From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Used Materials
2.2. Mix Design
2.3. Used Physico-Chemical and Mechanical Assessment Methods
2.4. Life Cycle Assessment Analysis
2.4.1. Goal, Scope and Functional Unit
System Boundary
2.4.2. Life-Cycle Inventory
3. Results and Discussion
LCA Analysis
4. Conclusions
- Pure WBP paste exhibited flash setting within minutes, governed by Ca-bearing crystalline phases and fine particle size, but this was accompanied by limited reactivity and modest strength gains. With increasing RN content, setting was progressively extended, the sharp calorimetric peak broadened, and reaction kinetics were sustained over longer periods. This behavior reflects the shift in mineralogy from a crystalline-rich, Ca-driven system toward one dominated by amorphous aluminosilicates, in which dissolution and gel growth proceed more gradually but more extensively.
- The evolution of phase assemblages provides a mechanistic explanation for these trends. As RN content increased, the amorphous fraction rose, while quartz and anorthite declined, leading to the formation of more continuous N-A-S-H or C-(N)-A-S-H gels. This transformation directly influenced microstructural development.
- Although total porosity increased with RN, the pore system became refined through the formation of gel-scale pores and better gel connectivity, which in turn enhanced strength. The compressive strength of RN-rich pastes reached 31–36 MPa at 28 days and up to 39 MPa at 90 days, with flexural strengths approaching 8 MPa.
- Results identify an optimal design proportion of about 30–50% RN, with Si/Al ratios around 2.0–2.5 and (Na + K)/Al close to 0.8–1.0, where setting behavior, reactivity, and strength development are well balanced. Finally, carbon footprint analysis shows that all mixes have similar cradle-to-gate impacts (392–408 kg CO2e/m3), dominated by the activator, but provide about a 60% reduction compared to Portland cement paste. Sensitivity shows RN allocation affects results more than adding 100 km transport.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barbhuiya, S.; Kanavaris, F.; Das, B.; Idrees, M. Decarbonising Cement and Concrete Production: Strategies, Challenges and Pathways for Sustainable Development. J. Build. Eng. 2024, 86, 108861. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wang, F.; Xu, N.; Wang, Y.; Bai, B. Settling Behavior and Mechanism Analysis of Kaolinite as a Fracture Proppant of Hydrocarbon Reservoirs in CO2 Fracturing Fluid. Colloids Surf. A Physicochem. Eng. Asp. 2025, 724, 137463. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.; Yan, C. Hydrate as a By-Product in CO2 Leakage during the Long-Term Sub-Seabed Sequestration and Its Role in Preventing Further Leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737–77754. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, J.; Karpman, J.; DeShazo, J.R. The Impacts of Policies to Reduce CO2 Emissions within the Concrete Supply Chain. Cem. Concr. Compos. 2019, 101, 67–82. [Google Scholar] [CrossRef]
- Brito, J.; Kurda, R. The Past and Future of Sustainable Concrete: A Critical Review and New Strategies on Cement-Based Materials. J. Clean. Prod. 2020, 281, 123558. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, Y.; Liu, C.; Gan, Y.; Göbel, L.; Ye, G.; Provis, J.L. Modeling and Simulation of Alkali-Activated Materials (AAMs): A Critical Review. Cem. Concr. Res. 2025, 189, 107769. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Fořt, J.; Klapiszewska, I.; Thomas, M.; Klapiszewski, Ł.; Černý, R. A Literature Review of the Latest Trends and Perspectives Regarding Alkali-Activated Materials in Terms of Sustainable Development. J. Mater. Res. Technol. 2023, 25, 5394–5425. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Nehdi, M.; Marani, A.; Zhang, L. Is Net-Zero Feasible: Systematic Review of Cement and Concrete Decarbonization Technologies. Renew. Sustain. Energy Rev. 2024, 191, 114169. [Google Scholar] [CrossRef]
- Filipović, S.; Lior, N.; Radovanović, M. The Green Deal—Just Transition and Sustainable Development Goals Nexus. Renew. Sustain. Energy Rev. 2022, 168, 112759. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Dessouky, M.I. Re-Use of Waste Glass in Improving Properties of Metakaolin-Based Geopolymers: Mechanical and Microstructure Examinations. Constr. Build. Mater. 2017, 132, 543–555. [Google Scholar] [CrossRef]
- Mellado, A.; Catalán, C.; Bouzón, N.; Borrachero, M.V.; Monzó, J.M.; Payá, J. Carbon Footprint of Geopolymeric Mortar: Study of the Contribution of the Alkaline Activating Solution and Assessment of an Alternative Route. RSC Adv. 2014, 4, 23846–23852. [Google Scholar] [CrossRef]
- Bai, C.; Zheng, K.; Sun, F.; Wang, X.; Zhang, L.; Zheng, T.; Colombo, P.; Wang, B. A Review on Metakaolin-Based Porous Geopolymers. Appl. Clay Sci. 2024, 258, 107490. [Google Scholar] [CrossRef]
- Gonçalves, D.K.C.; Lana, S.L.B.; Sales, R.B.C.; Aguilar, M.T.P. Study of Metakaolins with Different Amorphities and Particle Sizes Activated by KOH and K2SiO3. Case Stud. Constr. Mater. 2022, 16, e00778. [Google Scholar] [CrossRef]
- Habert, G.; Ouellet-Plamondon, C. Recent Update on the Environmental Impact of Geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. [Google Scholar] [CrossRef]
- Liu, J.; Doh, J.H.; Dinh, H.L.; Ong, D.E.L.; Zi, G.; You, I. Effect of Si/Al Molar Ratio on the Strength Behavior of Geopolymer Derived from Various Industrial Waste: A Current State of the Art Review. Constr. Build. Mater. 2022, 329, 127134. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Şahmaran, M. Combined Application of CDWs as Precursors and Aggregates in Geopolymer Composites: A Comprehensive Rheological Analysis. J. Build. Eng. 2024, 91, 109574. [Google Scholar] [CrossRef]
- Alzeebaree, R.; Mawlod, A.O.; Mohammedameen, A.; Niş, A. Using of Recycled Clay Brick/Fine Soil to Produce Sodium Hydroxide Alkali Activated Mortars. Adv. Struct. Eng. 2021, 24, 2996–3009. [Google Scholar] [CrossRef]
- Robayo, R.A.; Mulford, A.; Munera, J.; Mejía de Gutiérrez, R. Alternative Cements Based on Alkali-Activated Red Clay Brick Waste. Constr. Build. Mater. 2016, 128, 163–169. [Google Scholar] [CrossRef]
- Reig, L.; Tashima, M.M.; Borrachero, M.V.; Monzó, J.; Cheeseman, C.R.; Payá, J. Properties and Microstructure of Alkali-Activated Red Clay Brick Waste. Constr. Build. Mater. 2013, 43, 98–106. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Lin, H.; Lv, J.; Feng, S.; Ci, J. Early Properties and Chemical Structure Analysis of Alkali-Activated Brick Geopolymer with Varied Alkali Dosage. J. Build. Eng. 2022, 60, 105186. [Google Scholar] [CrossRef]
- Sharmin, S.; Sarker, P.K.; Biswas, W.K.; Abousnina, R.M.; Javed, U. Characterization of Waste Clay Brick Powder and Its Effect on the Mechanical Properties and Microstructure of Geopolymer Mortar. Constr. Build. Mater. 2024, 412, 134848. [Google Scholar] [CrossRef]
- Cardoza, A.; Colorado, H.A. Alkaline Activation of Brick Waste with Partial Addition of Ordinary Portland Cement (OPC) for Reducing Brick Industry Pollution and Developing a Feasible and Competitive Construction Material. Open Ceram. 2024, 18, 100569. [Google Scholar] [CrossRef]
- Hassan, H.; El-Gamal, S.M.A.; Shehab, M.S.H.; Mohsen, A. Development of Green Ternary-Blended-Geopolymers for Multifunctional Engineering Applications. Constr. Build. Mater. 2023, 409, 133869. [Google Scholar] [CrossRef]
- Statkauskas, M.; Vaičiukynienė, D.; Grinys, A.; Paul Borg, R. Mechanical Properties and Microstructure of Ternary Alkali Activated System: Red Brick Waste, Metakaolin and Phosphogypsum. Constr. Build. Mater. 2023, 387, 131648. [Google Scholar] [CrossRef]
- Alghamdi, H.; Abadel, A.A.; Khawaji, M.; Alamri, M.; Alabdulkarim, A. Strength Performance and Microstructures of Alkali-Activated Metakaolin and GGBFS-Based Mortars: Role of Waste Red Brick Powder Incorporation. Minerals 2023, 13, 848. [Google Scholar] [CrossRef]
- Jin, P.; Li, L.; Li, Z.; Du, W.; Khan, M.; Li, Z. Using Recycled Brick Powder in Slag Based Geopolymer Foam Cured at Ambient Temperature: Strength, Thermal Stability and Microstructure. Constr. Build. Mater. 2024, 452, 139008. [Google Scholar] [CrossRef]
- Valente, M.; Sambucci, M.; Chougan, M.; Ghaffar, S.H. Reducing the Emission of Climate-Altering Substances in Cementitious Materials: A Comparison between Alkali-Activated Materials and Portland Cement-Based Composites Incorporating Recycled Tire Rubber. J. Clean. Prod. 2022, 333, 130013. [Google Scholar] [CrossRef]
- Kravchenko, E.; Lazorenko, G.; Jiang, X.; Leng, Z. Alkali-Activated Materials Made of Construction and Demolition Waste as Precursors: A Review. Sustain. Mater. Technol. 2024, 39, e00829. [Google Scholar] [CrossRef]
- Alkhawaldeh, A.A.; Judah, H.I.; Shammout, D.Z.; Almomani, O.A.; Alkhawaldeh, M.A. Sustainability Evaluation and Life Cycle Assessment of Concretes Including Pozzolanic By-Products and Alkali-Activated Binders. Results Eng. 2024, 23, 102569. [Google Scholar] [CrossRef]
- Fořt, J.; Černý, R. Transition to Circular Economy in the Construction Industry: Environmental Aspects of Waste Brick Recycling Scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, J.; Kan, E.; Norkulov, B.; Ding, Y.; Yu, J.; Yu, K. Value-Added Recycling of Waste Brick Powder and Waste Sand to Develop Eco-Friendly Engineered Geopolymer Composite. Case Stud. Constr. Mater. 2024, 21, e03590. [Google Scholar] [CrossRef]
- Roy, A.; Sadiqul Islam, G.M. Geopolymer Using Different Size Fractions of Recycled Brick-Based Mixed Demolition Waste. Clean. Mater. 2024, 11, 100224. [Google Scholar] [CrossRef]
- Maaze, M.R.; Shrivastava, S. Development and Performance Evaluation of Recycled Brick Waste-Based Geopolymer Brick for Improved Physcio-Mechanical, Brick-Bond and Durability Properties. J. Build. Eng. 2024, 97, 110701. [Google Scholar] [CrossRef]
- Al-Noaimat, Y.A.; Chougan, M.; Al-kheetan, M.J.; Yio, M.H.N.; Wong, H.S.; Ghaffar, S.H. Upcycling End-of-Life Bricks in High-Performance One-Part Alkali-Activated Materials. Dev. Built Environ. 2023, 16, 100231. [Google Scholar] [CrossRef]
- Migunthanna, J.; Rajeev, P.; Sanjayan, J. Investigation of Waste Clay Brick as Partial Replacement of Geopolymer Binders for Rigid Pavement Application. Constr. Build. Mater. 2021, 305, 124787. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z. Alkali-Activated Cements and Mortars Based on Blast Furnace Slag and Red Clay Brick Waste. Mater. Des. 2015, 85, 324–331. [Google Scholar] [CrossRef]
- Peys, A.; Rahier, H.; Pontikes, Y. Potassium-Rich Biomass Ashes as Activators in Metakaolin-Based Inorganic Polymers. Appl. Clay Sci. 2016, 119, 401–409. [Google Scholar] [CrossRef]
- EN 196-3; Methods of Testing Cement—Part 3: Determination of Setting Times and Volumetric Stability. Czech Standardization Institute: Prague, Czech Republic, 2017.
- EN 12390-5; Testing of Hardened Concrete—Part 5: Flexural Strength. Czech Standardization Institute: Prague, Czech Republic, 2007.
- EN 12390-3; Testing of Hardened Concrete—Part 5: Compressive Strength. Czech Standardization Institute: Prague, Czech Republic, 2007.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneve, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneve, Switzerland, 2006.
- Visintin, P.; Xie, T.; Bennett, B. A Large-Scale Life-Cycle Assessment of Recycled Aggregate Concrete: The Influence of Functional Unit, Emissions Allocation and Carbon Dioxide Uptake. J. Clean. Prod. 2020, 248, 119243. [Google Scholar] [CrossRef]
- Moro, A.; Lonza, L. Electricity Carbon Intensity in European Member States: Impacts on GHG Emissions of Electric Vehicles. Transp. Res. D Transp. Environ. 2018, 64, 5–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, H.; Jiang, X.; Lv, X.; Xiao, R.; Huang, B. Environmental Impact Assessment of Pavement Road Bases with Reuse and Recycling Strategies: A Comparative Study on Geopolymer Stabilized Macadam and Conventional Alternatives. Transp. Res. D Transp. Environ. 2021, 93, 102749. [Google Scholar] [CrossRef]
- Fořt, J.; Mildner, M.; Černý, R. Consequences of Omitting Some Important Factors in the Environmental Analyses of Commercial Sodium Silicate/Sodium Hydroxide Use for Alkaline Activation in the Light of Comparison with Cement-Based Composites. Sci. Total Environ. 2024, 928, 172324. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A Globally Regionalized Life Cycle Impact Assessment Method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Fořt, J.; Mildner, M.; Keppert, M.; Pommer, V.; Černý, R. Experimental and Environmental Analysis of High-Strength Geopolymer Based on Waste Bricks and Blast Furnace Slag. Polymers 2023, 15, 3092. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía-Arcila, J.M.; Mejía de Gutiérrez, R. Eco-Efficient Alkali-Activated Cement Based on Red Clay Brick Wastes Suitable for the Manufacturing of Building Materials. J. Clean. Prod. 2017, 166, 242–252. [Google Scholar] [CrossRef]
- Ouda, A.S.; Gharieb, M. Development the Properties of Brick Geopolymer Pastes Using Concrete Waste Incorporating Dolomite Aggregate. J. Build. Eng. 2020, 27, 100919. [Google Scholar] [CrossRef]
- Skyrianou, I.; Koutas, L.N.; Papakonstantinou, C.G. Metakaolin-Based Geopolymer Mortars: Influence of Mix Design on Mechanical Properties and Durability. Constr. Build. Mater. 2025, 490, 142526. [Google Scholar] [CrossRef]
- Liang, G.; Luo, L.; Yao, W. Reusing Waste Red Brick Powder as Partial Mineral Precursor in Eco-Friendly Binders: Reaction Kinetics, Microstructure and Life-Cycle Assessment. Resour. Conserv. Recycl. 2022, 185, 106523. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M. Optimization of Brick Waste-Based Geopolymer Binders at Ambient Temperature and Pre-Targeted Chemical Parameters. J. Clean. Prod. 2020, 268, 122285. [Google Scholar] [CrossRef]
- Arachchige, R.M.; Olek, J.; Rajabipour, F.; Peethamparan, S. Non-Traditional Aluminosilicate Based Alkali-Activated Mortars—Statistical Optimization of Solution Parameters and Processing Conditions for Optimal Compressive Strength, Workability and Setting Time. Constr. Build. Mater. 2023, 409, 134096. [Google Scholar] [CrossRef]
- Gharieb, M.; Mosleh, Y.A.; Rashad, A.M. Properties and Corrosion Behaviour of Applicable Binary and Ternary Geopolymer Blends. Int. J. Sustain. Eng. 2021, 14, 1068–1080. [Google Scholar] [CrossRef]
- Samarakoon, M.H.; Ranjith, P.G.; Duan, W.H.; De Silva, V.R.S. Properties of One-Part Fly Ash/Slag-Based Binders Activated by Thermally-Treated Waste Glass/NaOH Blends: A Comparative Study. Cem. Concr. Compos. 2020, 112, 103679. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Lazaro, A.; Brouwers, H.J.H. Investigation on a Green Olivine Nano-Silica Source Based Activator in Alkali Activated Slag-Fly Ash Blends: Reaction Kinetics, Gel Structure and Carbon Footprint. Cem. Concr. Res. 2017, 100, 129–139. [Google Scholar] [CrossRef]
- Marathe, S.; Sadowski, Ł.; Shree, N. Geopolymer and Alkali-Activated Permeable Concrete Pavements: Bibliometrics and Systematic Current State of the Art Review, Applications, and Perspectives. Constr. Build. Mater. 2024, 421, 135586. [Google Scholar] [CrossRef]
- Fořt, J.; Afolayan, A.; Medveď, I.; Scheinherrová, L.; Černý, R. A Review of the Role of Lightweight Aggregates in the Development of Mechanical Strength of Concrete. J. Build. Eng. 2024, 89, 109312. [Google Scholar] [CrossRef]
- Tan, J.; Cizer, Ö.; De Vlieger, J.; Dan, H.-C.; Li, J. Impacts of Milling Duration on Construction and Demolition Waste (CDW) Based Precursor and Resulting Geopolymer: Reactivity, Geopolymerization and Sustainability. Resour. Conserv. Recycl. 2022, 184, 106433. [Google Scholar] [CrossRef]
- Fořt, J.; Vejmelková, E.; Keppert, M.; Rovnaníková, P.; Bezdička, P.; Černý, R. Alkaline Activation of Low-Reactivity Ceramics: Peculiarities Induced by the Precursors’ Dual Character. Cem. Concr. Compos. 2020, 105, 103440. [Google Scholar] [CrossRef]
- Pommer, V.; Vejmelková, E.; Černý, R.; Keppert, M. Alkali-Activated Waste Ceramics: Importance of Precursor Particle Size Distribution. Ceram. Int. 2021, 47, 31574–31582. [Google Scholar] [CrossRef]
- Kamseu, E.; Beleuk à Moungam, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C. Substitution of Sodium Silicate with Rice Husk Ash-NaOH Solution in Metakaolin Based Geopolymer Cement Concerning Reduction in Global Warming. J. Clean. Prod. 2017, 142, 3050–3060. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer Binders from Metakaolin Using Sodium Waterglass from Waste Glass and Rice Husk Ash as Alternative Activators: A Comparative Study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Chelluri, S.K.; Hossiney, N. Performance Evaluation of Ternary Blended Geopolymer Binders Comprising of Slag, Fly Ash and Brick Kiln Rice Husk Ash. Case Stud. Constr. Mater. 2024, 20, e02918. [Google Scholar] [CrossRef]
- An, Q.; Pan, H.; Zhao, Q.; Wang, D. Strength Development and Microstructure of Sustainable Geopolymers Made from Alkali-Activated Ground Granulated Blast-Furnace Slag, Calcium Carbide Residue, and Red Mud. Constr. Build. Mater. 2022, 356, 129279. [Google Scholar] [CrossRef]
- Guo, S.; Wu, Y.; Jia, Z.; Qi, X.; Wang, W. Sodium-Based Activators in Alkali- Activated Materials: Classification and Comparison. J. Build. Eng. 2023, 70, 106397. [Google Scholar] [CrossRef]
- Vo, D.-H.; Hwang, C.-L.; Thi, K.-D.T.; Yehualaw, M.; Liao, M.-C.; Chao, Y.-F. HPC Produced with CDW as a Partial Replacement for Fine and Coarse Aggregates Using the Densified Mixture Design Algorithm (DMDA) Method: Mechanical Properties and Stability in Development. Constr. Build. Mater. 2020, 270, 121441. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; de Moraes Pinheiro, S.M.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. Design and Properties of 100% Waste-Based Ternary Alkali-Activated Mortars: Blast Furnace Slag, Olive-Stone Biomass Ash and Rice Husk Ash. J. Clean. Prod. 2020, 243, 118568. [Google Scholar] [CrossRef]
- Reig, L.; Soriano, L.; Tashima, M.M.; Borrachero, M.V.; Monzó, J.; Payá, J. Influence of Calcium Additions on the Compressive Strength and Microstructure of Alkali-Activated Ceramic Sanitary-Ware. J. Am. Ceram. Soc. 2018, 101, 3094–3104. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z. Influence of Fly Ash on the Pore Structure and Shrinkage Characteristics of Metakaolin-Based Geopolymer Pastes and Mortars. Constr. Build. Mater. 2017, 153, 284–293. [Google Scholar] [CrossRef]
- Liao, G.; Noguchi, T. Effect of CaO-Al2O3-SiO2 Molar Ratio on Compressive Strength, Reaction Products, and Strength Prediction Model of CaO-Activated Materials. Case Stud. Constr. Mater. 2025, 22, e04580. [Google Scholar] [CrossRef]
- Seki, Y.; Shibayama, A.; Nishiyama, M.; Kikuchi, M. Machine Learning Models for Predicting the Compressive Strengths of Ordinary Portland Cement Concrete and Alkali-Activated Materials. Sustain. Mater. Technol. 2024, 42, e01191. [Google Scholar] [CrossRef]
- Sharmin, S.; Biswas, W.K.; Sarker, P.K. Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review. Buildings 2024, 14, 2317. [Google Scholar] [CrossRef]
- Riyap, H.I.; Banenzoué, C.; Tchakouté, H.K.; Nanseu, C.N.P.; Rüscher, C.H. A Comparative Study of the Compressive Strengths and Microstructural Properties of Geopolymer Cements from Metakaolin and Waste Fired Brick as Aluminosilicate Sources. J. Korean Ceram. Soc. 2021, 58, 236–247. [Google Scholar] [CrossRef]
- Jurado-Contreras, S.; Bonet-Martínez, E.; Sánchez-Soto, P.J.; Gencel, O.; Eliche-Quesada, D. Synthesis and Characterization of Alkali-Activated Materials Containing Biomass Fly Ash and Metakaolin: Effect of the Soluble Salt Content of the Residue. Arch. Civ. Mech. Eng. 2022, 22, 121. [Google Scholar] [CrossRef]
- Fořt, J.; Mildner, M.; Keppert, M.; Abed, M.; Černý, R. Potential of Industrial Waste as Alternative Alkaline Activator for Development of Eco-Efficient Mortars. Case Stud. Constr. Mater. 2023, 18, e01716. [Google Scholar] [CrossRef]
- Fořt, J.; Mildner, M.; Afolayan, A.; Hotěk, P.; Tang, L.; Keppert, M.; Slosarczyk, A.; Klapiszewska, I.; Klapiszewski, Ł.; Černý, R. Alternative Binder Systems: Cumulative Assessment of Environmental and Functional Parameters. Environ. Impact Assess. Rev. 2025, 115, 108015. [Google Scholar] [CrossRef]
- Heath, A.; Paine, K.; McManus, M. Minimising the Global Warming Potential of Clay Based Geopolymers. J. Clean. Prod. 2014, 78, 75–83. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Lin, H.; Lv, J.; Feng, S.; Ci, J. Properties and Environmental Assessment of Eco-Friendly Brick Powder Geopolymer Binders with Varied Alkali Dosage. J. Build. Eng. 2022, 58, 105020. [Google Scholar] [CrossRef]
- Bianco, I.; Ap Dafydd Tomos, B.; Vinai, R. Analysis of the Environmental Impacts of Alkali-Activated Concrete Produced with Waste Glass-Derived Silicate Activator—A LCA Study. J. Clean. Prod. 2021, 316, 128383. [Google Scholar] [CrossRef]
- Ramagiri, K.K.; Kar, A. Environmental Impact Assessment of Alkali-Activated Mortar with Waste Precursors and Activators. J. Build. Eng. 2021, 44, 103391. [Google Scholar] [CrossRef]
- Fernando, S.; Gunasekara, C.; Law, D.W.; Nasvi, M.C.M.; Setunge, S.; Dissanayake, R.; Robert, D. Environmental Evaluation and Economic Analysis of Fly Ash-Rice Husk Ash Blended Alkali-Activated Bricks. Environ. Impact Assess. Rev. 2022, 95, 106784. [Google Scholar] [CrossRef]
- Abdulkareem, M.; Havukainen, J.; Nuortila-Jokinen, J.; Horttanainen, M. Environmental and Economic Perspective of Waste-Derived Activators on Alkali-Activated Mortars. J. Clean. Prod. 2021, 280, 124651. [Google Scholar] [CrossRef]
- Ameri, F.; Zareei, S.A.; Behforouz, B. Zero-Cement vs. Cementitious Mortars: An Experimental Comparative Study on Engineering and Environmental Properties. J. Build. Eng. 2020, 32, 101620. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, L.; Løvik, A.N.; Müller, D.B.; Liu, G. Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective. Environ. Sci. Technol. 2017, 51, 11468–11475. [Google Scholar] [CrossRef] [PubMed]
Sample | WBP (%) | RN (%) | WG (Sodium Silicate) (%) | KOH 8 M (%) | Plasticizer (%) | Water (%) |
---|---|---|---|---|---|---|
WBP100/RN0 | 65.93 | 0.00 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP90/RN10 | 59.34 | 6.59 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP80/RN20 | 52.75 | 13.19 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP70/RN30 | 46.15 | 19.78 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP60/RN40 | 39.56 | 26.37 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP50/RN50 | 32.97 | 32.97 | 23.85 | 5.71 | 0.99 | 3.52 |
WBP100/RN0 | WBP90/RN10 | WBP80/RN20 | WBP70/RN30 | WBP60/RN40 | WBP50/RN50 | |
---|---|---|---|---|---|---|
Amorphous | 46.4 | 46.9 | 48.4 | 48.5 | 56.2 | 55.3 |
Quartz | 31.5 | 23.6 | 24 | 22.4 | 18.8 | 14.3 |
Anorthite | 15.2 | 12 | 9 | 10.2 | 5.1 | 6.9 |
Orthoclase | 3 | 3.8 | 3.9 | 3.6 | 2.8 | 3.1 |
Calcite | 3.9 | 5.3 | 4.7 | 3.5 | 2.8 | 3.2 |
Kaolinite | 0 | 3.5 | 5.3 | 6.3 | 7.6 | 11.1 |
Mica | 0 | 4.9 | 4.7 | 5.5 | 6.7 | 6.1 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Impact Category | WBP50/RN50 | BP60/RN40 | WBP70/RN30 | WBP80/RN20 | WBP90/RN10 | WBP100/RN0 |
---|---|---|---|---|---|---|
Carcinogens | 2.306 | 2.276 | 2.245 | 2.215 | 2.185 | 2.155 |
Non-carcinogens | 4.163 | 4.239 | 4.314 | 4.389 | 4.465 | 4.540 |
Respiratory inorganics | 0.194 | 0.192 | 0.190 | 0.188 | 0.186 | 0.184 |
Ionizing radiation | 1490 | 1356 | 1223 | 1089 | 955 | 821 |
Ozone layer depletion | 3.07 × 10−5 | 3.08 × 10−5 | 3.08 × 10−5 | 3.09 × 10−5 | 3.10 × 10−5 | 3.10 × 10−5 |
Respiratory organics | 0.0461 | 0.0467 | 0.0473 | 0.0479 | 0.0485 | 0.0491 |
Aquatic ecotoxicity | 18,187 | 18,676 | 19,164 | 19,652 | 20,141 | 20,629 |
Terrestrial ecotoxicity | 6437 | 6691 | 6946 | 7200 | 7454 | 7708 |
Terrestrial acid/nutri | 3.580 | 3.572 | 3.563 | 3.555 | 3.546 | 3.537 |
Land occupation | 7.739 | 8.296 | 8.853 | 9.409 | 9.966 | 10.522 |
Aquatic acidification | 0.986 | 0.973 | 0.961 | 0.948 | 0.936 | 0.923 |
Aquatic eutrophication | 0.0517 | 0.0511 | 0.0505 | 0.0499 | 0.0493 | 0.0487 |
Global warming | 233.3 | 228.8 | 224.2 | 219.6 | 215.1 | 210.4 |
Non-renewable energy | 3015 | 2979 | 2943 | 2907 | 2871 | 2835 |
Mineral extraction | 14.57 | 14.56 | 14.56 | 14.56 | 14.56 | 14.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mildner, M.; Hotěk, P.; Záleská, M.; Černý, R.; Fořt, J. From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials. Polymers 2025, 17, 2720. https://doi.org/10.3390/polym17202720
Mildner M, Hotěk P, Záleská M, Černý R, Fořt J. From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials. Polymers. 2025; 17(20):2720. https://doi.org/10.3390/polym17202720
Chicago/Turabian StyleMildner, Martin, Petr Hotěk, Martina Záleská, Robert Černý, and Jan Fořt. 2025. "From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials" Polymers 17, no. 20: 2720. https://doi.org/10.3390/polym17202720
APA StyleMildner, M., Hotěk, P., Záleská, M., Černý, R., & Fořt, J. (2025). From Waste to Binder: Alkali Activation of Blended Brick and Metakaolin Residues for Design of Circular Construction Materials. Polymers, 17(20), 2720. https://doi.org/10.3390/polym17202720