Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = ammonium (NH4+) pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6037 KiB  
Article
Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania
by Nicolae-Leontin Petruța, Ioana Monica Sur, Tudor Andrei Rusu, Timea Gabor and Tiberiu Rusu
Sustainability 2025, 17(14), 6530; https://doi.org/10.3390/su17146530 - 17 Jul 2025
Viewed by 474
Abstract
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality [...] Read more.
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality in rural wells in the Ceanu Mare commune, Cluj County, Romania—a representative area of the Northern Transylvania Basin, characterized by diverse geological structures, intensive agricultural activities, and incomplete public water infrastructure. This study combines detailed hydrochemical analyses, household-level studies, and geological context to identify and quantify key factors influencing nitrate and microbial contamination in rural wells, providing a comprehensive perspective on water quality challenges in the central part of Romania. This study adopts a multidisciplinary approach, integrating detailed geotechnical investigations conducted through four strategically located boreholes. These are complemented by extensive hydrogeological and lithological characterization, as well as rigorous chemical and microbiological analyses of nearby wells. The results reveal persistently elevated concentrations of NO3 and NO2, commonly associated with inadequate livestock waste management and the proximity of manure storage areas. Microbiological contamination was also frequent. In this study, the NO3 levels in well water ranged from 39.7 to 48 mg/L, reaching up to 96% of the EU/WHO threshold (50 mg/L), while the NO2 concentrations varied from 0.50 to 0.69 mg/L, exceeding the legal limit (0.5 mg/L) in 87% of the sampled wells. Ammonium (NH4+) was detected (0.25–0.34 mg/L) in all the wells, below the maximum allowed limit (0.5 mg/L) but indicative of ongoing organic pollution. All the well water samples were non-compliant for microbiological parameters, with E. coli detected in 100% of cases (5–13 CFU/100 mL). The regional clay–marl substrate offers only limited natural protection against pollutant infiltration, primarily due to lithological heterogeneity and discontinuities observed within the clay–marl layers in the study area. This research delivers a replicable model for rural groundwater assessment and addresses a critical gap in regional and European water safety studies. It also provides actionable recommendations for sustainable groundwater management, infrastructure development, and community risk reduction in line with EU water directives. Full article
Show Figures

Figure 1

19 pages, 2481 KiB  
Article
Assessment of Water Quality in the Tributaries of the Rega River (Northwestern Poland) as a Fish Habitat
by Małgorzata Bonisławska, Arkadiusz Nędzarek, Adam Tański, Agnieszka Tórz and Krzysztof Formicki
Appl. Sci. 2025, 15(14), 7846; https://doi.org/10.3390/app15147846 - 14 Jul 2025
Viewed by 311
Abstract
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine [...] Read more.
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine streams flowing into the Rega River between 2018 and 2022. It also sought to determine whether the water quality in these tributaries meets the standards defined by EU regulations for inland waters that serve as habitats for fish. The parameters analyzed included water temperature, dissolved oxygen (DO), pH, total suspended solids (TSSs), electrical conductivity (EC), alkalinity, total hardness (TH), biochemical oxygen demand (BOD5), nitrite nitrogen (NO2-N), ammonium nitrogen (NH4+-N), and total phosphorus (TP). The results indicated that most indicators met the requirements for waters suitable for salmonid species. Elevated concentrations of NO2-N observed across all sites were still within acceptable limits for cyprinid species. Among the parameters studied, TSSs was identified as the main factor that downgraded water quality over the study period. Principal component analysis (PCA) showed that the dominant variables influencing water chemistry were NH4+-N, NO2-N, TP, EC, and chloride (Cl), all of which are associated with anthropogenic sources. Full article
Show Figures

Figure 1

15 pages, 2700 KiB  
Article
Rainfall-Driven Nitrogen Dynamics in Catchment Ponds: Comparing Forest, Paddy Field, and Orchard Systems
by Mengdie Jiang, Yue Luo, Hengbin Xiao, Peng Xu, Ronggui Hu and Ronglin Su
Agriculture 2025, 15(14), 1459; https://doi.org/10.3390/agriculture15141459 - 8 Jul 2025
Viewed by 304
Abstract
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This [...] Read more.
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This study quantified variations in key N components in ponds across forest, paddy field, and orchard catchments before and after six rainfall events. The results showed that nitrate (NO3-N) was the main N component in the ponds. Post-rainfall, N concentrations increased, with ammonium (NH4+-N) and particulate nitrogen (PN) exhibiting significant elevations in agricultural ponds. Orchard catchments contributed the highest N load to the ponds, while forest catchments contributed the lowest. Following a heavy rainstorm event, total nitrogen (TN) loads in the ponds within forest, paddy field, and orchard catchments reached 6.68, 20.93, and 34.62 kg/ha, respectively. These loads were approximately three times higher than those observed after heavy rain events. The partial least squares structural equation model (PLS-SEM) identified that rainfall amount and changes in water volume were the dominant factors influencing N dynamics. Furthermore, the greater slopes of forest and orchard catchments promoted more N loss to the ponds post-rain. In paddy field catchments, larger catchment areas were associated with decreased N flux into the ponds, while larger pond surface areas minimized the variability in N concentration after rainfall events. In orchard catchment ponds, pond area was positively correlated with N concentrations and loads. This study elucidates the effects of rainfall characteristics and catchment heterogeneity on N dynamics in surface waters, offering valuable insights for developing pollution management strategies to mitigate rainfall-induced alterations. Full article
(This article belongs to the Special Issue Soil-Improving Cropping Systems for Sustainable Crop Production)
Show Figures

Figure 1

15 pages, 2296 KiB  
Review
A Review of the Effects and Influencing Factors of Vertical Greening Systems in Wastewater Treatment
by Wencong Zhu, Xiangyong Zheng, Min Zhao, Huijun Xiang, Suyang Zhang and Wenjuan Han
Sustainability 2025, 17(13), 6138; https://doi.org/10.3390/su17136138 - 4 Jul 2025
Viewed by 253
Abstract
Vertical greening systems (VGSs) serve as an advanced ecological wastewater treatment technology, offering advantages such as a small spatial footprint and increased green space coverage. VGSs have been widely applied to treat various types of wastewaters, including blackwater and greywater. However, a systematic [...] Read more.
Vertical greening systems (VGSs) serve as an advanced ecological wastewater treatment technology, offering advantages such as a small spatial footprint and increased green space coverage. VGSs have been widely applied to treat various types of wastewaters, including blackwater and greywater. However, a systematic review of the pollutant removal efficiency of VGSs in treating blackwater and greywater, as well as the influencing factors, remains lacking. This study compiles data on the removal efficiencies of chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), and ammonium nitrogen (NH4+-N) from greywater and blackwater using VGSs. Additionally, the effects of the hydraulic loading rate, substrate type, and the number of system layers on pollutant removal performance are assessed. When treating blackwater, the pollutant removal efficiency showed a positive correlation with hydraulic loading within the range of 85 L × (m2 × d)−1 to 200 L × (m2 × d)−1; substrates such as zeolite or vermiculite exhibited superior removal performance, and increasing the number of system layers enhanced the pollutant removal efficiency. When treating greywater, the hydraulic loading rate and system layers have limited influence on COD and TN removal, while excessive hydraulic loading or system layers may negatively affect TP removal. Substrate mixtures composed of perlite and coconut coir achieved a higher pollutant removal efficiency. In conclusion, optimizing key parameters such as the hydraulic loading rate, substrate composition, and the number of system layers can significantly enhance the pollutant removal efficiency of VGSs. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

25 pages, 3581 KiB  
Article
Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System
by Jingyi Huang, Fengyan Tian, Yuanxing Huang, Hong Tao and Feipeng Li
Water 2025, 17(13), 2000; https://doi.org/10.3390/w17132000 - 3 Jul 2025
Viewed by 380
Abstract
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment [...] Read more.
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment total nitrogen (TN), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3-N) were measured, with aquaculture-dominated lakes such as Xueluoyang Lake and Caodang Marsh exhibiting significantly higher sedimentary TN concentrations than the Taipu River. In Xueluoyang Lake, the average TN content reached 1037.3 mg/kg—1.87 times higher than in the river—highlighting the legacy effect of historical intensive aquaculture. Correlation analyses showed strong associations between sediment NH4+-N and NO3-N and nitrogen levels in overlying water, confirming sediments as a major endogenous nitrogen source. Multivariate statistical methods, including Pearson’s correlation, hierarchical clustering, and principal component analysis, were applied to elucidate spatial patterns and key influencing factors. Water quality evaluation indices and sediment organic pollution assessments revealed widespread TN exceedance, particularly in dry seasons, with water quality deteriorating to Class V or worse. These results underscore the need for strengthened control of sedimentary nitrogen release and effective management of agricultural non-point source pollution to restore and protect water quality in river–lake systems. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

29 pages, 1089 KiB  
Article
Bacterial Community in Foam-Sand Filter Media in Domestic Sewage Treatment: A Case Study of Elevated Ammonium Nitrogen Content
by Ewa Dacewicz
Water 2025, 17(13), 1957; https://doi.org/10.3390/w17131957 - 30 Jun 2025
Viewed by 257
Abstract
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a [...] Read more.
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a comparison of filters by layer (two or three layers) and type of fill (waste PUR foams with 95% open porosity, sand). Proteobacteria, actinobacteria, and firmicutes were shown to be the most abundant phyla. The number and type of fill layers had a significant impact on the diversity of nitrifying bacteria. The presence of Nitrosomonas and Nitrospira was observed in every sponge fill sample, but the abundance of autotrophic nitrifiers was negligible in the two-layer filter. The conditions there proved more favorable for the growth of aerobic heterotrophic bacteria. Also in the Schmutzdecke layer, a dominance of heterotrophic nitrifiers was found. The abundance of bacteria with nitrifying activity (AOB, comammox, HNAD) in the biomass of spongy fill placed in casings was 1.7 times lower than in foams without casings. In addition, anammox bacteria (unidentified Planctomycetes), found mainly in the sponge fill and Schmutzdecke of the three-layer filters, may have been responsible for NH4+-N removal exceeding 70%. In the case of the two-layer filter, the removal of this pollutant reached 92%. Burkholderia and Sphingopyxis were identified as the predominant denitrifying bacteria. The foam-filled filter in the casings showed an increase in o_Caldilineaceae, involved in nitrate removal as non-denitrifiers. Actinomycetes Pseudonocardia and Amycolatopsis, as well as Proteobacteria Devosia, Acinetobacter, and Bdellovibrio, were found to be involved in phosphorus removal in the waste PUR foams. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3113 KiB  
Article
Optimizing Nitrogen Management to Enhance Growth and Minimize Pollution Risk in Pennisetum hydridum Cultivation
by Farhan Nabi, Zicheng Yi, Rakhwe Kama, Sumbal Sajid and Huashou Li
Agronomy 2025, 15(6), 1452; https://doi.org/10.3390/agronomy15061452 - 14 Jun 2025
Viewed by 479
Abstract
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon [...] Read more.
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon sequestration capacity of Pennisetum hydridum (Imperial Bamboo, PHY), a fast-growing tropical grass increasingly used for forage and bioenergy production in subtropical regions. Despite its agronomic potential, nutrient management strategies for P. hydridum remain poorly understood. We hypothesized that moderate nitrogen application (100–200 kg·ha−1) would enhance growth and nutrient use efficiency, while maintaining environmental sustainability. Results show that moderate nitrogen levels (100–200 kg·ha−1) significantly enhanced biomass production, with the highest aboveground biomass observed at 180 days under T2 (100 kg·ha−1) and T3 (200 kg·ha−1), reaching 166.5 g/plant and 140.6 g/plant, respectively. In contrast, excessive nitrogen application (400 kg·ha−1) led to a decline in biomass (T4, 76.8 g/plant) and impaired carbon sequestration efficiency. In addition, it was found that nitrogen uptake increased with moderate fertilization, with T2 and T3 showing optimal nitrogen use efficiency. Soil analysis revealed that soil organic matter and total nitrogen content were positively correlated with root biomass, with significant linear relationships between soil nitrogen, carbon/nitrogen ratios, and PHY biomass. Specifically, the total nitrogen content in rhizomes and fibrous roots showed coefficients of determination (R2) of 0.65 and 0.67, indicating a strong correlation with soil nitrogen levels. Furthermore, nitrogen application increased soil nitrate (NO3-N) and ammonium (NH4+-N) concentrations, with T4 showing the highest levels at 90 days (41.35 mg/kg for NO3-N and 15.6 mg/kg for NH4+-N), signaling potential nutrient loss to the environment. These findings underscore the importance of sustainable nitrogen management for maximizing the growth potential of P. hydridum, while minimizing environmental risks in subtropical agricultural systems. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

22 pages, 2181 KiB  
Article
Efficiency of a New Biochar Made from Agave Bagasse to Remove Conventional Pollutants in Samples from Laguna de Bustillos, Chihuahua, Mexico, and Pharmaceutical Derivatives in Synthetic Water
by Wendy Nayely Medina-Esparza, Oscar Aguilar-Juárez, Sergio Gómez-Salazar, René Morán-Salazar, Montserrat López-Covarrubias, Luz Olivia Leal-Quezada, Jorge Del Real-Olvera and Víctor Manuel Reyes-Gómez
Processes 2025, 13(6), 1861; https://doi.org/10.3390/pr13061861 - 12 Jun 2025
Viewed by 764
Abstract
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the [...] Read more.
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the adsorption performance of a novel biochar produced from agave bagasse—a readily available agro-industrial waste in Mexico—through low-temperature pyrolysis. The biochar was evaluated for its capacity to remove conventional water quality parameters (chemical oxygen demand (COD), nitrates (NO3), total nitrogen (TN), total phosphorus (TP), ammonium (NH4+), turbidity, apparent color, and true color) from water samples collected from the polluted Bustillos Lagoon in Chihuahua, Mexico. Additionally, the removal of emerging pharmaceutical contaminants, specifically acetaminophen (Act) and diclofenac (Dfc), was assessed in synthetic aqueous solutions. Potentiometric titration analyses revealed a significant contribution of surface acidity in the adsorption of pharmaceutical derivatives, highlighting the relevance of functional groups retained during low-temperature pyrolysis. The biochar derived from agave bagasse (BBAF1) was tested in a fixed-bed column system and compared with two commercial activated carbons (CACCF2 and CVCF3). The BBAF1 biochar achieved average removal efficiencies ranging from 50% to 90% for all conventional parameters. In contrast, those of ACT and DFC were between 0.43 and 0.67 mg g−1 (59–85%) and 0.34 and 0.62 mg g−1 (37–79%), respectively, demonstrating their potential as an adsorbent material for improving water quality. This work supports the development of circular economic strategies by valorizing agricultural residues while offering an effective solution to environmental pollution challenges. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

25 pages, 2294 KiB  
Article
Anaerobic Digestion of Duckweed Used to Remediate Water Contaminated with Zinc and Ammonium
by Yan Zhang, Xinmin Zhan, Artin Hatzikioseyian and Piet Nicolaas Luc Lens
Appl. Sci. 2025, 15(11), 6212; https://doi.org/10.3390/app15116212 - 31 May 2025
Viewed by 502
Abstract
This study presents an integrated approach for the remediation of zinc- and ammonium-contaminated water using duckweed, followed by the valorization of the harvested biomass through anaerobic digestion for biogas production. Duckweed was cultured with various initial concentrations of zinc (Zn, 0 mg/L, 2.5 [...] Read more.
This study presents an integrated approach for the remediation of zinc- and ammonium-contaminated water using duckweed, followed by the valorization of the harvested biomass through anaerobic digestion for biogas production. Duckweed was cultured with various initial concentrations of zinc (Zn, 0 mg/L, 2.5 mg/L, and 5 mg/L) and ammonium (NH4+-N, 0 mg/L, 20 mg/L, and 40 mg/L). Subsequently, duckweed was subjected to chemical pretreatment with sulfuric acid and the obtained residual solid and liquid fractions were evaluated as substrates for methane production. The liquid fraction consistently yielded higher methane production compared to the solid fraction. However, when duckweed was grown in zinc- and ammonium-rich conditions (2.5 or 5.0 mg/L Zn and 20 mg/L NH4+-N), methane production from the liquid hydrolysate was significantly reduced (120.90 ± 12.03 mL/g COD and 129.82 ± 10.65 mL/g COD, respectively) compared to the control duckweed (201.67 ± 5.72 mL/g COD). The lowest methane yields were observed for duckweed grown solely in zinc (111.32 ± 5.72 and 99.88 ± 10.49 mL/g COD for 2.5 and 5.0 mg/L Zn, respectively), attributed to the inhibitory effect of high dissolved zinc concentrations in the liquid fraction. The applicability of this integrated system is particularly relevant for the agricultural and industrial sectors, where wastewater streams are often co-contaminated with nutrients and trace metals. By demonstrating that acid-pretreated, zinc-rich duckweed biomass can be used for biogas production—provided that process conditions are optimized to mitigate metal inhibition and acidification—this study provides actionable strategies for developing circular, sustainable wastewater treatment systems. The approach not only maximizes pollutant removal and resource recovery, but also addresses environmental safety concerns associated with residual metals in the digestate. Full article
Show Figures

Figure 1

23 pages, 2003 KiB  
Article
Mechanistic Insights into NDMA Adsorption onto Selected Pollutants and Their Removal via Direct Rapid Sand Filtration and After Enhanced Coagulation
by Olubunmi M. Olukowi, Tian Tian, Xie Yan and Yuejun Zhang
Molecules 2025, 30(10), 2094; https://doi.org/10.3390/molecules30102094 - 8 May 2025
Viewed by 394
Abstract
N-nitroso dimethylamine (NDMA), a common nitrogen disinfection by-product and carcinogen, can be removed using rapid sand filtration (RSF) after coagulation; however, its removal mechanism has not been extensively studied. This study analyzed NDMA and the water pollutant parameter removal rate change tendency in [...] Read more.
N-nitroso dimethylamine (NDMA), a common nitrogen disinfection by-product and carcinogen, can be removed using rapid sand filtration (RSF) after coagulation; however, its removal mechanism has not been extensively studied. This study analyzed NDMA and the water pollutant parameter removal rate change tendency in the filtrates of simulated supernatants directly and after enhanced coagulation (EC) using composite PAC/PDMDAAC that mimics treated Yangtze River water separated into blank, single-component, and mixed multi-component (MMC) water systems containing NDMA and pollutants like diatomite (DTA), humic acid salt (HAs), dimethyl amine (DMA), and ammonium nitrate (NH4NO3). Meanwhile, a correlation analysis of removal rate changes and adsorption analysis using SEM (surface morphology), polar functional groups, and zeta potentials (surface charge) were performed to obtain mechanistic insights into NDMA removal via adsorption. The results revealed that removal rates gradually increased with an increasing volume of filtrates, and there were correlations for NDMA-HAs, NDMA-DMA, NDMA-DTA, and NDMA-NH4NO3. The highest NDMA removal rates in the blank system were 10.29% using RSF directly and 12.84% after enhanced coagulation, indicating improved efficiency with coagulation. However, single and mixed systems showed that NDMA removal rate changes were enhanced by water pollutants and coagulation functions. The NDMA removal mechanism was verified, and it was revealed that the level of NDMA adsorption on water pollutants varies based on microstructure, available polar functional groups, and surface charge interactions that are strengthened by coagulation functions for improving the affinity of NDMA and pollutants on the sand surface. These findings provide new insights into NDMA removal mechanisms via adsorption and highlight the role of water pollutants and enhanced coagulation in strengthening rapid sand filtration for NDMA removal. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 5118 KiB  
Article
Characteristics of the Water Environment and the Mechanism of Nitrogen Metabolism in the Xisha River
by Shang Yang, Ran Wang and Wei Zhao
Sustainability 2025, 17(9), 4060; https://doi.org/10.3390/su17094060 - 30 Apr 2025
Viewed by 377
Abstract
The nitrogen cycle is the key to the healthy operation of river ecosystems and plays an important role in maintaining the ecological balance, purifying water quality, and promoting the circulation of material. The Xisha River was chosen as the research object to analyze [...] Read more.
The nitrogen cycle is the key to the healthy operation of river ecosystems and plays an important role in maintaining the ecological balance, purifying water quality, and promoting the circulation of material. The Xisha River was chosen as the research object to analyze the water quality condition from 2021 to 2023, and the microbial diversity of nitrogen metabolism, functional genes, and metabolic pathways in the water body were analyzed using macro-genomics technology. The results showed that total nitrogen (TN) was the main exceedance factor in the water body, and ammonia nitrogen (NH3-N), TN, and total phosphorus (TP) were the key factors affecting the water quality. The downstream station (W2) exhibited the most significant water quality changes, while the upstream station (W5) showed the highest biodiversity and abundance. The top five genera in abundance in the water body were unclassified__c__Actinomycetia, unclassified__p__Bacteroidota, Paenisporosarcina, Candidatus_Planktophila, and unclassified__c__Betaproteobacteria. The five most abundant nitrogen metabolism genes were K01915 (nitrate reductase), K00265 (nitrite reductase), K01673 (ammonium transporter), K00266 (nitrite reductase), and K02575 (nitrate reductase), each contributing to critical nitrogen cycling processes such as denitrification, nitrification, and nitrogen assimilation. The six major nitrogen metabolism pathways were denitrification (M00529), anisotropic nitrate reduction (M00528), anisotropic nitrate reduction (M00529). anisotropic nitrate reduction (M00530), complete nitrification (M00804), nitrate assimilation (M00615), methylaspartate cycling (M00740), and assimilatory nitrate reduction (M00531). TN was identified as the primary environmental factor influencing both microbial communities and nitrogen metabolism genes. Co-occurrence network analysis identified K01915 (nitrate reductase), K00459 (ammonium transporter), K01673 (ammonium transporter), and K00261 (nitrate reductase) as pivotal genes involved in nitrogen metabolism. This study reveals the microbial-driven nitrogen cycle and lays the foundation for mitigating nitrogen pollution in the Xisha River. Full article
Show Figures

Figure 1

13 pages, 1180 KiB  
Article
Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature
by Paula Calvo-de Diego, María Cruz García-González, Mercedes Sánchez-Báscones and Beatriz Molinuevo-Salces
Agronomy 2025, 15(5), 1109; https://doi.org/10.3390/agronomy15051109 - 30 Apr 2025
Viewed by 340
Abstract
Ammonia (NH3) is a significant air pollutant with major environmental and health impacts, largely attributed to agriculture. Pig production is a major contributor, accounting for 25% of livestock NH3 emissions. This study developed a new system based on gas-permeable membranes [...] Read more.
Ammonia (NH3) is a significant air pollutant with major environmental and health impacts, largely attributed to agriculture. Pig production is a major contributor, accounting for 25% of livestock NH3 emissions. This study developed a new system based on gas-permeable membranes (GPM) technology for NH3 recovery from the atmosphere obtaining a solution of ammonium sulfate as the resulting fertilizer product. Various experimental configurations were evaluated in the novel system using a synthetic NH3-emitting solution. The optimal arrangement was a GPM system with recirculation of the generated NH3 and without recirculation of the acidic trapping solution, yielding a nitrogen (N) recovery rate of up to 237 g m−2 d−1. Subsequent tests using pig manure (PM) at varying durations achieved rates of up to 73 g m−2 d−1, representing a four-fold increase in N capture efficiency compared to previous research. The influence of manure temperature on NH3 emission and capture were analyzed, simulating the possible differences between seasons (summer and winter), and revealing higher N recovery rates at elevated temperatures. At 21.5 °C, the recovery rate was 7.7 g m−2 d−1, while increased temperatures of 38.8 °C and 49.3 °C yielded rates of 15.9 and 27.2 g m−2 d−1, respectively. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 3522 KiB  
Article
Microbially Mediated Arsenic-Nitrogen Biogeochemical Coupling Across Vertical Distribution in Coastal Wetlands
by Yang Zou, Lili Xue, Ting Luo, Sheng Kong, Zirui Zhao, Liang Ding, Kexin Liu, Huaxin Gao and Hao Wu
Water 2025, 17(9), 1255; https://doi.org/10.3390/w17091255 - 23 Apr 2025
Viewed by 541
Abstract
Few studies have addressed the coupling of arsenic (As) and nitrogen (N) geochemistry in natural soil. This research focused on the vertical distribution and coupling behavior of As and N in coastal wetland sediments. Pore water and sediment from barren wetlands and coastal [...] Read more.
Few studies have addressed the coupling of arsenic (As) and nitrogen (N) geochemistry in natural soil. This research focused on the vertical distribution and coupling behavior of As and N in coastal wetland sediments. Pore water and sediment from barren wetlands and coastal wetlands near three estuaries (Guanhe River, Sheyang River, and Liangduo River) in central Jiangsu Province of China with Spartina alterniflora (S. alterniflora) were sampled, which were analyzed for total As content and speciation and N inorganic fractions. The bacterial community was investigated through 16s rDNA sequencing; diversity indices were calculated. The As change trend in pore water of surface sediment with increasing depth was opposite to that of NO3, possibly because NO3 promoted arsenite (As(III)) oxidation to arsenate (As(V)). Increased NO3 contents seemed to mitigate As toxicity. The vertical distribution of NH4+ indicated anaerobic ammonium oxidation and iron (Fe) ammonium oxidation to reduce Fe oxides, resulting in As release, especially in the deeper sediment. High-throughput sequencing analysis revealed some potential bacteria possibly involved in As-N geochemical coupling, such as Bacillus and Psychrobacter, which can couple denitrification with As oxidation, and Sva1033, which may favor ammonium oxidation-induced As release. Our results suggest that the N-driven oxidation of As(III) and the ammonium oxidation-induced As release can be relevant to As-N coupling processes in the coastal wetland and emphasize the importance of microorganisms in such processes. This research deepens our understanding of As-N coupling in natural coastal wetlands, providing a theoretical basis for controlling As pollution. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

13 pages, 1051 KiB  
Article
Tomato Production with Organic Fertilizer from Soluble Bonito Fish Waste in Hydroponic Cultivation Systems
by Dannisa Fathiya Rachma, Kazuya Maeda, Yuta Yamanouchi, Hiroshi Ueda, Makoto Shinohara and Dong-Hyuk Ahn
Horticulturae 2025, 11(4), 381; https://doi.org/10.3390/horticulturae11040381 - 2 Apr 2025
Cited by 1 | Viewed by 907
Abstract
Using organic fertilizer made from waste materials is beneficial for both the economy and the environment, promoting sustainability and reducing pollution. In hydroponics, decomposition converts these materials into fertilizer, with multiple parallel mineralization (MPM) enabling efficient nutrient conversion by microorganisms. The tomato cultivar [...] Read more.
Using organic fertilizer made from waste materials is beneficial for both the economy and the environment, promoting sustainability and reducing pollution. In hydroponics, decomposition converts these materials into fertilizer, with multiple parallel mineralization (MPM) enabling efficient nutrient conversion by microorganisms. The tomato cultivar “Momotaro Next” was cultivated hydroponically in order to determine whether organic fertilizer derived from soluble bonito fish waste (OF) through MPM could be used in tomato hydroponic cultivation compared with a chemical nutrient solution treatment (CF). In this study, ammonium (NH4+) was generated through the OF decomposition process. During cultivation, the ammonium concentration tended to increase, while the nitrate (NO3) concentration tended to decrease. The total yield (TY), total dry matter (TDM), and leaf area index (LAI) were lower after OF treatment than after CF treatment. Notably, the TY, TDM, and LAI were 5.4 kg m−2, 594 g plant−1, and 1.7 for OF and 6.8 kg m−2, 895 g plant−1, and 3.8 for CF, respectively. The results of the tomato fruit qualities show no significant differences for total soluble solids (TSS) (%Brix), lycopene, glucose, fructose, or sucrose. However, significant differences were observed for gamma-aminobutyric acid (GABA), glutamate, aspartate, and citric acid. The lower yield and quality of the tomato crop with the OF treatment were caused by the high concentration of NH4+ that occurred during cultivation due to a nonoptimal mineralization process. Therefore, a well-managed MPM process could improve crop quality by reducing the risk of high NH4+. Full article
Show Figures

Figure 1

22 pages, 4687 KiB  
Article
Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies
by Yifan Song, Ting Yang, Ping Tian, Hongyi Li, Yutong Tian, Yining Tan, Yele Sun and Zifa Wang
Remote Sens. 2025, 17(7), 1151; https://doi.org/10.3390/rs17071151 - 24 Mar 2025
Viewed by 484
Abstract
The vertical profiles of PM2.5 chemical components are crucial for tracing pollution development, determining causes, and improving air quality. Yet, previous studies only yielded transient and sparse results due to technological limitations. Comprehensive analysis of component vertical distribution across an entire boundary [...] Read more.
The vertical profiles of PM2.5 chemical components are crucial for tracing pollution development, determining causes, and improving air quality. Yet, previous studies only yielded transient and sparse results due to technological limitations. Comprehensive analysis of component vertical distribution across an entire boundary layer remains challenging. Here, we provided a first-ever vertical–temporal continuous dataset of aerosol component concentrations, including sulfate (SO42−), ammonium (NH4+), nitrate (NO3), organic matter (OM), and black carbon (BC), using ground-based remote sensing retrieval. The retrieved dataset showed high correlations with in situ chemical observation, with all components exceeding 0.75 and some surpassing 0.90. Using the Beijing 2022 Winter Paralympics as an example, we observed distinct vertical patterns and responses to meteorology and emissions of different components under strictly controlled conditions. During the Paralympics, the emissions contribution (51.12%) surpassed meteorology (48.88%), except SO42− and NO3. Inorganics showed high-altitude transport features, while organics were surface-concentrated, with high-altitude inorganic(organic) concentrations 1.19(0.56) times higher than those near the surface. SO42− peaked at 919 m and 1516 m, NH4+ and NO3 showed an additional peak near 300–500 m, influenced by surface sources and secondary generation. The inorganics exhibited a transport-holding–sinking–resurging process, with NO3 reaching higher and sinking more. By contrast, organic components massified near 200 m, with a slight increase in high-altitude transport by time. The dispersion of all components driven by a north-westerly wind started 5 h earlier at high altitudes than near the surface, marking the end of the process. The insights gleaned highlight regional inorganic impacts and local organic impacts under the coupling of emission control and meteorology, thus offering helpful guidance for source attribution and targeted control policies. Full article
Show Figures

Figure 1

Back to TopTop