mV s−1 under CV between 0.4 and 1.2 V
(vs. Ag/AgCl). The electrode was cleaned thoroughly using Milli-Q water and then con-
ditioned in saturated KNO3 solution for 24 h. After deposition, the product was washed
with Milli-Q water and ethanol, successively, for a few cycles and dried at 60 ◦C for 8 h
before selenization. Fe PBA/CFP precursors were electrodeposited onto CFP substrates
in a similar way to prepare FeSe/CFP, except for replacing nickel(II) nitrate with iron(III)
chloride (FeCl3·3H2O, 99.5%, Aladdin, Shanghai, China).

3.3. Fabrication of NiFeSe/CFP and FeSe/CFP Electrocatalysts

The as-deposited NiFe PBA/CFP (downstream side) and 80 mg of Se (99.9%, Aladdin,
Shanghai, China) powder (upstream side) were placed in a porcelain boat in a tube furnace.
The samples were calcinated at 450 ◦C for 30 min with a heating ramp of 5 ◦C min−1 under
an Ar atmosphere. The fabrication of the FeSe/CFP catalyst was similar to that of the
NiFeSe/CFP catalyst.

3.4. Material Characterizations

The morphologies and crystal structures of NiFeSe/CFP were investigated using
field-emission scanning electron microscopy (FESEM, S4800, Hitachi, Tokyo, Japan) and
transmission of electron microscopy (TEM, FEI Talos F200, Tokyo, Japan). The high-
resolution TEM (HRTEM) analysis and elemental mapping were conducted with the FEI
Talos F200. The compositions of the productions were determined by energy-dispersive
spectroscopy (EDS). A D8 Advance, Bruker Phaser X-ray diffractometer was used to
characterize the X-ray diffraction (XRD) patterns using Cu Kα radiation in the region
of 15◦~80◦. X-ray photoelectron spectroscopy (XPS, PHI-5400, Physical Electronics, Inc.,
Chanhassen, MN, USA) was used to reveal the chemical and elemental information.

3.5. Electrochemical Measurements

To evaluate the electrocatalytic performance of the as-prepared samples for HER, a
standard three-electrode system was used, and the tests were conducted with an electro-
chemical workstation (Shanghai Chenhua, CHI 760E). The CFP substrates loaded with
NiFeSe NCs (0.5 mg cm−2) were adopted as the working electrodes. A platinum mesh and
saturated calomel electrode (SCE) were serving as the counter and reference electrodes,
respectively. All electrochemical tests were performed in 1.0 M KOH electrolyte at room tem-
perature. All potentials shown in this work were calculated with respect to the reversible
hydrogen electrode (RHE) using the equation of Evs RHE = Evs SCE + ESCE + 0.059 pH. At a
scan rate of 5 mV s−1, the activity of catalysts towards HER was evaluated using linear
sweep voltammetry (LSV) from 0.8 V to 0 V vs. RHE. Tafel plots were determined to assess
the reaction kinetics by plotting η vs. the logarithm to base 10 of current density. The Tafel
slope was extracted from the Tafel equation, η = b log j + a, where b is the Tafel slope and
j denotes the current density. Electrochemical impedance spectroscopy (ElS) was carried
out by applying a 532 mV overpotential with an amplitude of 5 mV across a frequency
window of 100 kHz to 0.1 Hz. The double-layer capacitance (Cdl) obtained utilizing CV
scans between 0.85 and 0.91 V vs. RHE at varied scan speeds ranging from 5 to 200 mV s−1,
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which was employed to estimate the electrochemical surface area (ECSA), was calculated
by Cdl according to the following equation [50,51]:

ECSA = Cdl/Cs, (1)

The specific capacitance (Cs) of TMCs catalysts is typically at 0.04 mF cm−2. These
measured values are summarized in Table S1. The mass activity of each sample was
calculated with the following formula:

mass activity = j/m, (2)

where m is the mass loading. The mass activity calculated in this study was obtained at the
current density with 200 mV HER overpotentials. In addition, 1000 CV cycles and constant
current measurements were conducted for long-term stability.

4. Conclusions

In summary, we synthesized a hierarchical nanostructure of a NiFeSe/CFP catalyst
where the porous NC films converted from the PBAs precursors were uniformly grown
on CFP. Benefiting from the highly porous configuration stemming from the PBA and
the manipulating of hybridization of multi-component metallic selenides, the as-prepared
NiFeSe/CFP displayed outstanding catalytic activity for HER in 1.0 M KOH. A current
density of 10 mA cm−2 was derived by a small overpotential of 186 mV, making it one
of the most promising transition metal chalcogenides HER catalysts. The Tafel slope
was only 52 mV dec−1, revealing the reaction process followed the Volmer–Heyrovsky
mechanism. The formation of a residual carbon layer could effectively promote the electron
transfer ability of the NiFeSe/CFP for which the Rct was 4.6 Ω. It provides a promising
approach to fabricating a high-performance and durable catalyst for HER by using non-
noble bimetallic chalcogenides.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal12070739/s1, Figure S1: EDS spectrum of NiFeSe/CFP in
FESEM; Figure S2: (a,b) FESEM images, (c) EDS spectrum, (d) XRD pattern of FeSe/CFP and the
reference pattern of FeSe2 (brown, ICDD: 97-004-2115). The peaks marked with black dots correspond
to CFP substrate; Figure S3: XRD spectra of NiFe PBA/CFP and the reference pattern of Ni2Fe(CN)6
(green, ICDD: 01-075-0037). The peaks marked with black dots correspond to CFP substrate; Figure S4:
survey XPS spectra of NiFeSe/CFP; Figure S5: CV curves in the double layer region with various
scan rates from 5 to 200 mV s−1 for (a) NiFeSe/CFP, (b) FeSe/CFP and (c)NiFe PBA/CFP; Figure S6:
the ECSA normalized HER curves; Figure S7: (a,b) FESEM and (c,d) TEM images of NiFeSe/CFP
after HER stability test; Table S1: ECSA determination of the CFP supported nanocubes; Table S2:
comparison of the HER electrochemical performance overpotentials (η10) and Tafel slopes for similar
composite materials reported in the literature [40,52–61].
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