Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,863)

Search Parameters:
Keywords = amorphous forms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2004 KB  
Article
Leucine Protects Dry Powders for Inhalation Against Irreversible Moisture-Induced Aggregation
by Evalyne M. Jansen, Luke van der Koog, Henderik W. Frijlink and Wouter L. J. Hinrichs
Pharmaceutics 2025, 17(11), 1391; https://doi.org/10.3390/pharmaceutics17111391 (registering DOI) - 27 Oct 2025
Abstract
Background: Pulmonary administration offers a promising route for certain biologics, particularly when treating respiratory diseases. Spray drying is widely employed to produce inhalable powders with the biologics incorporated in a stabilizing amorphous sugar. Hydrophobic amino acids such as leucine are frequently added to [...] Read more.
Background: Pulmonary administration offers a promising route for certain biologics, particularly when treating respiratory diseases. Spray drying is widely employed to produce inhalable powders with the biologics incorporated in a stabilizing amorphous sugar. Hydrophobic amino acids such as leucine are frequently added to improve dispersibility. Objectives: While the aerodynamic benefits of leucine are well established, its influence on irreversible moisture-induced dry powder particle aggregation and protein stability during storage remains less evaluated. Methods: In this work, inulin-based powders with and without 4 wt-% leucine were spray dried and stored at 43%, 58%, 69%, and 75% relative humidity (RH) at 20 ± 2 °C. Results: Immediately after drying, both formulations displayed comparable physicochemical characteristics. However, during storage of inulin-only formulations, dry powder particles showed viscous flow and formed big irreversible aggregates after storage at an RH of 58% and above, whereas leucine-containing powders remained intact across all tested conditions up to 20 days. Protein stability was assessed using lactate dehydrogenase (LDH) and β-galactosidase (β-gal) as model proteins. At 43% RH, the Tg remained above the storage temperature, and both LDH and β-gal retained their enzymatic activity for up to 20 days. At 75% RH, however, the Tg dropped to below storage temperature, resulting in a loss of stability for LDH, consistent with its reliance on vitrification. In contrast, β-gal maintained its activity at 75% RH, indicative of stabilization through water replacement. Conclusions: Overall, these results demonstrate that leucine enhances the physical stability of inulin powders by preventing irreversible aggregation under humid conditions. However, this effect does not extend to protecting proteins reliant on vitrification. These findings highlight the potential of inulin and leucine to reduce the need for stringent storage conditions of biologics. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

20 pages, 4446 KB  
Article
Spray-Dried Inclusion Complex of Apixaban with β-Cyclodextrin Derivatives: Characterization, Solubility, and Molecular Interaction Analysis
by Da Young Song, Jeong Gyun Lee and Kyeong Soo Kim
Polymers 2025, 17(21), 2850; https://doi.org/10.3390/polym17212850 (registering DOI) - 26 Oct 2025
Abstract
Apixaban (APX) is a direct oral anticoagulant with low aqueous solubility and limited bioavailability. This study aimed to improve APX solubility by forming spray-dried inclusion complexes (ICs) with β-cyclodextrin (β-CD) derivatives. ICs were prepared using hydroxypropyl-β-CD (HP-β-CD), sulfobutylether-β-CD (SBE-β-CD), randomly methylated-β-CD (RM-β-CD), and [...] Read more.
Apixaban (APX) is a direct oral anticoagulant with low aqueous solubility and limited bioavailability. This study aimed to improve APX solubility by forming spray-dried inclusion complexes (ICs) with β-cyclodextrin (β-CD) derivatives. ICs were prepared using hydroxypropyl-β-CD (HP-β-CD), sulfobutylether-β-CD (SBE-β-CD), randomly methylated-β-CD (RM-β-CD), and heptakis(2,6-di-O-methyl)-β-CD (DM-β-CD). Complex formation (1:1 stoichiometry) was confirmed by phase solubility studies and Job’s plots. The ICs were characterized by SEM, PXRD, DSC, and FTIR, and their saturated solubility was evaluated. Molecular docking assessed host–guest interactions. Among the tested carriers, DM-β-CD exhibited the highest stability constant (KC = 371.92 M−1) and produced amorphous ICs. DM-ICs achieved the greatest solubility enhancement at all pH conditions, with a maximum solubility of 1968.7 μg/mL at pH 1.2 and ~78.7-fold increase in water compared with pure APX. Docking results supported stable inclusion with the lowest binding free energy (−8.01 kcal/mol). These findings indicate that DM-β-CD-based ICs effectively enhance APX dissolution and show potential as solubilizing carriers for oral dosage forms. Full article
(This article belongs to the Special Issue Recent Advances in Polymer-Based Drug Delivery Systems: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2211 KB  
Article
Effect of Nickel Alloying on the Glass-Forming Ability and Corrosion Resistance of a Pt-Pd-Cu-P Bulk Metallic Glass
by Peiyun Ao, Su Song, Haiyong Liu, Lei Liu and Luliang Liao
Metals 2025, 15(11), 1188; https://doi.org/10.3390/met15111188 (registering DOI) - 25 Oct 2025
Viewed by 32
Abstract
This study systematically investigates the effect of substituting Copper (Cu) with Nickel (Ni) on the glass-forming ability (GFA) and corrosion resistance of a Pt-based bulk metallic glass (BMG). We demonstrate that a minor substitution of 5 at.% Ni for Cu in the Pt [...] Read more.
This study systematically investigates the effect of substituting Copper (Cu) with Nickel (Ni) on the glass-forming ability (GFA) and corrosion resistance of a Pt-based bulk metallic glass (BMG). We demonstrate that a minor substitution of 5 at.% Ni for Cu in the Pt40Pd20Cu20P20 base alloy significantly enhances both properties. The GFA is markedly improved, as evidenced by the supercooled liquid region (ΔTx) widening from 68 K to 91 K. The optimized Pt40Pd20Cu15Ni5P20 alloy exhibits a compressive fracture strength of 1.38 GPa. Electrochemical tests in a 3.5 wt.% NaCl solution reveal a substantial improvement in corrosion resistance. Compared to the Ni-free baseline alloy, the passive film resistance (Rf) and charge-transfer resistance (Rct) of the Ni-containing alloy are enhanced by factors of 2.75 and 2.60, respectively. This superior performance is attributed to a synergistic effect wherein Ni alloying both stabilizes the amorphous structure and promotes the formation of a more robust passive film. This work presents a viable strategy for designing cost-effective, high-performance multi-component BMGs for applications in aggressive chloride environments. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Graphical abstract

18 pages, 6792 KB  
Article
Microstructure, Mechanical and Tribological Properties of Cold Sprayed Fe-Based Metallic Glass Coatings
by Anna Góral, Anna Trelka-Druzic, Wojciech Żórawski, Łukasz Maj, Martin Vicen, Otakar Bokůvka, Paweł Petrzak and Grzegorz Garzeł
Materials 2025, 18(21), 4875; https://doi.org/10.3390/ma18214875 (registering DOI) - 24 Oct 2025
Viewed by 212
Abstract
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without [...] Read more.
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without any crystallization due to its high cooling rate and short processing time, minimizing thermal influences. Thick and dense amorphous coatings were obtained. The effect of a substrate on the microstructure, phase composition, microhardness, flexural strength, and wear behaviour of the coatings was investigated. The cold sprayed coatings revealed an almost complete amorphous structure and negligible porosity. The coating deposited on the steel substrate showed higher microhardness, better resistance to loose abrasive wear, and a slightly lower wear index tested in the coating and Si3N4 ball tribological association than that cold sprayed on an Al alloy. The force required to destroy the durability of the coating–steel substrate system estimated during three-point bending tests was also much higher. Both coatings were characterized by a comparable friction coefficient. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Figure 1

24 pages, 3040 KB  
Article
Fully Biobased Biodegradable Elastomeric Polymer Blends Based on PHAs
by Pavol Alexy, Vojtech Horváth, Roderik Plavec, Zuzana Vanovčanová, Katarína Tomanová, Michal Ďurfina, Mária Fogašová, Leona Omaníková, Slávka Hlaváčiková, Zuzana Kramárová, Jana Navrátilová, Vojtěch Komínek, David Jaška and Jozef Feranc
Polymers 2025, 17(21), 2811; https://doi.org/10.3390/polym17212811 - 22 Oct 2025
Viewed by 325
Abstract
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that [...] Read more.
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that semicrystalline/amorphous PHA combinations are fully miscible (single Tg) at amorphous PHA contents below 30 wt%. Above this threshold, a two-phase morphology develops, consisting of crystalline spherulites embedded in an amorphous matrix. When the amorphous PHA content reached ≥30 wt%, the blends could be oriented by stretching, yielding materials that display thermoplastic elastomer (TPE)-like behavior without chemical modification of the base polymers. Thermal and mechanical characterization, supported by X-ray diffraction of samples before and after orientation, confirmed that the elastomeric properties originate from the multiphase architecture formed by crystalline and amorphous domains interconnected through a miscible amorphous fraction. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 2379 KB  
Article
Opoka as a Natural Material for Phosphorus Removal: Properties and Applications
by Evelina Svedaite, Kestutis Baltakys and Tadas Dambrauskas
Water 2025, 17(20), 3017; https://doi.org/10.3390/w17203017 - 20 Oct 2025
Viewed by 329
Abstract
This study investigates the adsorption efficiency of thermally activated natural opoka, a siliceous–calcareous sedimentary rock, as a low-cost adsorbent for removing phosphorus from aqueous solutions. Comprehensive characterization using XRF, XRD, and STA revealed that raw opoka is primarily composed of quartz, tridymite, and [...] Read more.
This study investigates the adsorption efficiency of thermally activated natural opoka, a siliceous–calcareous sedimentary rock, as a low-cost adsorbent for removing phosphorus from aqueous solutions. Comprehensive characterization using XRF, XRD, and STA revealed that raw opoka is primarily composed of quartz, tridymite, and calcite, with a CaO/SiO2 molar ratio of approximately 0.45. After calcination at 850 °C, calcite decomposes and reacts with silica to form wollastonite, enhancing surface reactivity. Adsorption experiments conducted at phosphorus concentrations of 0.2, 2.6, and 5.0 g of P/L demonstrated that the material’s removal efficiency for phosphorus was highest at low concentrations (25.7% at 0.2 g/L) and decreased with an increase in concentration (20.8% at 2.6 g/L and 18.6% at 5.0 g/L). The adsorption process followed pseudo-second-order kinetics (R2 > 0.999), indicating that chemisorption is the dominant mechanism. It is assumed that amorphous calcium phosphate forms at low phosphorus concentrations and an alkaline pH, whereas brushite is more prevalent at higher concentrations under acidic conditions. Potassium adsorption was negligible and reversible in all cases. The findings demonstrate that calcined opoka has promising applications as a reactive calcium silicate material for sustainable phosphorus management in decentralized water treatment systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 7108 KB  
Article
Poria cocos Polysaccharide-Modified Selenium Nanoparticles: Structural Characterization, Stability, and In Vitro Antioxidant and Anti-Inflammatory Activity Studies
by Tao Shu, Fan Li, Jiang-Ning Hu and Yu Xu
Foods 2025, 14(20), 3555; https://doi.org/10.3390/foods14203555 - 18 Oct 2025
Viewed by 415
Abstract
Selenium nanoparticles (Se NPs) have received increasing attention as a new alternative source to other forms of selenium in nutritional dietary supplements; however, the limited stability and pronounced tendency of selenium nanoparticles (Se NPs) to aggregate in aqueous environments have significantly constrained their [...] Read more.
Selenium nanoparticles (Se NPs) have received increasing attention as a new alternative source to other forms of selenium in nutritional dietary supplements; however, the limited stability and pronounced tendency of selenium nanoparticles (Se NPs) to aggregate in aqueous environments have significantly constrained their practical applications. In this study, Poria cocos polysaccharide-modified Se NPs (PCP-Se NPs) were synthesized by the selenite/ascorbic acid chemical reduction method. PCP-Se NPs exhibited a uniformly dispersed spherical morphology with an average particle size of 66.64 ± 0.30 nm, and displayed an amorphous crystal structure. Compared to unmodified Se NPs, the PCP-Se NPs exhibited low Se release (8.83 ± 0.73%) after simulated gastrointestinal digestion, and they had excellent storage stability and salt ion stability. PCP-Se NPs exhibited potent antioxidant activity manifested by the effective scavenging of DDPH and ABTS radicals. PCP-Se NPs were efficiently internalized by RAW264.7 cells and released into the cytoplasm by a lysosomal escape mechanism, thereby effectively reducing intracellular inflammatory factor levels (the levels of MPO, NO, iNOS, TNF-α, IL-1β, and IL-10 in the PCP-Se NPs treatment group were 0.38 ± 0.013-fold, 0.26 ± 0.02-fold, 0.36 ± 0.02-fold, 0.57 ± 0.03-fold, 0.35 ± 0.02-fold, and 2.07 ± 0.16-fold that of the LPS group, respectively), alleviating oxidative stress (the levels of CAT, SOD, GSH, and MDA in the PCP-Se NP-treated group were 2.48 ± 0.02-fold, 1.91 ± 0.11-fold, 3.16 ± 0.28-fold, and 0.46 ± 0.03-fold that of the LPS group, respectively), and maintaining mitochondrial membrane potential stability. This study provides a basis and reference for improving the stability of Se NPs and developing novel selenium-enriched dietary supplements. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

30 pages, 4851 KB  
Article
Scalable Production of Boron Nitride-Coated Carbon Fiber Fabrics for Improved Oxidation Resistance
by Cennet Yıldırım Elçin, Muhammet Nasuh Arık, Kaan Örs, Uğur Nakaş, Zeliha Bengisu Yakışık Özgüle, Özden Acar, Salim Aslanlar, Özkan Altay, Erdal Çelik and Korhan Şahin
J. Compos. Sci. 2025, 9(10), 564; https://doi.org/10.3390/jcs9100564 - 14 Oct 2025
Viewed by 597
Abstract
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via [...] Read more.
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via a single wet step in which the fabric was impregnated with an ammonia–borane/THF solution and subsequently nitrided for 2 h at 1000–1500 °C in flowing nitrogen. Thermogravimetric analysis coupled with X-ray diffraction revealed that amorphous BN formed below ≈1200 °C and crystallized completely into (002)-textured h-BN (with lattice parameters a ≈ 2.50 Å and c ≈ 6.7 Å) once the dwell temperature reached ≥1300 °C. Complementary XPS, FTIR and Raman spectroscopy confirmed a near-stoichiometric B:N ≈ 1:1 composition and the elimination of O–H/N–H residues as crystallinity improved. Low-magnification SEM (100×) confirmed the uniform and large-area coverage of the BN layer on the carbon fiber tows, while high-magnification SEM revealed a progressive densification of the coating from discrete nanospheres to a continuous nanosheet barrier on the fibers. Oxidation tests in flowing air shifted the onset of mass loss from 685 °C for uncoated fibers to 828 °C for the coating produced at 1400 °C; concurrently, the peak oxidation rate moved ≈200 °C higher and declined by ~40%. Treatment at 1500 °C conferred no additional benefit, indicating that 1400 °C provides the optimal balance between full crystallinity and limited grain coarsening. The resulting dense h-BN film, aided by an in situ self-healing B2O3 glaze above ~800 °C, delayed carbon fiber oxidation by ≈140 °C. Overall, the process offers a cost-effective, large-area alternative to vapor-phase deposition techniques, positioning BN-coated carbon fiber fabrics for robust service in extreme oxidative environments. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

14 pages, 1280 KB  
Article
Synthesis and Characterization of Silica Obtained by Combined Acid–Alkali Treatment of Serpentinite
by Abdrazakh Auyeshov, Kazhmukhan Arynov, Chaizada Yeskibayeva, Aitkul Ibrayeva and Elmira Dzholdasova
Molecules 2025, 30(20), 4076; https://doi.org/10.3390/molecules30204076 - 14 Oct 2025
Viewed by 288
Abstract
Serpentinite rocks and their processing waste represent a valuable source of magnesium and silicon; however, their complex composition complicates the efficient recovery of individual components. This study investigates the combined acid–alkali processing of serpentinite waste from the Zhitikara deposit (Kazakhstan). In the acid [...] Read more.
Serpentinite rocks and their processing waste represent a valuable source of magnesium and silicon; however, their complex composition complicates the efficient recovery of individual components. This study investigates the combined acid–alkali processing of serpentinite waste from the Zhitikara deposit (Kazakhstan). In the acid leaching stage, sulfuric acid enables magnesium extraction, while subsequent treatment with sodium hydroxide (NaOH) facilitates the selective recovery of silica gel formed during acid attack. At the final neutralization step, amorphous silica is precipitated with a yield exceeding 60% of its initial content. The obtained silica was characterized using FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS, Thermo iCAP-Q), and nitrogen adsorption measurements via the BET method. It was established that the synthesized silica gel, according to the IUPAC classification, belongs to mesoporous materials, possesses a well-developed specific surface area (400 m2·g−1), and is suitable for adsorption and catalytic applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 2196 KB  
Article
Enantiomeric Ratio Modulates Hierarchical Networks and Rheological Performance in Cyclohexane Bisurea Supramolecular Gels
by Shaoshuai Hua, Yuqian Jiang, Andong Song and Jian Jiang
Gels 2025, 11(10), 821; https://doi.org/10.3390/gels11100821 - 13 Oct 2025
Viewed by 300
Abstract
This study presents an enantiomeric-ratio-driven strategy for constructing mechanically robust supramolecular gels using cyclohexane bisurea derivatives. By employing non-equimolar enantiomeric mixtures, we achieved an ultralow critical gelation concentration (CGC < 2 mg/mL) in toluene, representing a reduction of more than fivefold compared to [...] Read more.
This study presents an enantiomeric-ratio-driven strategy for constructing mechanically robust supramolecular gels using cyclohexane bisurea derivatives. By employing non-equimolar enantiomeric mixtures, we achieved an ultralow critical gelation concentration (CGC < 2 mg/mL) in toluene, representing a reduction of more than fivefold compared to homochiral single-enantiomer systems. Rheological measurements revealed substantially enhanced mechanical properties in the non-equimolar gels, with yield stress and storage modulus values up to 17 and 20 times higher, respectively, than those of single-enantiomer gels. Morphological analyses (SEM and POM) indicated that pure enantiomers form isolated crystalline fibers with limited connectivity, whereas racemic mixtures yield disordered amorphous aggregates. In contrast, non-equimolar mixtures self-assemble into hierarchical “sea urchin-like” architectures, wherein crystalline fibers radiate from central cores to form densely interconnected networks. This unique structural motif underpins both the ultralow CGC and superior mechanical performance. Complementary FT-IR, XRD, and DSC analyses demonstrated that chiral imbalance modulates hydrogen-bonding interactions and structural order, while molecular dynamics (MD) simulations provided insight into the divergent self-assembly pathways among homochiral, racemic, and non-equimolar systems. This work provides a stereochemically guided approach for designing high-performance supramolecular gels with tailored hierarchical structures and enhanced functionality. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

13 pages, 1579 KB  
Article
Myxoid Stromal Histophenotype Is Associated with High-Grade and Persistent Cervical Intraepithelial Neoplasia
by Leila Stabayeva, Madina Mergazina, Yevgeniy Kamyshanskiy, Gulchekhra Ikhtiyarova, Zhanna Amirbekova, Gulnazira Imanbayeva and Olga Kostyleva
Pathophysiology 2025, 32(4), 55; https://doi.org/10.3390/pathophysiology32040055 - 13 Oct 2025
Viewed by 240
Abstract
Objectives: To evaluate the diagnostic and prognostic value of histophenotyping of the extracellular matrix of the cervical stroma at cervical intraepithelial neoplasia (CIN). Methods: Retrospective analysis of 160 biopsies and surgical preparations of the cervix in women of reproductive age included cases of [...] Read more.
Objectives: To evaluate the diagnostic and prognostic value of histophenotyping of the extracellular matrix of the cervical stroma at cervical intraepithelial neoplasia (CIN). Methods: Retrospective analysis of 160 biopsies and surgical preparations of the cervix in women of reproductive age included cases of CIN 1–3 and the group with confirmed persistence or lesion progression (CIN P) at repeated biopsy. The control group (n = 40) consisted of morphologically intact cervical tissue. Histophenotypes were evaluated by staining with hematoxylin, eosin, and Masson trichrome, and classified as follows: normal (dense parallel bundles of type I collagen), intermediate (disorganized and fragmented type I collagen fibers), and myxoid (amorphous weakly fibrillar matrix). The clinical, viral, and inflammatory characteristics between histophenotypes were statistically compared. Results: The distribution of histophenotypes of the extracellular matrix of the cervix varied significantly depending on the CIN degree (p < 0.001). In the control group, the normal pattern was detected in 97.5% of cases; its frequency decreased from CIN 1 (27.5%) to CIN 2 (12.5%) and was absent at CIN 3. The frequency of the myxoid pattern increased significantly in severe and persistent forms: 55% at CIN 3 and 62.5% at CIN P. Human papillomavirus 16/18 was most frequently detected in groups with intermediate (69.1%) and myxoid (27.2%) patterns. Inflammatory changes were more often accompanied by disorganized extracellular matrix; however, intermediate and myxoid types also occurred in the absence of inflammation. Conclusions: The myxoid histophenotype of the extracellular matrix is significantly associated with the high degree of dysplasia and CIN persistence. It can reflect the morphological equivalent of tumor-associated stroma remodeling. Histophenotyping of the extracellular matrix of the cervix appears to be a promising method of risk stratification and may complement existing diagnostic algorithms for CIN. Full article
Show Figures

Figure 1

20 pages, 4685 KB  
Article
Non-Invasive Rayleigh, Raman, and Chromium-Fluorescence Study of Phase Transitions: β-Alumina into γ-Alumina ‘Single’ Crystal and Then to α-Alumina
by Juliette Redonnet, Gulsu Simsek-Franci and Philippe Colomban
Materials 2025, 18(20), 4682; https://doi.org/10.3390/ma18204682 - 12 Oct 2025
Viewed by 599
Abstract
In many advanced materials production processes, the analysis must be non-invasive, rapid, and, if possible, operando. The Raman signal of the various forms of alumina, especially transition alumina, is very weak due to the highly ionic nature of the Al-O bond, which [...] Read more.
In many advanced materials production processes, the analysis must be non-invasive, rapid, and, if possible, operando. The Raman signal of the various forms of alumina, especially transition alumina, is very weak due to the highly ionic nature of the Al-O bond, which requires long exposure times that are incompatible with monitoring transitions. Here, we explore the use of the fluorescence signal of chromium, a natural impurity in alumina, and the Rayleigh wing to follow the crystallization process up to alpha alumina. To clarify the assignment of the fluorescence components, we compare the transformation of beta alumina single crystals into transition (gamma and theta) alumina and then into alpha alumina with the transformation of optically transparent alumina xerogel and glass, obtained by very slow hydrolysis-polycondensation of aluminum sec-butoxide, into alpha alumina. Vibrational modes are better resolved in thermally treated single crystals than in thermally treated xerogels. Measurements of the Rayleigh wing, the Boson peak, and the fluorescence signal are easier than those of vibrational modes for studying the evolution from amorphous to alpha alumina phases. The fluorescence spectra allow almost instantaneous (<1 s) quantitative control of the phases present. Full article
Show Figures

Figure 1

22 pages, 2942 KB  
Article
From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials
by Martin Mildner, Petr Hotěk, Martina Záleská, Robert Černý and Jan Fořt
Polymers 2025, 17(20), 2720; https://doi.org/10.3390/polym17202720 - 10 Oct 2025
Viewed by 379
Abstract
Alkali-activated materials (AAMs) offer a promising low-carbon alternative to Portland cement, but their development has been dominated by fly ash and slag, whose availability is increasingly limited. This research explores waste brick powder (WBP) and metakaolin residue (RN), two abundant yet underutilized by-products, [...] Read more.
Alkali-activated materials (AAMs) offer a promising low-carbon alternative to Portland cement, but their development has been dominated by fly ash and slag, whose availability is increasingly limited. This research explores waste brick powder (WBP) and metakaolin residue (RN), two abundant yet underutilized by-products, as blended precursors for sustainable binder design. The novelty lies in demonstrating how complementary chemistry between crystalline-rich WBP and amorphous RN can overcome the drawbacks of single-precursor systems while valorizing construction and industrial residues. Pastes were prepared with varying WBP/RN ratios, activated with alkaline solutions, and characterized by Vicat setting tests, isothermal calorimetry, XRD with Rietveld refinement, MIP, SEM, and mechanical testing. Carbon footprint analysis was performed to evaluate environmental performance. Results show that WBP reacts very rapidly, causing flash setting and limited long-term strength, whereas the incorporation of 30–50% RN extends setting times, sustains dissolution, and increases amorphous gel formation. These changes refine the formed reaction products, leading to compressive strengths up to 39 MPa and flexural strengths of 8 MPa at 90 days. The carbon footprint of all blends remained 392–408 kg CO2e/m3, thus providing about a 60% improvement compared to conventional Portland cement paste. The study establishes clear design rules for waste-derived blended precursors and highlights their potential as circular, low-carbon binders. Full article
Show Figures

Figure 1

16 pages, 20415 KB  
Article
Flow-Line-Reducing Tetrahedral Metal Effect Pigments for Injection Molding: A Yield-Rate-Improved Particle Manufacturing Method Based on Soft UVImprint Lithography
by Nils Maximilian Demski, Holger Seidlitz, Felix Kuke, Oliver Niklas Dorn, Janina Zoglauer, Tobias Hückstaedt, Paul Hans Kamm, Francisco García-Moreno, Noah Kremp, Christian Dreyer and Dirk Oberschmidt
Polymers 2025, 17(19), 2708; https://doi.org/10.3390/polym17192708 - 8 Oct 2025
Viewed by 504
Abstract
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, [...] Read more.
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, resulting in a high reject rate due to particle adhesion to the micro-structured mold roller. In contrast, this study introduces a new manufacturing method for tetrahedral particles, now consisting of metallized UV-cured thermoset polymer. These particles, dispersed in amorphous matrix thermoplastics, have shown to maintain their shape during the injection molding process. The manufacturing technique for these novel particles is based on UV imprint lithography, omitting the reject rates compared with the previously presented cold rolling process of tetrahedral full aluminum particles. Thus, the novel manufacturing technique for tetrahedral pigment particles shows increased potential for automation through roll-to-roll manufacturing in the future. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 2078 KB  
Review
The Role of Tribocatalysis in Friction and Wear: A Review
by Diana Berman and Ali Erdemir
Lubricants 2025, 13(10), 442; https://doi.org/10.3390/lubricants13100442 - 8 Oct 2025
Viewed by 680
Abstract
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid [...] Read more.
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid and liquid lubricants or surface engineering techniques like physical and chemical vapor deposition. However, increasingly harsh operating conditions of more advanced mechanical systems (including wind turbines, space mechanisms, electric vehicle drivetrains, etc.) render such traditional methods less effective or impractical over the long term. Looking ahead, an emerging and complementary solution could be tribocatalysis, a process that spontaneously triggers the formation of nanocarbon-based tribofilms in situ and on demand at lubricated interfaces, significantly reducing friction and wear even without the use of high-performance additives. These films often comprise a wide range of amorphous or disordered carbons, crystalline graphite, graphene, nano-onions, nanotubes, and other carbon nanostructures known for their outstanding friction and wear properties under the most demanding tribological conditions. This review highlights recent advances in understanding the underlying mechanisms involved in forming these carbon-based tribofilms, along with their potential applications in real-world mechanical systems. These examples underscore the scientific significance and industrial potential of tribocatalysis in further enhancing the efficiency, reliability, and environmental sustainability of future mechanical systems. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Graphical abstract

Back to TopTop