Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (812)

Search Parameters:
Keywords = amino alcohol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2565 KB  
Article
Insights into the Influence of Workshop Spatial Heterogeneity on the Quality and Flavor of Strong-Flavor Daqu from a Microbial Community Perspective
by Mingyao Zou, Jia Zheng, Yinjiang Leng, Xiaohu Liang, Jie Zhou, Wenhua Tong and Dong Zhao
Fermentation 2026, 12(2), 67; https://doi.org/10.3390/fermentation12020067 - 23 Jan 2026
Viewed by 212
Abstract
Daqu is the core saccharifying and fermenting starter for strong-flavor Baijiu, and its quality is strongly shaped by the workshop microenvironment. Here, mature Daqu from a newly built workshop and a long-established workshop within the same distillery were compared under identical raw materials [...] Read more.
Daqu is the core saccharifying and fermenting starter for strong-flavor Baijiu, and its quality is strongly shaped by the workshop microenvironment. Here, mature Daqu from a newly built workshop and a long-established workshop within the same distillery were compared under identical raw materials and process conditions. Physicochemical properties, volatile flavor compounds (HS-SPME-GC–MS), bacterial and fungal communities (16S/ITS sequencing), and Tax4Fun-predicted functions were jointly analyzed. The quality indicators of the Daqu in the new workshop are qualified, but the acidity (and moisture) is higher, and the fermentation, saccharification and liquefaction abilities are lower. The Daqu in the old workshop is rich in esters, the aroma is more mature, and the total ester content is about twice that of the new workshop. Both Daqu types shared similar core taxa, but the new workshop was dominated by a simpler Weissella–Thermomyces consortium, while the old workshop was enriched in Bacillus, lactic acid bacteria, Rhizomucor, Saccharomycopsis, and Wickerhamomyces. Correlation and network analyses linked these old-workshop core genera to key ethyl esters, higher alcohols and pyrazines, and Tax4Fun indicated a stronger bias toward amino acid/carbohydrate metabolism and membrane transport in the old workshop. These results show that workshop age reshapes Daqu quality by co-modulating physicochemical traits, microbial consortia and functional potential, and suggest microbial and functional targets for accelerating the “maturation” of new workshops. Full article
(This article belongs to the Special Issue Advances in Fermented Foods and Beverages)
Show Figures

Figure 1

17 pages, 34428 KB  
Article
Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System
by Ning Zhao, Ying Yue, Shufeng Yin, Hao Liu, Xiaohan Jia, Ning Wang, Chaofan Ji, Yiwei Dai, Liguo Yin, Huipeng Liang and Xinping Lin
Foods 2026, 15(2), 378; https://doi.org/10.3390/foods15020378 - 21 Jan 2026
Viewed by 108
Abstract
Acetate esters, synthesized by alcohol acyltransferase (AATases) encoded primarily by the ATF1 gene, are pivotal for the desirable fruity aroma in fermented foods. However, the role and regulatory impact of ATF1 in solid-state fermented meat remain largely unexplored. This study engineered Saccharomyces cerevisiae [...] Read more.
Acetate esters, synthesized by alcohol acyltransferase (AATases) encoded primarily by the ATF1 gene, are pivotal for the desirable fruity aroma in fermented foods. However, the role and regulatory impact of ATF1 in solid-state fermented meat remain largely unexplored. This study engineered Saccharomyces cerevisiae by knocking out and overexpressing ATF1 to investigate its influence on flavor formation in a sour meat model system. Compared to the wild-type strain, ATF1 overexpression (SCpA group) increased ethyl acetate content by 70.15% and uniquely produced significant levels of isoamyl acetate. Conversely, ATF1 deletion (SCdA group) led to a 61.23% reduction in ethyl acetate. Transcriptomic analysis revealed that ATF1 overexpression triggered a systemic metabolic shift, not only activating the final esterification step but also upregulating key genes in central carbon metabolism (SUC2, ICL1), amino acid biosynthesis, and precursor supply pathways (ACS2, ADH1). This synergistic regulation redirected metabolic flux towards the accumulation of both alcohol and acyl-CoA precursors, thereby amplifying acetate ester synthesis. Our findings demonstrate that ATF1 is a critical engineering target for flavor enhancement in fermented meats and uncover a broader metabolic network it influences, providing a robust strategy for the targeted modulation of food flavor profiles. Full article
(This article belongs to the Special Issue Food Microorganism Contribution to Fermented Foods)
Show Figures

Graphical abstract

44 pages, 7441 KB  
Review
Advances and Perspectives in Curcumin Regulation of Systemic Metabolism: A Focus on Multi-Organ Mechanisms
by Dingya Sun, Jialu Wang, Xin Li, Jun Peng and Shan Wang
Antioxidants 2026, 15(1), 109; https://doi.org/10.3390/antiox15010109 - 14 Jan 2026
Viewed by 537
Abstract
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable [...] Read more.
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable to its accumulation in the intestines and subsequent modulation of systemic oxidative stress and inflammation. This article systematically reviews the comprehensive regulatory effects of curcumin on systemic metabolic networks—including glucose metabolism, amino acid metabolism, lipid metabolism, and mitochondrial metabolism—and explores their molecular basis, particularly how curcumin facilitates systemic metabolic improvements by alleviating oxidative stress and interacting with inflammation. Preclinical studies indicate that curcumin accumulates in the intestines, where it remodels the microbiota through prebiotic effects, enhances barrier integrity, and reduces endotoxin influx—all of which are critical drivers of systemic oxidative stress and inflammation. Consequently, curcumin improves insulin resistance, hyperglycemia, and dyslipidemia across multiple organs (liver, muscle, adipose) by activating antioxidant defense systems (e.g., Nrf2), enhancing mitochondrial respiratory function (via PGC-1α/AMPK), and suppressing pro-inflammatory pathways (e.g., NF-κB). Clinical trials have corroborated these effects, demonstrating that curcumin supplementation significantly enhances glycemic control, lipid profiles, adipokine levels, and markers of oxidative stress and inflammation in patients with obesity, type 2 diabetes, and non-alcoholic fatty liver disease. Therefore, curcumin emerges as a promising multi-target therapeutic agent against metabolic diseases through its systemic antioxidant and anti-inflammatory networks. Future research should prioritize addressing its bioavailability limitations and validating its efficacy through large-scale trials to translate this natural antioxidant into a precision medicine strategy for metabolic disorders. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

20 pages, 3077 KB  
Article
Effects of Ethephon and Gibberellic Acid Treatments on Post-Harvest Flavor Quality of Green Lemon
by Birong Zhang, Suyun Yan, Wenbin Shi, Minxian Duan, Weijie Liu, Rangwei Xu, Jiandong Yang, Chunrui Long, Yunjiang Cheng and Xianyan Zhou
Agronomy 2026, 16(2), 203; https://doi.org/10.3390/agronomy16020203 - 14 Jan 2026
Viewed by 209
Abstract
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) [...] Read more.
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) in the pulp and peel, as well as those in major volatile compounds in the peel during fruit storage. The results showed that CEPA treatment initially increased volatile compounds like monoterpenes and sesquiterpenes in the fruit peel during early storage, but later decreased these compounds along with total sugar and amino acid content in the pulp. Conversely, GA3 treatment markedly delayed the decline in sugars and organic acids in the fruit peel, preserved the amino acid content in the pulp and the alcohol content in the peel, and delayed the decrease in volatile compound content in the peel. In conclusion, GA3 treatment effectively delayed the decline in primary metabolites and volatile compounds to maintain the storage quality of green lemon; therefore, GA3 represents a suitable strategy for the preservation of green lemons. CEPA temporarily improved aroma but accelerated quality deterioration, making it better suited for short-term degreening. This study offers a theoretical foundation for optimizing post-harvest degreening and preservation techniques of green lemons. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 2226 KB  
Article
Regulating Glycerol Metabolism to Investigate the Effects of Engineered Saccharomyces cerevisiae on Simulated Wine Flavor Compounds
by Lu Chen, Junjie Gao, Huiyan Wang, Guantong Liu, Huimin Yang and Yi Qin
Foods 2026, 15(2), 300; https://doi.org/10.3390/foods15020300 - 14 Jan 2026
Viewed by 144
Abstract
This study aimed to modify metabolite synthesis in Saccharomyces cerevisiae (S. cerevisiae) under simulated wine fermentation conditions by regulating the glycerol metabolic pathway. We systematically analyzed the effects of overexpressing the aquaporin gene AQY1 and co-expressing AQY1 with the glycerol-3-phosphate dehydrogenase [...] Read more.
This study aimed to modify metabolite synthesis in Saccharomyces cerevisiae (S. cerevisiae) under simulated wine fermentation conditions by regulating the glycerol metabolic pathway. We systematically analyzed the effects of overexpressing the aquaporin gene AQY1 and co-expressing AQY1 with the glycerol-3-phosphate dehydrogenase gene GPD1 on the metabolism of ethanol, higher alcohols, and esters. Our results indicate that AQY1 overexpression increased glycerol yield by 6.58%, reduced higher alcohol content by 14.60%, and elevated ester content by 7.15%. The downregulation of related amino acid metabolism genes correlated with the observed decrease in higher alcohol levels. Notably, co-expression of AQY1 and GPD1 further enhanced glycerol yield by 10.66% while decreasing ethanol content by 6.32%. By analyzing changes in gene expression alongside metabolic mechanisms, we hypothesize that the redistribution of carbon flux and NADH toward the glycerol pathway not only decreases the precursors for ethanol synthesis but also directly inhibits the activity of aldehyde dehydrogenase (ALD2/3/4/6), thereby constraining ethanol production. In comparison to AQY1 overexpression alone, the co-expression strategy did not significantly alter glycerol accumulation; however, it reduced both ethanol and ester content by 8.38% and 8.40%, respectively, while markedly increasing higher alcohol content by 22.30%. This increase may result from enhanced glycolytic flux and pyruvate accumulation, which promote metabolic flow toward amino acid synthesis pathways. In summary, this study effectively remodeled the central carbon metabolism network by targeting glycerol metabolism, achieving diverse metabolic product synthesis and providing important references for the selection and breeding of industrial S. cerevisiae strains. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

24 pages, 4531 KB  
Article
Combination of GC-IMS and Nano-LC/HRMS Reveals the Mechanism of Superheated Steam Glycosylation Modification in Improving Oyster Peptide Flavor
by Li-Hong Wang, Jun-Wei Zhang, Zong-Cai Tu, Xiao-Mei Sha, Yong-Yan Huang and Zi-Zi Hu
Foods 2026, 15(2), 236; https://doi.org/10.3390/foods15020236 - 9 Jan 2026
Viewed by 268
Abstract
This study investigated the effect of superheated steam (SS) assisted glycosylation modification on the flavor profile of oyster peptides (OP), and explored the correlation between key flavor compounds and glycosylation degree using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and nano-scale Liquid Chromatography coupled with [...] Read more.
This study investigated the effect of superheated steam (SS) assisted glycosylation modification on the flavor profile of oyster peptides (OP), and explored the correlation between key flavor compounds and glycosylation degree using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and nano-scale Liquid Chromatography coupled with High-Resolution Mass Spectrometry (nano-LC/HRMS). The results indicated that SS treatment accelerated the glycosylation process, reduced free amino groups level, and distinguished their unique flavor through E-nose. GC-IMS analysis detected 64 signal peaks including 13 aldehydes, 6 ketones, 7 esters, 6 alcohols, 2 acids, 2 furans and 5 other substances. And it was revealed that SS-mediated glycosylation treatment reduced the levels of fishy odorants like Heptanal and Nonanal, while promoting the pleasant-smelling alcohols and esters. In addition, Pearson correlation showed a positive correlation between excessive glycation and the increase in aldehydes, which might cause the recurrence of undesirable fishy notes. Further nano-LC/HRMS analysis revealed that arginine and lysine acted as the main sites for glycosylation modification. Notably, glycosylated peptides such as KAFGHENEALVRK, DSRAATSPGELGVTIEGPKE, generated by mild SS treatment could convert into ketones and pyrazines in subsequent reactions, thereby contributing to overall sensory enhancement. In conclusion, SS treatment at 110 °C for 1 min significantly improved the flavor quality of OP and sustains improvement in subsequent stages, providing theoretical support for flavor optimization of oyster peptides. Full article
Show Figures

Graphical abstract

14 pages, 1082 KB  
Article
Chemical Composition of Extracts from Fruiting Bodies of Tinder Fungi and Their Effect on the Early Stages of Wheat Development
by Alexander Ermoshin, Marina Byzova, Chaomei Ma and Irina Kiseleva
Appl. Biosci. 2026, 5(1), 3; https://doi.org/10.3390/applbiosci5010003 - 6 Jan 2026
Viewed by 259
Abstract
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. [...] Read more.
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. The aim of our study was to analyze the chemical composition of extracts of the most common Ural tinder fungi and their effect on the early stages of wheat growth. Water–alcohol extracts from five wood-destroying fungi contained biologically active compounds (BACs), such as phenolics, free amino acids and reducing sugars. F. pinicola was characterized by the smallest amount of extracted substances. F. fomentarius has the largest amount of phenolic compounds and sugars, and I. obliquus had the highest concentration of free amino acids. Qualitative analysis revealed alkaloids in P. betulinus, and anthraquinones in F. fomentarius. Saponins were found in all tested species, except F. fomentarius. The extracts stimulated the early stages of wheat development at concentrations of 1.0–0.2 g of fungal biomass per liter. Seed germination rate was comparable to the control samples or exceeded it, and the length of roots and shoots increased. Thus, extracts from fruiting bodies of studied fungi can be recommended for priming wheat seeds, and for biotechnological cultivation. Full article
Show Figures

Graphical abstract

26 pages, 1529 KB  
Article
Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production
by Eirini Stini, Ilias Diamantis, Stamatina Kallithraka, Seraphim Papanikolaou and Panagiota Diamantopoulou
Processes 2026, 14(1), 168; https://doi.org/10.3390/pr14010168 - 4 Jan 2026
Viewed by 303
Abstract
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/ [...] Read more.
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/v TLW) with varying phenolic concentrations and a standard initial glycerol level (~20 g/L) were prepared to simulate TLW-type substrates. Throughout fermentation, physicochemical parameters in the culture medium (pH, electrical conductivity, total sugars, free amino nitrogen, proteins, laccase activity, total phenolics, ethanol, glycerol) and biomass composition (intracellular polysaccharides, proteins, lipids, phenolic compounds, flavonoids, triterpenoids, antioxidant activity) were determined. Results showed that increasing TLW concentration enhanced biomass production and bioactive metabolite accumulation. The highest dry biomass (22.8 g/L) and protein (4.06 g/L) content were obtained in 50% v/v TLW, while maximum polysaccharides (6.8 g/L) occurred in 17% v/v TLW. Fungal growth led to a reduction of up to 74% in total phenolic content, indicating simultaneous bioremediation potential. Fruiting body formation—rare and uncommon in liquid cultures—occurred at the end of fermentation period. Fruiting bodies contained higher protein (24.5% w/w) and total phenolic compounds (13.36 mg GAE/g), whereas mycelium accumulated more polysaccharides (49% w/w). This study demonstrates that TLW can serve as a cost-effective, ecofriendly medium for producing high-value H. erinaceus biomass and bioactive metabolites, supporting circular bioeconomy applications in the alcoholic beverage sector. Full article
(This article belongs to the Special Issue Resource Utilization of Food Industry Byproducts)
Show Figures

Graphical abstract

24 pages, 4082 KB  
Article
Agrimonia pilosa Extract Alleviates CDAHFD-Induced Non-Alcoholic Steatohepatitis and Fibrosis in Mice
by Min-Jeong Jo, Sun Jin Hwang, Myung-Gi Seo, Jun-Ho Lee, Jae Woo Lee, Yoon Hee Kim, Yongduk Kim and Sang-Joon Park
Nutrients 2026, 18(1), 42; https://doi.org/10.3390/nu18010042 - 22 Dec 2025
Viewed by 633
Abstract
Background: Non-alcoholic steatohepatitis (NASH) lacks approved pharmacotherapies despite affecting approximately 25% of the global population. Agrimonia pilosa, a traditional herb with anti-inflammatory and antioxidant properties, remains unexplored for NASH treatment. Objective: This study investigated the hepatoprotective effects and mechanisms of Agrimonia pilosa [...] Read more.
Background: Non-alcoholic steatohepatitis (NASH) lacks approved pharmacotherapies despite affecting approximately 25% of the global population. Agrimonia pilosa, a traditional herb with anti-inflammatory and antioxidant properties, remains unexplored for NASH treatment. Objective: This study investigated the hepatoprotective effects and mechanisms of Agrimonia pilosa extract (APE) in NASH models. Methods: HepG2 cells were treated with free fatty acids (0.125 mM) and APE (+12.5–50 μg/mL). C57BL/6J mice received a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 12 weeks with APE (25–100 mg/kg/day), silymarin (100 mg/kg/day), or luteolin (20 mg/kg/day). Lipid accumulation, liver enzymes, histopathology, and molecular markers were assessed. Results: APE dose-dependently reduced lipid accumulation in FFA-treated cells, suppressed lipogenic factors (SREBF1, CEBPA, and PPARG), and upregulated fatty acid oxidation enzymes (CPT1A and PPARA) via AMPK/SIRT1 activation. In NASH mice, APE (100 mg/kg) significantly decreased serum ALT (160.0 ± 49.1 vs. 311.2 ± 66.7 U/L) and AST (96.0 ± 18.7 vs. 219.0 ± 55.7 U/L, p < 0.001), reduced hepatic macrophage infiltration by 68%, and substantially attenuated inflammatory markers (Ccl2, Tnf, and IL6), oxidative stress indicators (NRF2, HMOX1, and CYBB), and fibrogenic markers (ACTA2, COL1A1, and TGFB1) by 83–85% (p < 0.001). Collagen deposition decreased from 5.63 ± 0.39% to 1.54 ± 0.03% (p < 0.001). Conclusions: APE exerts potent hepatoprotective effects through multi-targeted modulation of lipid metabolism, inflammation, oxidative stress, and fibrosis via AMPK/SIRT1 pathway activation, supporting its potential as a natural therapeutic intervention for NASH. Full article
(This article belongs to the Special Issue Nutrition Therapy for Liver and Associated Metabolic Diseases)
Show Figures

Figure 1

20 pages, 1996 KB  
Article
A Study of Amino Acid Metabolism and the Production of Higher Alcohols and Their Esters in Sparkling Wines
by Štěpán Tesařík, Mojmír Baroň, Kamil Prokeš and Denisa Macková
Fermentation 2026, 12(1), 5; https://doi.org/10.3390/fermentation12010005 - 20 Dec 2025
Viewed by 639
Abstract
The presented article is focused on the study of amino acid metabolism and the related production of fusel alcohols and their esters in the secondary fermentation of sparkling wines. The production of fusel alcohols and their esters as a by-product of the metabolism [...] Read more.
The presented article is focused on the study of amino acid metabolism and the related production of fusel alcohols and their esters in the secondary fermentation of sparkling wines. The production of fusel alcohols and their esters as a by-product of the metabolism of individual amino acids during secondary fermentation and the influence of secondary fermentation with the use of individual amino acids as the only source of nitrogen was analyzed. Ten different amino acids were used. We used a control variant with the addition of ammonium hydrogen phosphate as an inorganic source of nitrogen and a control variant with an organic source of nitrogen in the form of an inactivated yeast, Saccharomyces cerevisiae, which contained all 20 amino acids in their natural ratio. The higher alcohols investigated were isoamyl alcohol, isobutanol, 2-phenylethanol, 1-propanol, 1-hexanol, and 1-butanol. The following esters of the higher alcohols were subsequently used: isoamyl acetate, hexyl acetate, phenethyl acetate, and isobutyl acetate. The individual fusel alcohols and esters were analyzed using GC-MS gas chromatography. The results pointed to different amino acid metabolisms in relation to the amount and production of fusel alcohols within the secondary fermentation and thus the sensory profile of sparkling wine. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

28 pages, 1342 KB  
Article
Biofortification of Durum Wheat Grain: Interactions Between Micronutrients as Affected by Potential Biofortification Enhancers and Surfactants
by Despina Dimitriadi, Georgios P. Stylianidis, Ioannis Tsirogiannis, Styliani Ν. Chorianopoulou and Dimitris L. Bouranis
Plants 2025, 14(24), 3759; https://doi.org/10.3390/plants14243759 - 10 Dec 2025
Viewed by 397
Abstract
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at [...] Read more.
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at addressing EMi deficiencies in human populations that emphasize cost-effectiveness and sustainability. All EMis are usually applied foliarly as sulfates, which indicates sulfur (S)-assisted biofortification. The formation of EMi complexes provides solubility as well as protection during long-distance transport. Several small molecules are possible candidates as ligands—the S-containing amino acids cysteine and methionine among them—linking EMi homeostasis to S homeostasis, which represents another aspect of S-assisted biofortification. In this study, we delve into the S-assisted agronomic biofortification strategy by applying sulfate micronutrients coupled with a sulfur-containing amino acid and we explore the effect of the selected accompanying cation (Zn, Fe, Mn, or Cu) on the EMi metallome of the grain, along with the biofortification effectiveness, whilst the type of the incorporated surface active agent seems to affect this approach. A field experiment was conducted for two years with durum wheat cultivation subjected to various interventions at the initiation of the dough stage, aiming to biofortify the grain with EMis provided as sulfate salts coupled with cysteine or methionine as potential biofortification enhancers. The mixtures were applied alone or in combination with commercial surfactants of the organosilicon ethoxylate (SiE) type or the alcohol ethoxylate (AE) type. The performance of two relevant preparations, FytoAmino-Bo (FABo) and Phillon, has been studied, too. The interventions affected the accumulation of the EMi metallome into the grains, along with the interactions of the EMis within this metallome. Several interventions increased the EMi metallome of the grain and affected the contribution of each EMi to this metallome. Many interventions have increased Zn and Fe, while they have decreased Mn and Cu. An increase in Zn corresponded (i) to a decrease in Cu, (ii) to an increase or no increase in Fe, and (iii) to a variable change in Mn. Cys increased the metallome by 34% and Zn and Fe within it. ZnSO4 and FeSO4 increased the metallome by 5% and 9%, whilst MnSO4 and CuSO4 increased the metallome by 36% and 33%, respectively. The additives improved the contribution to increasing the metallome in most cases. Without surfactant, the efficacy ranking proved to be MnSO4 > CuSO4 > ZnSO4 > FeSO4. The use of SW7 sustained the order CuSO4 > MnSO4 > ZnSO4 > FeSO4. The use of Saldo switched the order to CuSO4 > ZnSO4 > FeSO4 > MnSO4. In the case of Phillon, the order was CuSO4 > FeSO4 > ZnSO4 > MnSO4. The effect of Cys or Met was case-specific. The differentiations in the intensity of both the agronomic performance (grain weight, grain weight per spike, and yield) and the biofortification performance (concentrations vs. accumulations of each EMi within the grain) among the various combinations of EMis and additives are depicted by adopting a grading scale, which highlighted the intensity of the acclimation reaction of the biofortified grain to the applied intervention. Full article
Show Figures

Figure 1

15 pages, 6332 KB  
Article
Multi-Omics Insights into Microbial Community Dynamics and Functional Shifts During Double-Round Bottom Fermentation of Strong-Flavor Baijiu
by Jiao Li, Yaqi Guo, Yang Yang, Shu Li, Tao Xu, Ruiqi Zeng, Songtao Wang, Caihong Shen, Zhenghong Xu, Yong Zuo and Chen Xiao
Foods 2025, 14(24), 4228; https://doi.org/10.3390/foods14244228 - 9 Dec 2025
Viewed by 400
Abstract
Double-round bottom fermentation (DRBF) represents an important technological innovation in strong-flavor Baijiu production, yet the microbial succession and metabolic mechanisms underlying this process remain insufficiently understood. In this study, physicochemical analyses combined with multi-omics approaches were employed to elucidate the dynamic variations in [...] Read more.
Double-round bottom fermentation (DRBF) represents an important technological innovation in strong-flavor Baijiu production, yet the microbial succession and metabolic mechanisms underlying this process remain insufficiently understood. In this study, physicochemical analyses combined with multi-omics approaches were employed to elucidate the dynamic variations in physicochemical parameters, volatile compounds, and microbial community structure and function during DRBF, as well as to reconstruct key metabolic pathways involved in fermentation. A total of 153 volatile compounds were identified, with esters, alcohols, and acids as the major components showing distinct accumulation patterns across fermentation stages. High-throughput sequencing detected 505 bacterial and 175 fungal genera, dominated by Lactobacillus, Aspergillus, and Saccharomyces. Functional annotation revealed that metabolic pathways predominated, shifting from energy- and growth-related processes in the early stage to amino acid, fatty acid, and secondary metabolite biosynthesis in the later stage. Reconstruction of metabolic pathways identified 57 key enzymes linking starch degradation, pyruvate metabolism, the tricarboxylic acid (TCA) cycle, and ester biosynthesis, indicating cooperative metabolism among bacteria, yeasts, and molds. These findings elucidate the synergistic metabolic mechanisms of flavor formation during DRBF and provide a scientific basis for optimizing fermentation control and improving Baijiu quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1682 KB  
Article
Mechanistic Insights from Transcriptomics: How the Glucose Transporter gltp1 Gene Knockout Enhances Monascus Pigment Biosynthesis in M. ruber CICC41233
by Chuannan Long, Qinqin Tao, Xinyi Liu and Jingjing Cui
J. Fungi 2025, 11(12), 867; https://doi.org/10.3390/jof11120867 - 7 Dec 2025
Viewed by 445
Abstract
This study’s objective was to evaluate the effect of the glucose transporter GLTP1 in Monascus ruber CICC41233 on Monascus pigment biosynthesis. The gltp1 gene in M. ruber CICC41233 was cloned to construct the overexpression vector pNeo0380-gltp1, resulting in complementation and overexpression strains, and its [...] Read more.
This study’s objective was to evaluate the effect of the glucose transporter GLTP1 in Monascus ruber CICC41233 on Monascus pigment biosynthesis. The gltp1 gene in M. ruber CICC41233 was cloned to construct the overexpression vector pNeo0380-gltp1, resulting in complementation and overexpression strains, and its upstream and downstream homologous arms were used to construct the gene knockout plasmid pHph0380G/Gltp1::hph, resulting in a mutant strain. The results showed that the gltp1 gene knockout strain M. ruber GLTP24 exhibited dramatically accelerated starch degradation and a significant increase (74.1% higher) in the yield of alcohol-soluble pigments compared to the wild-type. Reverse genetic experiments confirmed this phenotype: complementation strains restored wild-type pigment production levels, while overexpression strains showed reduced pigment synthesis. Integrated transcriptomic analyses revealed that gltp1 deletion triggered extensive metabolic reprogramming. This included the downregulation of key components in the carbon-sensing GprD-cAMP/PKA signaling pathway and the concerted upregulation of multiple amino acid metabolic pathways, which supply essential precursors and amino groups for Monascus pigment synthesis. This study provides novel insights into the molecular link between carbon transport, signaling, and Monascus pigments in Monascus ruber. Full article
(This article belongs to the Special Issue Monascus spp. and Their Relative Products)
Show Figures

Figure 1

17 pages, 1409 KB  
Article
Barley Wine in Focus: NMR Metabolomics Reveals Style and Barrel Aging Differences
by Plamen Chorbadzhiev, Dessislava Gerginova and Svetlana Simova
Beverages 2025, 11(6), 169; https://doi.org/10.3390/beverages11060169 - 1 Dec 2025
Viewed by 824
Abstract
Barley wine is one of the most chemically complex and historically significant beer styles, yet its molecular composition remains largely unknown. This study aims to create the first detailed molecular framework for understanding the chemical diversity of barley wine and cereal wines. The [...] Read more.
Barley wine is one of the most chemically complex and historically significant beer styles, yet its molecular composition remains largely unknown. This study aims to create the first detailed molecular framework for understanding the chemical diversity of barley wine and cereal wines. The chemical diversity of barley wines and related “cereal wines” made from wheat, oats, and rye, including barrel-aged varieties, is examined using 1H nuclear magnetic resonance (NMR) metabolomics. Distinct cereal-dependent signatures were revealed by multivariate analyses. High levels of fusel alcohols and phenolic acids were present in barley wines. Elevated levels of pyruvate and aromatic amino acids were found in wheat wines, and high levels of maltodextrin, arabinose, and trigonelline were found in oat and rye wines. A comparison of sub-styles showed that English and American barley wines were different based on ester and complex sugar profiles. Barrel aging introduces changes dependent on the barrel’s origin. A reliable classification of barrel origin was allowed for by a decision tree with four diagnostic metabolites—5-hydroxymethylfurfural (HMF), acetaldehyde, mannose, and tryptophan. The way in which raw materials, fermentation conditions, and the reuse of barrels collectively influence their metabolomes is exemplified. Verifying the authenticity of beer, evaluating its quality, and generating new ideas for high gravity brewing are all cases in point for this approach. Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Graphical abstract

26 pages, 2027 KB  
Review
A Journey into the Blue: Current Knowledge and Emerging Insights into Marine-Derived Peptaibols
by Claudia Finamore, Carmen Festa, Mattia Cammarota, Simona De Marino and Maria Valeria D’Auria
Mar. Drugs 2025, 23(12), 458; https://doi.org/10.3390/md23120458 - 28 Nov 2025
Viewed by 1006
Abstract
Peptaibols represent a large family of membrane-active, linear fungal peptides, with variable lengths from 5 to 21 α–amino acid residues. As products of nonribosomal peptide synthetase (NRPS) biosynthetic machinery, they encompass several non-proteinogenic amino acids, particularly the Cα–tetrasubstituted residues, such as α–aminoisobutyric acid [...] Read more.
Peptaibols represent a large family of membrane-active, linear fungal peptides, with variable lengths from 5 to 21 α–amino acid residues. As products of nonribosomal peptide synthetase (NRPS) biosynthetic machinery, they encompass several non-proteinogenic amino acids, particularly the Cα–tetrasubstituted residues, such as α–aminoisobutyric acid (Aib) and its homologue isovaline (Iva). Further distinctive features include an N-acyl terminus, such as an acetyl group, and a C-terminus containing an amino alcohol residue (such as phenylalaninol, leucinol, and valinol, among others), which neutralize charges at both termini and confer them a hydrophobic nature. Peptaibols not only represent the most abundant class among nonribosomal peptides, but they have also attracted continuous scientific interest due to their diverse pharmacological properties, including antimicrobial, cytotoxic, antifungal, and antiviral activities. In this review, we present for the first time the recently explored chemodiversity of fungal peptaibiotics derived from marine sources, with a particular focus on peptaibols. We discuss their distinctive structural features, chemical characterization, biosynthetic pathways, and biological activity profiles, with the aim of supporting ongoing research toward their development as potential pharmaceutical agents. Full article
Show Figures

Figure 1

Back to TopTop