Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Composition of the Substrates
2.2. Ammonia Capture System
2.2.1. Description of the Novel Configuration for N Recovery
2.2.2. Experimental Tests to Design the Two-Parts N Recovery System
2.2.3. Experimental Tests to Study the Effect of NH3 Contact Time with the Gas-Permeable Membrane System and the Effect of PM Temperature on N Recovery
2.3. Analytical Methods and Yield
3. Results and Discussion
3.1. Design and Optimization of a Novel System Based on GPM Technology for NH3 Capture in the Air—Experiment 1
3.2. Effect of Contact Time on N Capture with GPM—Experiment 2
Scale | Substrate | Acidic Solution Static: Yes/No | Ammonia Gas Static: Yes/No | Ammonia Recovery Rate | Reference | ||
---|---|---|---|---|---|---|---|
- | - | - | g m−2 d−1 | ||||
Laboratory | Poultry Litter | No | No | 5.1 | [24] | ||
No | Yes | 1.4 | [26] | ||||
No | Yes | 1.3 | [6] | ||||
Pig Manure | No | Yes | 9.5–12.7 | [25] | |||
No | No | 11.4–18.8 | [25] | ||||
Yes | No | 22.7–73.2 | This study | ||||
Synthetic Manure | 12 g L−1 TAN | No | Yes | 19–34 | [13] | ||
6 g L−1 TAN | No | Yes | 13–21.4 | [13] | |||
3 g L−1 TAN | No | Yes | 6–7 | [13] | |||
6 g L−1 TAN | No | Yes | 24–25 | [14] | |||
Synthetic Solution | 0.6 g L−1 TAN | Yes | No | 163.8–237.0 | This study | ||
Pilot | Poultry Litter | No | No | 0.41 | [24] | ||
No | Yes | 10.4–28.6 | [17] | ||||
No | Yes | 16.5 | [26] | ||||
Poultry Manure Composting | No | No | 1.9–6.9 | [16] | |||
Pig Manure | No | No | 2.3 | [24] |
3.3. Effect of Manure Temperature on N Capture—Experiment 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GPM | Gas-permeable membrane |
PM | Pig Manure |
N | Nitrogen |
EU | European Union |
BAT | Best available techniques |
TAN | Total ammonia nitrogen |
TS | Total solids |
VS | Volatile Solids |
e-PTFE | Expanded polytetrafluoroethylene |
References
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- National Emission Inventory. Ammonia Emissions from Animal Husbandry. EPA 2004. Available online: https://www.epa.gov/air-emissions-inventories (accessed on 10 March 2025).
- Malherbe, L.; German, R.; Couvidat, F.; Zanatta, L.; Blannin, L.; James, A.; Lètinois, L.; Schucht, S.; Berthelot, B.; Raoult, J. Emissions of Ammonia and Methane from the Agricultural Sector. Emissions from Livestock Farming (Eionet Report—ETC HE 2022/21). European Topic Centre on Human Health and the Environment. 2022. Available online: https://www.eionet.europa.eu/etcs/all-etc-reports (accessed on 14 February 2025).
- European Union. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants. Off. J. Eur. Union 2016. Available online: https://eur-lex.europa.eu/eli/dir/2016/2284/oj/eng (accessed on 10 March 2025).
- European Commission. Zero Pollution Action Plan. COM(2021) 400 Final 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021DC0400 (accessed on 10 March 2025).
- Rothrock, M.J., Jr.; Szögi, A.A.; Vanotti, M.B. Recovery of ammonia from poultry litter using gas-permeable membranes. Trans. ASABE 2010, 53, 1267–1275. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef]
- Laureni, M.; Palatsi, J.; Llovera, M.; Bonmatí, A. Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J. Chem. Technol. Biotechnol. 2013, 88, 1654–1662. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.; Ogink, N.W. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Ellersdorfer, M.; Pesendorfer, S.; Stocker, K. Nitrogen recovery from swine manure using a zeolite-based process. Processes 2020, 8, 1515. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Dvorak, A.C. Technologies for recovering nutrients from wastewater: A critical review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Nirmalakhandan, N. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. Environ. Sci. Technol. Lett. 2020, 7, 450–459. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Vanotti, M.B.; Martín-Ramos, P. Effect of acid flow rate, membrane surface area, and capture solution on the effectiveness of suspended gpm systems to recover ammonia. Membranes 2021, 11, 538. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Evaluation of different capture solutions for ammonia recovery in suspended gas permeable membrane systems. Membranes 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, A.; Romero Nieto, D.; Christensen, K.V.; Fjerbæk Søtoft, L.; Norddahl, B. Ammonium fertilizers production from manure: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1469–1521. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Pilot plant for the capture of ammonia from the atmosphere of pig and poultry farms using gas-permeable membrane technology. Membranes 2021, 11, 859. [Google Scholar] [CrossRef] [PubMed]
- Buabeng, F.; Hashem, F.M.; Millner, P.; Matias, B.V.; Timmons, J.; Arthur, A. Controlling poultry house ammonia emissions using gas permeable membrane systems. Br. J. Environ. Sci. 2018, 6, 1–11. [Google Scholar]
- Tichý, O.; Eckhardt, S.; Balkanski, Y.; Hauglustaine, D.; Evangeliou, N. Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling. Atmos. Chem. Phys. 2023, 23, 15235–15252. [Google Scholar] [CrossRef]
- Calvet, S.; Hunt, J.; Misselbrook, T.H. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosyst. Eng. 2017, 159, 121–132. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water, Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Ramos, S.C.; Kim, S.H.; Jeong, C.D.; Mamuad, L.L.; Son, A.R.; Kang, S.H.; Lee, S.S. Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high concentrate fed Hanwoo steers. Sci. Rep. 2022, 12, 20739. [Google Scholar] [CrossRef]
- Daguerre-Martini, S.; Vanotti, M.B.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef]
- Vanotti, M.B.; Szogi, A. Systems and Methods for Reducing Ammonia Emissions from Liquid Effluents and for Recovering the Ammonia. U.S. Patent No. 9,708,200, 18 July 2017. [Google Scholar]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Reduction of ammonia emissions from laying hen manure in a closed composting process using gas-permeable membrane technology. Agronomy 2021, 11, 2384. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; García-González, M.C.; Martín-Ramos, P. Comparison of the Ammonia Trapping performance of different gas-permeable tubular membrane system configurations. Membranes 2022, 12, 1104. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Szögi, A.A.; Vanotti, M.B. Recovery of ammonia from poultry litter using flat gas permeable membranes. Waste Manag. 2013, 33, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Manuzon, R.; Hadlocon, L.J. Ammonia Emission from Animal Feeding Operations and Its Impacts. Agric. Nat. Resour. 2014. Available online: https://ohioline.osu.edu/factsheet/AEX-723.1 (accessed on 28 April 2025).
- Koenig, K.M.; McGinn, S.M. Effect of temperature on ammonia emissions from feedlot cattle manure. J. Anim. Sci. 2016, 94 (Suppl. S5), 569–570. [Google Scholar] [CrossRef]
- Meng, J.; Li, J.; Li, J.; Nan, J.; Deng, K.; Antwi, P. Effect of temperature on nitrogen removal and biological mechanism in an up-flow microaerobic sludge reactor treating wastewater rich in ammonium and lack in carbon source. Chemosphere 2019, 216, 186–194. [Google Scholar] [CrossRef]
- Bleizgys, R.; Naujokienė, V. Ammonia emissions from cattle manure under variable moisture exchange between the manure and the environment. Agronomy 2023, 13, 1555. [Google Scholar] [CrossRef]
- Pereira, J.; Misselbrook, T.H.; Chadwick, D.; Coutinho, J.; Trindade, H. Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing—A laboratory study. Biosyst. Eng. 2012, 112, 138–150. [Google Scholar] [CrossRef]
pH | TAN | Conductivity | TS | VS | |
---|---|---|---|---|---|
- | mg L−1 | mS cm−1 | % | % | |
PM_EXP 1 | 7.00 (0.2) | 4600 (127) | 29.7 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
PM_EXP 2 | 8.02 (0.0) | 4656 (4) | 26.5 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
PM_EXP 3 | 7.30 (0.1) | 4818 (28) | 29.2 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
Emitting Solution | Acidic Trapping Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test | Test Time | Final pH | Conductivity | Emitted N | Final pH | N Recovery | |||
min | mS cm−1 | mg TAN | % | mg TAN | % | g m−2 d−1 | |||
E1.1 | 60 | 10.0(0.3) | 1055.3 (51.9) | 530.5 (55.4) | 84 | 0.4 (0.0) | 1.5 (0.6) | 0.3 | 2.1 |
90 | 9.7(0.8) | 1046.7 (463.6) | 562.2 (41.9) | 89 | 0.6 (0.1) | 2.0 (0.4) | 0.4 | 1.9 | |
120 | 9.0(0.3) | 1209.0 (111.0) | 583.3 (199.3) | 92 | 0.7 (0.1) | 1.2 (0.1) | 0.2 | 0.9 | |
180 | 8.7(0.5) | 727.0 (29.5) | 564.5 (92.1) | 89 | 0.7 (0.2) | 9.0 (7.2) | 1.6 | 4.4 | |
E1.2 | 60 | 10.5(0.1) | 1219.3 (98.4) | 294.1 (105.9) | 47 | 1.3 (0.1) | 161.3 (21.1) | 55 | 237.0 |
90 | 9.6(1.2) | 1462.3 (91.7) | 364.2 (32.0) | 58 | 1.3 (0.3) | 183.0 (36.3) | 50 | 179.2 | |
120 | 10.3(0.1) | 1249.7 (147.9) | 409.3 (30.0) | 65 | 1.3 (0.1) | 223.0 (68.4) | 55 | 163.8 | |
180 | 9.2(0.1) | 2840.0 (1633.3) | 424.1 (6.9) | 67 | 0.2 (0.1) | 376.6 (112.8) | 89 | 184.4 | |
E1.3 | 60 | 10.7(0.0) | 1296.7 (395.3) | 345.1 (51.9) | 55 | 0.9 (0.0) | 87.5 (5.8) | 25 | 128.6 |
90 | 9.9(0.1) | 1300.3 (217.1) | 399.4 (20.0) | 63 | 0.9 (0.0) | 102.1 (13.8) | 26 | 100.0 | |
120 | n.d. | 709.7 (71.4) | 457.7 (1.4) | 72 | 0.9 (0.0) | 87.0 (58.1) | 19 | 63.9 | |
E1.4 | 60 | 10.2(0.2) | 1189.0 (315.2) | 358.1 (26.2) | 57 | 0.5 (0.0) | 139.7 (5.9) | 39 | 205.3 |
90 | 9.7(0.3) | 1421.0 (352.7) | 405.9 (24.82) | 64 | 0.5 (0.0) | 151.5 (232.4) | 37 | 148.4 | |
120 | n.d. | n.d. | 453.9 | 72 | n.d. | n.d. | n.d. | ||
E 1.5 | 60 | 7.6(0.3) | 27.4 (0.6) | 167.2 (17.4) | 37 | 0.2 (0.0) | 13.9 (4.9) | 8 | 20.4 |
90 | 8.0(0.5) | 26.6 (0.7) | 223.1 (9.6) | 48 | 0.2 (0.1) | 14.9 (2.6) | 7 | 14.6 |
Pig Manure | Acidic Trapping Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test Time | Initial pH | Final pH | Conductivity | Emmited N | Final pH | N Recovery | |||
min | - | - | mS/cm | mg TAN | % | - | mg TAN | % | g m−2 d−1 |
60 | 8.0 (0.0) | 8.9 (0.0) | 26.5 (0.4) | 93.3 (15.6) | 4 | 0.3 (0.0) | 15.5 (0.6) | 17 (3.4) | 22.7 (0.8) |
120 | 8.9 (0.2) | 9.2 (0.0) | 23.7 (1.1) | 237.5 (66.1) | 10 | 0.7 (0.1) | 99.6 (24.0) | 42 (1.6) | 73.2 (17.6) |
240 | 9.0 (0.0) | 9.2 (0.1) | 20.6 (0.8) | 406.2 (169.4) | 20 | 0.9 (0.1) | 162.6 (28.7) | 42 (10.6) | 59.7 (10.5) |
Pig Manure | Acidic Solution | |||||||
---|---|---|---|---|---|---|---|---|
Water Bath Temperature | Initial pH | Final pH | Final Temperature | Emitted N | Final pH | N Recovery | ||
°C | - | - | °C | mg | - | mg | % | g m−2 d−1 |
21.5 (0.5) | 7.4 (0.0) | 8.2 (0.4) | 23.5 (0.3) | 50.5 (10.3) | 0.2 (0.02) | 5.1 (1.4) | 11 (0.93) | 7.7 (2.2) |
38.8 (1.3) | 7.5 (0.0) | 8.7 (0.1) | 38.6 (0.9) | 39.1 (18.9) | 0.3 (0.06) | 10.4 (0.7) | 31 (16.58) | 15.9 (1.1) |
49.3 (0.7) | 7.5 (0.1) | 8.5 (0.1) | 48.4 (0.5) | 151.7 (69.1) | 0.2 (0.01) | 17.8 (6.7) | 13 (4.3) | 27.2 (3.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo-de Diego, P.; García-González, M.C.; Sánchez-Báscones, M.; Molinuevo-Salces, B. Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy 2025, 15, 1109. https://doi.org/10.3390/agronomy15051109
Calvo-de Diego P, García-González MC, Sánchez-Báscones M, Molinuevo-Salces B. Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy. 2025; 15(5):1109. https://doi.org/10.3390/agronomy15051109
Chicago/Turabian StyleCalvo-de Diego, Paula, María Cruz García-González, Mercedes Sánchez-Báscones, and Beatriz Molinuevo-Salces. 2025. "Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature" Agronomy 15, no. 5: 1109. https://doi.org/10.3390/agronomy15051109
APA StyleCalvo-de Diego, P., García-González, M. C., Sánchez-Báscones, M., & Molinuevo-Salces, B. (2025). Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy, 15(5), 1109. https://doi.org/10.3390/agronomy15051109