Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (573)

Search Parameters:
Keywords = amorphous SiC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4195 KB  
Article
Electro-Physical Model of Amorphous Silicon Junction Field-Effect Transistors for Energy-Efficient Sensor Interfaces in Lab-on-Chip Platforms
by Nicola Lovecchio, Giulia Petrucci, Fabio Cappelli, Martina Baldini, Vincenzo Ferrara, Augusto Nascetti, Giampiero de Cesare and Domenico Caputo
Chips 2026, 5(1), 1; https://doi.org/10.3390/chips5010001 - 12 Jan 2026
Viewed by 86
Abstract
This work presents an advanced electro-physical model for hydrogenated amorphous silicon (a-Si:H) Junction Field Effect Transistors (JFETs) to enable the design of devices with energy-efficient analog interface building blocks for Lab-on-Chip (LoC) systems. The presence of this device can support monolithic integration with [...] Read more.
This work presents an advanced electro-physical model for hydrogenated amorphous silicon (a-Si:H) Junction Field Effect Transistors (JFETs) to enable the design of devices with energy-efficient analog interface building blocks for Lab-on-Chip (LoC) systems. The presence of this device can support monolithic integration with thin-film sensors and circuit-level design through a validated compact formulation. The model accurately describes the behavior of a-Si:H JFETs addressing key physical phenomena, such as the channel thickness dependence on the gate-source voltage when the channel approaches full depletion. A comprehensive framework was developed, integrating experimental data and mathematical refinements to ensure robust predictions of JFET performance across operating regimes, including the transition toward full depletion and the associated current-limiting behavior. The model was validated through a broad set of fabricated devices, demonstrating excellent agreement with experimental data in both the linear and saturation regions. Specifically, the validation was carried out at 25 °C on 15 fabricated JFET configurations (12 nominally identical devices per configuration), using the mean characteristics of 9 devices with standard-deviation error bars. In the investigated bias range, the devices operate in a sub-µA regime (up to several hundred nA), which naturally supports µW-level dissipation for low-power interfaces. This work provides a compact, experimentally validated modeling basis for the design and optimization of a-Si:H JFET-based LoC front-end/readout circuits within technology-constrained and energy-efficient operating conditions. Full article
Show Figures

Graphical abstract

16 pages, 4776 KB  
Article
Modification of taC:H Films via λ = 266 nm Picosecond Pulsed Laser Irradiation
by Teodor I. Milenov, Desislava Karaivanova, Anna Dikovska, Dimitar A. Dimov, Ivalina Avramova, Kiril Mladenov Kirilov, Kaloyan Genkov and Stefan K. Kolev
Coatings 2026, 16(1), 67; https://doi.org/10.3390/coatings16010067 - 7 Jan 2026
Viewed by 305
Abstract
Hydrogenated tetrahedral amorphous carbon (ta-C:H) thin films were modified using 266 nm picosecond laser pulses to investigate structural transformations at low and moderate fluences. Nitrogen-doped hydrogenated tetrahedral amorphous carbon layers 20–40 nm thick were deposited on silicon (Si) and silicon dioxide on silicon [...] Read more.
Hydrogenated tetrahedral amorphous carbon (ta-C:H) thin films were modified using 266 nm picosecond laser pulses to investigate structural transformations at low and moderate fluences. Nitrogen-doped hydrogenated tetrahedral amorphous carbon layers 20–40 nm thick were deposited on silicon (Si) and silicon dioxide on silicon (SiO2/Si) substrates and irradiated with picosecond pulses at 0.5–1.6 J cm−2 using a raster-scanned beam. Structural changes in morphology, composition, and bonding were evaluated via optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Even below 1.0 J cm−2, localized color shifts and slight swelling indicated early structural rearrangements without significant material removal. Above 1.0–1.2 J cm−2, the films were largely ablated, although a persistent 3–6 nm carbon layer remained on both substrate types. XPS showed an increase in sp2-bonded carbon by roughly 15%–20% in optimally modified regions, and Raman spectroscopy revealed defect-activated D-bands and the formation of multilayer defective graphene or reduced-graphene-oxide-like flakes at ablation boundaries. These results indicate that picosecond ultraviolet irradiation enables controllable graphitization and thinning of ta-C:H films while maintaining uniform processing over centimeter-scale areas, providing a route to thin, conductive, partially graphitized carbon coatings for optical and electronic applications. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

20 pages, 6375 KB  
Article
Research on the Thermal–Mechanical Synergistic Activation Mechanism of Coal Gangue and Its Hydration Characteristics
by Jiajun Chen, Qianyu Sun, Miaomiao Li, Kuizhou Dou, Yirui Song and Xudong Tan
Buildings 2026, 16(1), 152; https://doi.org/10.3390/buildings16010152 - 29 Dec 2025
Viewed by 269
Abstract
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study [...] Read more.
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study investigates a method that synergistically utilizes thermal activation and mechanical activation to enhance the reactivity of coal gangue. The approach aims to reduce the temperature required for thermal activation while effectively stimulating the reactive properties. Furthermore, the mechanisms underlying the thermal–mechanical synergistic activation and its hydration characteristics are thoroughly examined. Experimental results demonstrate that thermo-mechanical synergistic activation, in comparison to sole thermal activation at 950 °C, enhances reaction activity by 28.3%, improves mechanical properties by 27.4%, reduces setting time by 65 min, and significantly optimizes flow performance. The XRD, FT-IR, and TG-DTG analyses demonstrate that the interlayer hydrogen bonds of kaolinite are disrupted during the thermal activation stage, resulting in the formation of amorphous and highly reactive metakaolinite. Subsequent mechanical activation after thermal treatment significantly reduces particle size, further breaks the interlayer hydrogen bonds of kaolinite, and leads to the complete disintegration of the lattice framework. This process markedly enhances the degree of amorphization and thoroughly disrupts the long-range ordered crystalline structure of the kaolinite mineral phase in coal gangue. Concurrently, the d002 interplanar spacing of kaolinite expands by 0.155 Å, leading to an increase in reactivity. SEM-EDS analysis reveals that C-S-H gel is embedded within the mortar matrix, with a reduction in calcium hydroxide content and Ca/Si ratio, and an increase in Al/Si ratio in coal gangue mortar. This confirms that the thermo-mechanical synergistic activation introduces highly reactive Ca2+ and Al3+ from coal gangue into the secondary hydration reaction, resulting in the formation of a gel structure characterized by high stability and enhanced durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

41 pages, 3122 KB  
Article
Calcination Optimisation of Corncob Ash for Sustainable Cementitious Applications: A Pathway to Low-Carbon Construction
by Francis O. Okeke, Abdullahi Ahmed, Adil Imam and Hany Hassanin
Sustainability 2026, 18(1), 311; https://doi.org/10.3390/su18010311 - 28 Dec 2025
Viewed by 395
Abstract
The construction sector faces pressure to decarbonise while addressing rising resource demands and agricultural waste. Ordinary Portland cement (OPC) is a major CO2 emitter, yet biomass residues are often open-burned or landfilled. This study explores corncob ash (CCA) as a sustainable supplementary [...] Read more.
The construction sector faces pressure to decarbonise while addressing rising resource demands and agricultural waste. Ordinary Portland cement (OPC) is a major CO2 emitter, yet biomass residues are often open-burned or landfilled. This study explores corncob ash (CCA) as a sustainable supplementary cementitious material (SCM), examining how calcination conditions influence pozzolanic potential and support circular economy and climate goals, which have not been adequately explored in literature. Ten CCA samples were produced via open-air burning (2–3.5 h) and electric-furnace calcination (400–1000 °C, 2 h), alongside a reference OPC. Mass yield, colour, XRD, XRF, LOI, and LOD were analysed within a process–structure–property–performance–sustainability framework. CCA produced in a 400–700 °C furnace window consistently achieved high amorphous contents (typically ≥80%) and combined pozzolanic oxides (SiO2 + Al2O3 + Fe2O3) above the 70% ASTM C618 threshold, with 700 °C for 2 h emerging as an optimal condition. At 1000 °C, extensive crystallisation reduced the expected reactivity despite high total silica. Extended open-air burning (3–3.5 h) yielded chemically acceptable but more variable ashes, with lower amorphous content and higher alkalis than furnace-processed CCA. Simple industrial ecology calculations indicate that valorising a fraction of global CC residues and deploying optimally processed CCA at only 20% OPC replacement could displace 180 million tonnes CC waste and clinker avoidance on the order of 5–6 Mt CO2 per year, while reducing uncontrolled residue burning and primary raw material extraction. The study provides an experimentally validated calcination window and quality indicators for producing reactive CCA, alongside a clear link from laboratory processing to clinker substitution, circular resource use, and alignment with SDGs 9, 12, and 13. The findings establish a materials science foundation for standardised CCA production protocols and future life cycle and performance evaluations of low-carbon CCA binders. Full article
Show Figures

Figure 1

21 pages, 4904 KB  
Article
Refined Multi-Scale Mechanical Modeling of C/C-SiC Ceramic Matrix Composites
by Royi Padan, Chen Dahan-Sharhabani, Omri Regev and Rami Haj-Ali
Materials 2026, 19(1), 105; https://doi.org/10.3390/ma19010105 - 28 Dec 2025
Viewed by 327
Abstract
This study introduces a refined multi-scale micromechanical framework for analyzing C/C-SiC ceramic matrix composites (CMCs) using a dedicated Parametric High-Fidelity Method of Cells (PHFGMCs). A three-level geometric model is constructed from scanning electron microscope (SEM) micrographs and computed tomography (CT) scans. Specialized dual [...] Read more.
This study introduces a refined multi-scale micromechanical framework for analyzing C/C-SiC ceramic matrix composites (CMCs) using a dedicated Parametric High-Fidelity Method of Cells (PHFGMCs). A three-level geometric model is constructed from scanning electron microscope (SEM) micrographs and computed tomography (CT) scans. Specialized dual micro-meso nested PHFGMCs are employed to accurately generate the effective properties and spatial distributions of local stress fields in the highly heterogeneous microstructure of an 8-harness C/C-SiC representative volume element (RVE). The proposed refined framework recognizes the different micro- and meso-scales, ranging from the carbon fiber and amorphous carbon matrix to intra-yarn segmentation and weave regions. All are nested in a complete 8-harness architecture. The refined PHFGMC analyses showed good agreement between predicted mechanical properties and experimental data for C/C-SiC. The model’s ability to resolve local spatial deformation in the complex microstructure of C/C-SiC CMCs is demonstrated. These findings highlight the need for a refined multi-scale analysis that captures microstructural complexity and constituent interactions influencing both macroscopic and local responses in C/C-SiC CMCs. The proposed PHFGMC-based framework provides a robust theoretical and computational foundation for the future integration of nonlinear and progressive damage models within C/C-SiC CMC material systems. Full article
Show Figures

Figure 1

13 pages, 4312 KB  
Article
Mechanical Properties and Degradation Mechanism of SiC Fibers Exposed to Oxidative Environment up to 1600 °C
by Kailin Huang, Beibei Ma, Jixiang Dai and Jianjun Sha
Appl. Sci. 2026, 16(1), 64; https://doi.org/10.3390/app16010064 - 20 Dec 2025
Viewed by 211
Abstract
In order to investigate the microstructure evolution and the degradation mechanism of SiC fiber in a high-temperature oxidative environment, the SiC fiber was thermally exposed at temperature up to 1600 °C in air. The morphologies of the surface and fracture surface were characterized [...] Read more.
In order to investigate the microstructure evolution and the degradation mechanism of SiC fiber in a high-temperature oxidative environment, the SiC fiber was thermally exposed at temperature up to 1600 °C in air. The morphologies of the surface and fracture surface were characterized by scanning electron microscopy. The consisting phase and crystallite size were analyzed by X-ray diffractometer. The mechanical properties of SiC fiber was characterized by a single-fiber tensile test technique. It was found that an obvious grain coarsening occurred at temperature above 1400 °C. A visible silica layer was formed at 1300 °C, and the morphology of silica layer was dependent on the exposure temperature. At 1400 °C, fiber surface formed a thick silica layer with cracks, while the silica layer exhibited a multilayered structure at 1600 °C. As for the tensile strength of fiber, it firstly decreased to about 1 GPa at 1200 °C, then the strength was maintained at 1400 °C. After thermal exposure at 1500 °C and 1600 °C, the strength decreased again. The degradation of mechanical properties was attributed to the grain coarsening and the decomposition of amorphous phase in fiber. Particularly, the decomposition of amorphous phase would damage the structure integrity of fiber. The current work would provide a valuable reference for research and application of SiC fiber. Full article
Show Figures

Figure 1

33 pages, 4350 KB  
Review
Laser Processing Methods in Precision Silicon Carbide Wafer Exfoliation: A Review
by Tuğrul Özel and Faik Derya Ince
J. Manuf. Mater. Process. 2026, 10(1), 2; https://doi.org/10.3390/jmmp10010002 - 19 Dec 2025
Viewed by 714
Abstract
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical [...] Read more.
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical strength. However, the high cost and complexity of SiC wafer fabrication, particularly in slicing and exfoliation, remain significant barriers to its widespread adoption. Conventional methods such as wire sawing suffer from considerable kerf loss, surface damage, and residual stress, reducing material yield and compromising wafer quality. Additionally, techniques like smart-cut ion implantation, though capable of enabling thin-layer transfer, are limited by long thermal annealing durations and implantation-induced defects. To overcome these limitations, ultrafast laser-based processing methods, including laser slicing and stealth dicing (SD), have gained prominence as non-contact, high-precision alternatives for SiC wafer exfoliation. This review presents the current state of the art and recent advances in laser-based precision SiC wafer exfoliation processes. Laser slicing involves focusing femtosecond or picosecond pulses at a controlled depth parallel to the beam path, creating internal damage layers that facilitate kerf-free wafer separation. In contrast, stealth dicing employs laser-induced damage tracks perpendicular to the laser propagation direction for chip separation. These techniques significantly reduce material waste and enable precise control over wafer thickness. The review also reports that recent studies have further elucidated the mechanisms of laser–SiC interaction, revealing that femtosecond pulses offer high machining accuracy due to localized energy deposition, while picosecond lasers provide greater processing efficiency through multipoint refocusing but at the cost of increased amorphous defect formation. The review identifies multiphoton ionization, internal phase explosion, and thermal diffusion key phenomena that play critical roles in microcrack formation and structural modification during precision SiC wafer laser processing. Typical ultrafast-laser operating ranges include pulse durations from 120–450 fs (and up to 10 ps), pulse energies spanning 5–50 µJ, focal depths of 100–350 µm below the surface, scan speeds ranging from 0.05–10 mm/s, and track pitches commonly between 5–20 µm. In addition, the review provides quantitative anchors including representative wafer thicknesses (250–350 µm), typical laser-induced crack or modified-layer depths (10–40 µm and extending up to 400–488 µm for deep subsurface focusing), and slicing efficiencies derived from multi-layer scanning. The review concludes that these advancements, combined with ongoing progress in ultrafast laser technology, represent research opportunities and challenges in transformative shifts in SiC wafer fabrication, offering pathways to high-throughput, low-damage, and cost-effective production. This review highlights the comparative advantages of laser-based methods, identifies the research gaps, and outlines the challenges and opportunities for future research in laser processing for semiconductor applications. Full article
Show Figures

Figure 1

17 pages, 4159 KB  
Article
Effect of Cathodic Voltage on Phase Composition, Microstructure, and Elevated-Temperature Oxidation Resistance of Micro-Arc Oxidation Ceramic Coatings on Ti65 Alloy
by Haitao Li, Yu Ma, Baicheng Liu, Xugang Wang and Hongliang Zhang
Coatings 2025, 15(12), 1500; https://doi.org/10.3390/coatings15121500 - 18 Dec 2025
Viewed by 249
Abstract
This study investigates the effect of cathodic voltage on the thickness, morphology, composition, phase structure, adhesion, and elevated-temperature oxidation resistance of the micro-arc oxidation (MAO) ceramic coatings on Ti65 alloy. Coatings were fabricated via MAO under cathodic voltages of 50 V, 100 V, [...] Read more.
This study investigates the effect of cathodic voltage on the thickness, morphology, composition, phase structure, adhesion, and elevated-temperature oxidation resistance of the micro-arc oxidation (MAO) ceramic coatings on Ti65 alloy. Coatings were fabricated via MAO under cathodic voltages of 50 V, 100 V, 150 V, and 200 V. Results indicate that the coatings primarily consist of rutile TiO2 (R-TiO2), anatase TiO2 (A-TiO2), and amorphous SiO2. The thickness of the MAO coatings increased with rising cathodic voltage, while the surface porosity and average pore size of the coatings were first decreased and then increased with the increase in cathodic voltage. Excellent coating adhesion to the substrate was confirmed by 50 thermal shock cycles between 700 °C and room temperature. Cyclic oxidation tests at 750 °C for 100 h demonstrated that all MAO coatings significantly enhanced elevated-temperature oxidation resistance compared to the bare Ti65 substrate. Notably, the coating produced at 100 V exhibited the lowest oxidation weight gain (0.50 mg/cm2), amounting to only one-third of the substrate’s gain. The effect of the cathodic voltage on the high-temperature oxidation performance of the MAO coatings was systematically analyzed. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

28 pages, 3387 KB  
Review
Silicon Carbide Neural Interfaces: A Review of Progress Toward Monolithic Devices
by Christopher L. Frewin, Matthew Melton, Evans Bernardin, Mohammad Beygi, Chenyin Feng and Stephen E. Saddow
Nanomaterials 2025, 15(24), 1880; https://doi.org/10.3390/nano15241880 - 15 Dec 2025
Viewed by 854
Abstract
The promise of intracortical neural interfaces—to restore lost sensory and motor function and probe the brain’s activity—has long been constrained by device instability over chronic implantation. Conventional silicon-based probes, composed of heterogeneous materials, often fail due to mechanical mismatch, inflammatory responses, and interface-driven [...] Read more.
The promise of intracortical neural interfaces—to restore lost sensory and motor function and probe the brain’s activity—has long been constrained by device instability over chronic implantation. Conventional silicon-based probes, composed of heterogeneous materials, often fail due to mechanical mismatch, inflammatory responses, and interface-driven degradation, where stress can induce cracking, swelling, and exposure of cytotoxic elements to neural tissue. Silicon carbide (SiC) offers a compelling solution, combining chemical inertness, structural strength, and biocompatibility in both amorphous and crystalline forms. In this review, we discuss advances in SiC neural interfaces, highlighting contributions from multiple laboratories and emphasizing our own work on monolithic devices, constructed entirely from a single, homogeneous SiC material system. These devices mitigate interface-driven failures and show preliminary indications of magnetic resonance imaging (MRI) compatibility, with minimal image artifacts observed compared to conventional silicon probes, though further in vivo studies are needed to confirm thermal safety at high-field conditions. Collectively, SiC establishes a versatile platform for next-generation, durable neural interfaces capable of reliable, long-term brain interaction for both scientific and clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology and 2D Materials for Regenerative Medicine)
Show Figures

Figure 1

25 pages, 4782 KB  
Article
Comprehensive Structural and Interfacial Characterization of Laser-Sliced SiC Wafers
by Hong Chen, Seul Lee, Minseung Kang, Hye Seon Youn, Seongwon Go, Eunsook Kang and Chae-Ryong Cho
Materials 2025, 18(24), 5615; https://doi.org/10.3390/ma18245615 - 14 Dec 2025
Viewed by 575
Abstract
Laser slicing has emerged as a promising low-kerf and low-damage technique for SiC wafer fabrication; however, its effects on the crystal integrity, near-surface modification, and charge-transport properties require further clarification. Here, a heavily N-doped 4° off-axis 4H-SiC wafer was sliced using an ultraviolet [...] Read more.
Laser slicing has emerged as a promising low-kerf and low-damage technique for SiC wafer fabrication; however, its effects on the crystal integrity, near-surface modification, and charge-transport properties require further clarification. Here, a heavily N-doped 4° off-axis 4H-SiC wafer was sliced using an ultraviolet (UV) picosecond laser, and both laser-irradiated and laser-sliced surfaces were comprehensively characterized. X-ray diffraction and pole figure measurements confirmed that the 4H stacking sequence and macroscopic crystal orientation were preserved after slicing. Raman spectroscopy, including analysis of the folded transverse-optical and longitudinal-optical phonon–plasmon coupled modes, enabled dielectric function fitting and determination of the plasmon frequency, yielding a free-carrier concentration of ~3.1 × 1018 cm−3. Hall measurements provided consistent carrier density, mobility, and resistivity, demonstrating that the laser slicing process did not degrade bulk electrical properties. Multi-scale Atomic Force Microscopy (AFM), Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS), Secondary Ion Mass Spectrometry (SIMS), and Transmission Electron Microscopy (TEM)/Selected Area Electron Diffraction (SAED) analyses revealed the formation of a near-surface thin amorphous/polycrystalline modified layer and an oxygen-rich region, with significantly increased roughness and thicker modified layers on the hilly regions of the sliced surface. These results indicate that UV laser slicing maintains the intrinsic crystalline and electrical properties of 4H-SiC while introducing localized nanoscale surface damage that must be minimized by optimizing the slicing parameters and the subsequent surface-finishing processes. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

22 pages, 7644 KB  
Communication
Bismuth–Titanium–Silicate–Oxide Glass Ceramics for Various Dielectric Applications
by Stanislav Slavov and Veselin Stankov
Materials 2025, 18(24), 5519; https://doi.org/10.3390/ma18245519 - 8 Dec 2025
Viewed by 372
Abstract
Ceramics based on bismuth titanate with added SiO2 and Nd2O3 were synthesized from the Bi2O3–TiO2–SiO2–Nd2O3 system through rapid melt quenching followed by controlled cooling. By adjusting the initial [...] Read more.
Ceramics based on bismuth titanate with added SiO2 and Nd2O3 were synthesized from the Bi2O3–TiO2–SiO2–Nd2O3 system through rapid melt quenching followed by controlled cooling. By adjusting the initial compositions and applying heat treatments between 1450 °C and 1100 °C, either homogeneous crystalline products or multiphase glass–ceramics were obtained. The identified crystalline phases included Bi12TiO20 and Bi4Ti3O12, coexisting with amorphous networks enriched in silicon, bismuth, titanium, and aluminum oxides. In previous investigations, the materials were characterized using X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy, which collectively confirmed the presence of both ordered and disordered structural domains within the bulk samples. Electrical properties were evaluated through measurements of conductivity (4 × 10−9 S/m to 30 S/m), dielectric constant (real part from 10 to 5 × 103 and imaginary part from 5 to 5 × 104), and dielectric loss (0.02 to ~100) over the frequency range 1 Hz–1 MHz. These results provide a foundation for rational control of phase evolution in this quaternary oxide system and highlight strategies for tailoring the functional properties of glass–ceramic materials for dielectric applications. The aim of the present study is to investigate the relationship between phase composition, structural features, and dielectric behavior in cast Bi–Ti–Si–Nd glass–ceramics. Particular attention is given to the influence of the amorphous network containing SiO2 as a traditional glass former, as well as the formation of amorphous crosslinking Si–O–Ti structures acting as non-traditional glass formers. Full article
Show Figures

Figure 1

28 pages, 2167 KB  
Article
Comprehensive Investigations on the Effects of Heat on “Illite–Zeolites–Geo-Polymers–Sand” Composites: Evolutions of Crystalline Structures, Elemental Distributions and Si/Al Environments
by Abdel Boughriet, Grégory Tricot, Bertrand Revel, Viviane Bout-Roumazeilles, Sandra Ventalon and Michel Wartel
Ceramics 2025, 8(4), 149; https://doi.org/10.3390/ceramics8040149 - 8 Dec 2025
Viewed by 456
Abstract
This research constitutes a novel experimental approach to valorizing an industrial by-product: the ‘brick’. Studies put emphasis on the importance of detailed structural characterization of brickminerals and their chemical evolution upon heating, contributing rationally to the design and development of new glass–ceramic forms [...] Read more.
This research constitutes a novel experimental approach to valorizing an industrial by-product: the ‘brick’. Studies put emphasis on the importance of detailed structural characterization of brickminerals and their chemical evolution upon heating, contributing rationally to the design and development of new glass–ceramic forms that would be suitable for efficiently encapsulating radio-nuclides. The brick used is a complex material composed of metakaolinite, illite, sand and impurities such as rutile and iron oxides/hydroxides. Raw brick was first activated with a range of sodium hydroxide concentrations, and, second, cured at different temperatures from 90 °C to 1200 °C. Alkali-brick frameworks gradually decomposed during the firing, and turned into crystalline ceramic phases (analcime and leucite) embedded inside an amorphous silica-rich phase. After each heating stage, the cured-brick sample was exhaustively characterized by using a variety of advanced analytical techniques, including powder X-ray diffraction, ESEM/EDS microscopy and 29Si-27Al-MAS-NMR spectroscopy. Ultra-high magnetic field NMR (28.2 T) was used to distinguish and quantify Al(IV), Al(V) and Al(VI) configurations, and to better follow distinctive changes in 27Al environments of brickminerals under thermal effects. Glass-ceramized brick exhibited high specific density (~2.6 g·cm−3), high compactness and good corrosion resistance under static, mild and aggressive conditions, attesting to its high solidification and chemical durability. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

18 pages, 3430 KB  
Article
Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk
by Célio S. Faria-Júnior, Lucas dos Santos Silva, Armando L. C. Cunha, Filipe S. Buarque and Bernardo Dias Ribeiro
Molecules 2025, 30(24), 4697; https://doi.org/10.3390/molecules30244697 - 8 Dec 2025
Viewed by 506
Abstract
Rice husk is a lignocellulosic biomass rich in silica, which, when disposed of inappropriately, represents an environmental hazard. This study investigated the application of deep eutectic solvents (DES) as a green and efficient approach to the rice husk fractionation, combining the selective dissolution [...] Read more.
Rice husk is a lignocellulosic biomass rich in silica, which, when disposed of inappropriately, represents an environmental hazard. This study investigated the application of deep eutectic solvents (DES) as a green and efficient approach to the rice husk fractionation, combining the selective dissolution of lignin and sugars with the purification of the silica-rich inorganic fraction. Six different DES were produced from choline chloride or betaine with different hydrogen bond donors and characterized for water content and pH. The DES based on carboxylic acids was more acidic, which favored the cleavage of ester and glycosidic bonds in the biomass. The TGA, XRF, SEM, and XRD analyses revealed that the lactic acid-based DES promoted better removal of lignin and mineral impurities, resulting in a purer silica with an amorphous morphology. The 110 °C condition was the most effective in preserving the thermal integrity of the organic (sugars and lignin) and inorganic (silica-rich ash) fractions. The results highlight the potential of DES as selective, sustainable, and tunable solvents for the valorization of agricultural waste, achieving biosilica with SiO2 purity exceeding 80% and lignin removal above 70%, reinforcing the potential of DES as sustainable solvents for agricultural waste valorization. Full article
Show Figures

Graphical abstract

17 pages, 3493 KB  
Article
Enhancement of Cutting Performance of Ceramic Tools by Addition of Exogenous Precursor Restorers
by Zhaoqiang Chen, Pengcheng Song, Chuanfa Shen, Xianglong Meng, Hui Chen, Jingjie Zhang, Mingdong Yi, Guangchun Xiao and Chonghai Xu
Materials 2025, 18(24), 5498; https://doi.org/10.3390/ma18245498 - 7 Dec 2025
Viewed by 292
Abstract
To address brittle cracks in ceramic tools, an exogenous precursor ceramic repair agent was developed and applied to Al2O3/TiC/NiMo composite ceramic tools, which were treated by a two-step heat treatment process (heating at 3 °C/min to 300 °C for [...] Read more.
To address brittle cracks in ceramic tools, an exogenous precursor ceramic repair agent was developed and applied to Al2O3/TiC/NiMo composite ceramic tools, which were treated by a two-step heat treatment process (heating at 3 °C/min to 300 °C for 60 min, heating the sample at 5 °C/min to 500, 600, 700, 800, and 900 °C, holding each for 60 min). The crack healing mechanism and temperature dependency of the repair agent were investigated. Cutting performance, including surface roughness, cutting force, and tool life, was optimized using an L9(34) orthogonal design. The results show that at 900 °C, the repair agent decomposed to form SiOC (Silicon Oxycarbide) amorphous phase and TiB2 reinforced phase, filling the cracks and achieving atomic-level diffusion bonding. The flexural strength of the repaired sample recovered to 79.9% of the initial value (456.5 MPa), a 196.4% increase compared to the unrepaired sample. Optimal cutting parameters were found to be a cutting speed of 200 m/min, back draft of 0.1 mm, and feed of 0.1 mm/r. Under these conditions, surface roughness was 0.845 μm, cutting temperature was 258 °C, and stable tangential force was 70 N. The effective cutting distance of the repaired tool was increased from 1300 m to 1700 m. Wear was primarily abrasive and adhesive wear, and the SiOC phase formed by the repair agent helped to fill and repair the flank, thus extending tool life. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

19 pages, 3429 KB  
Article
Structural and Compositional Evolution of Polymer-Derived SiHfCN and Ti3C2-SiHfCN Ceramics
by Mohammad Hassan Shirani Bidabadi, Manoj K. Mahapatra and Kathy Lu
Ceramics 2025, 8(4), 147; https://doi.org/10.3390/ceramics8040147 - 4 Dec 2025
Viewed by 475
Abstract
In this study, SiHfCN ceramics were synthesized from a single-source precursor obtained by reacting Durazane 1800 with tetrakis(dimethylamido)hafnium(IV) (TDMAH). In a separate preparation, Ti3C2 MXene was incorporated into this precursor to produce MXene-SiHfCN composite ceramics. The samples were pyrolyzed at [...] Read more.
In this study, SiHfCN ceramics were synthesized from a single-source precursor obtained by reacting Durazane 1800 with tetrakis(dimethylamido)hafnium(IV) (TDMAH). In a separate preparation, Ti3C2 MXene was incorporated into this precursor to produce MXene-SiHfCN composite ceramics. The samples were pyrolyzed at 1000 °C and heat-treated at 1600 °C in N2 to investigate amorphous-to-crystalline transformations. Both SiHfCN and MXene-SiHfCN formed a single-phase amorphous structure after pyrolysis at 1000 °C. At 1600 °C, SiHfCN partially crystallized into α/β-Si3N4 and HfCxN1−x phases within an amorphous/crystalline Si3N4 matrix. In contrast, the MXene–SiHfCN matrix remained largely amorphous, evolving into SiOCN with localized Si2ON2 crystallization. Additional phases, including HfCxN1−x, Hf oxide/oxycarbide, and a Ti carbonitride-rich phase (TiC0.63N1.06O0.18Si0.99Hf0.11), were identified within the amorphous SiOCN. No SiC was detected in either system, indicating suppression of carbothermal reduction of Si3N4 up to 1600 °C in N2. While SiHfCN exhibited pronounced macroscopic cracks, MXene-SiHfCN showed no such large cracks, though local microscopic cracking was observed. These results demonstrate that Ti3C2 MXene incorporation stabilizes the amorphous matrix, modifies phase evolution, and mitigates severe cracking, offering new insights into non-oxide PDC nanocomposites for ultra-high-temperature applications. Full article
(This article belongs to the Special Issue Nanoceramics and Two-Dimensional Ceramic Materials)
Show Figures

Graphical abstract

Back to TopTop