Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = alumina supported catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 113
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 - 29 Jul 2025
Viewed by 352
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

33 pages, 2373 KiB  
Article
Effect of Ga2O3 Content on the Activity of Al2O3-Supported Catalysts for the CO2-Assisted Oxidative Dehydrogenation of Propane
by Alexandra Florou, Georgios Bampos, Panagiota D. Natsi, Aliki Kokka and Paraskevi Panagiotopoulou
Nanomaterials 2025, 15(13), 1029; https://doi.org/10.3390/nano15131029 - 2 Jul 2025
Viewed by 312
Abstract
Propylene production through the CO2-assisted oxidative dehydrogenation of propane (CO2-ODP) is an effective route able to address the ever-increasing demand for propylene and simultaneously utilize CO2. In this study, a series of alumina-supported gallium oxide catalysts of [...] Read more.
Propylene production through the CO2-assisted oxidative dehydrogenation of propane (CO2-ODP) is an effective route able to address the ever-increasing demand for propylene and simultaneously utilize CO2. In this study, a series of alumina-supported gallium oxide catalysts of variable Ga2O3 loading was synthesized, characterized, and evaluated with respect to their activity for the CO2-ODP reaction. It was found that both the catalysts’ physicochemical characteristics and performance were strongly affected by the amount of Ga2O3 dispersed on Al2O3. Surface basicity was maximized for the sample containing 20 wt.% Ga2O3, whereas surface acidity was monotonically increased with increasing Ga2O3 loading. A volcano-type correlation was found between catalytic performance and acid/base properties, according to which propane conversion and propylene yield exhibited optimum values for intermediate surface basicity and acidity, which both correspond to the sample containing 30 wt.% Ga2O3. The dispersion of a suitable amount of Ga2O3 on the Al2O3 surface not only enhances the conversion of propane to propylene but also suppresses the formation of side products (C2H4, CH4, and C2H6) at temperatures of practical interest. The 30%Ga2O3-Al2O3 catalyst exhibited very good stability at 550 °C, where byproduct formation and carbon deposition were limited. Mechanistic studies indicated that the reaction proceeds through a two-step oxidative route with the participation of CO2 in the abstraction of H2, originating from propane dehydrogenation, through the reverse water–gas reaction (RWGS) reaction, shifting the thermodynamic equilibrium towards propylene generation. Full article
(This article belongs to the Special Issue Nanoscale Material Catalysis for Environmental Protection)
Show Figures

Graphical abstract

21 pages, 3028 KiB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 499
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

15 pages, 4517 KiB  
Article
Effect of Mesopore Structural Parameters in Alumina Supports on Catalytic Hydrodeoxygenation of Guaiacol to Cycloalkanes via Ni-Supported Al2O3 Catalysts
by Wen Huang, Chengyan Wen, Yanting Su, Xinghua Zhang and Longlong Ma
Energies 2025, 18(12), 3044; https://doi.org/10.3390/en18123044 - 9 Jun 2025
Viewed by 379
Abstract
The elevated oxygen content in lignin-derived oil restricts its direct application as a liquid fuel. Ni-based Al2O3 catalysts are commonly employed to enhance the quality of lignin-derived oil via the hydrodeoxygenation (HDO) process. In this study, we successfully synthesized Ni-supported [...] Read more.
The elevated oxygen content in lignin-derived oil restricts its direct application as a liquid fuel. Ni-based Al2O3 catalysts are commonly employed to enhance the quality of lignin-derived oil via the hydrodeoxygenation (HDO) process. In this study, we successfully synthesized Ni-supported Al2O3 catalysts with diverse mesopore structural parameters of the Al2O3 support. Subsequently, we investigated the impacts of mesoporous size and volume on the HDO of guaiacol, a representative model compound of lignin-derived oil. The results indicate that optimizing the mesoporous size can enhance catalyst stability and significantly boost selectivity for cyclohexane. Moreover, an increase in the mesoporous volume can further improve the selectivity of cycloalkanes in the products. When the Ni/meso-Al2O3-F-100 catalyst was utilized, the cycloalkane selectivity reached 98.8%. During the upgrading of lignin-derived oil, the Ni/meso-Al2O3-F-200 catalyst, featuring a mesopore size of 4.07 nm and a mesopore volume of 0.286 cm3/g, exhibited outstanding performance. Notably, its selectivity for alkanes reached 65.9%, significantly higher than that of the commercial Ni/c-Al2O3 catalyst, which has a mesopore size of 3.83 nm and a mesopore volume of 0.184 cm3/g. This work offers valuable insights into the design of efficient and stable Ni-based Al2O3 catalysts for upgrading lignin-derived oil. Full article
Show Figures

Figure 1

16 pages, 2543 KiB  
Article
Enhancing Propane Dehydrogenation Performance on Cerium-Modified PtSnIn/Al Trimetallic Catalysts
by Jinbao Liu, Ke Xia and Fen Zhang
Catalysts 2025, 15(5), 506; https://doi.org/10.3390/catal15050506 - 21 May 2025
Viewed by 548
Abstract
The effects of Ce incorporation into trimetallic PtSnIn-supported catalysts were investigated for a propane dehydrogenation reaction with advanced characterization techniques. It was found that some Ce species exist in the form of CeAlO3 on the reduced PtSnIn/xCe-Al catalyst, significantly enhancing [...] Read more.
The effects of Ce incorporation into trimetallic PtSnIn-supported catalysts were investigated for a propane dehydrogenation reaction with advanced characterization techniques. It was found that some Ce species exist in the form of CeAlO3 on the reduced PtSnIn/xCe-Al catalyst, significantly enhancing the thermal stability of the alumina support. The NH3-TPD measurements verified that the total acidity of the PtSnIn/xCe-Al catalysts decreases with the addition of Ce. The PtSnIn/1.5Ce-Al catalyst exhibits the optimal particle distribution with the smallest Pt particle size of 8.0 nm, which was revealed by TEM. The H2-TPR and XPS results suggest that more oxidized-state Sn species form on catalyst surfaces, and the metal–support interaction can be strengthened when Ce is introduced. Furthermore, TG analysis demonstrates that Ce incorporation substantially reduces coke formation on the spent catalysts. The PtSnIn/1.5Ce-Al catalyst exhibits exceptional catalytic performance, achieving an initial propane conversion of 62.6% and maintaining a conversion of 57.2% after a 120 min reaction. In addition, the PtSnIn/1.5Ce-Al catalyst possesses high long-term stability. Over 40.0% propane conversion can be maintained after a 53 h continuous PDH reaction. These findings highlight the pivotal role of Ce in improving the structural properties and catalytic performance of PtSnIn-based catalysts for propane dehydrogenation, offering valuable insights for the design of highly efficient and stable dehydrogenation catalysts. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

22 pages, 6961 KiB  
Article
Support Effects on Fe- or Cu-Promoted Ni Catalysts Used in the Catalytic Deoxygenation of Tristearin to Fuel-like Hydrocarbons
by Great C. Umenweke, Robert Pace, Thomas Récalt, Olivier Heintz, Gilles Caboche and Eduardo Santillan-Jimenez
Catalysts 2025, 15(5), 501; https://doi.org/10.3390/catal15050501 - 21 May 2025
Viewed by 514
Abstract
Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2 [...] Read more.
Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2-Al2O3, Ce0.8Pr0.2O2, and ZrO2—were investigated to develop catalysts showing improved RD yields and resistance to coke-induced deactivation relative to Al2O3-supported catalysts. Results showed that catalysts supported on Ce0.8Pr0.2O2 and ZrO2 outperformed SiO2-Al2O3-supported formulations, with 20%Ni-5%Fe/ZrO2 affording a quantitative yield of diesel-like hydrocarbons. Notably, the abundance of weak acid sites varied considerably across the different supports, and a moderate concentration of these sites corresponded with the best results. Additionally, temperature-programmed reduction measurements revealed that Ni reduction is greatly dependent on both the identity of the promoter and catalyst support, which can also be invoked to explain catalyst performance since metallic Ni is identified as the likely active site for the deoxygenation reaction. It was also observed that Ce0.8Pr0.2O2 provides high oxygen storage capacity and oxygen mobility/accessibility, which also improves catalyst activity. Full article
Show Figures

Graphical abstract

16 pages, 3260 KiB  
Article
Catalytic Combustion of Methane over Pd-Modified La-Ce-Zr-Al Catalyst
by Katerina Tumbalova, Zlatina Zlatanova, Ralitsa Velinova, Maria Shipochka, Pavel Markov, Daniela Kovacheva, Ivanka Spassova, Silviya Todorova, Georgi Ivanov, Diana Nihtianova and Anton Naydenov
Materials 2025, 18(10), 2319; https://doi.org/10.3390/ma18102319 - 16 May 2025
Viewed by 519
Abstract
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, [...] Read more.
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, XRD, TEM, XPS, TPD, and TPR techniques were used to characterize the catalyst. The palladium deposition on the supports leads to the formation of PdO. After the catalytic tests, the metal-Pd phase was observed. The complete oxidation of methane on Pd/La-Ce-Zr-Al catalyst takes place at temperatures above 250 °C, and in the presence of water vapor, the reaction temperature increases to about 70 °C. The careful choice of constituent oxides provides a balance between structural stability and flexibility. The alumina and lanthanum oxide ensure the high specific surface area, while the simultaneous presence of zirconia and ceria leads to the formation of a mixed-oxide phase able to interact with palladium ions by incorporating and de-incorporating them at different conditions. The mechanism of Mars–van Kerevelen was considered as the most probable for the reaction of complete methane oxidation. The possibility of the practical application of Pd-modified La-Ce-Zr-Al catalyst is evaluated. The use of a mix of multiple rare and abundant oxides makes the proposed catalyst a cost-effective alternative. Full article
Show Figures

Graphical abstract

14 pages, 2013 KiB  
Article
Lab-Scale Thermal Decomposition of Hydrogen Peroxide as Green Propellant over Low-Cost Catalysts Based on Copper Deposited on Different Supports
by Imane Remissa, Ahmed E. S. Nosseir, Amit Tiwari, Ahmed Bachar, Assia Mabrouk and Rachid Amrousse
Aerospace 2025, 12(5), 440; https://doi.org/10.3390/aerospace12050440 - 15 May 2025
Viewed by 645
Abstract
The thermal decomposition of hydrogen peroxide (H2O2) as a promising green propellant was performed over free-noble metallic-based catalysts deposited on abundant supports. A 30% (w/w) H2O2 liquid was decomposed over 1 wt.% [...] Read more.
The thermal decomposition of hydrogen peroxide (H2O2) as a promising green propellant was performed over free-noble metallic-based catalysts deposited on abundant supports. A 30% (w/w) H2O2 liquid was decomposed over 1 wt.% of copper-based catalysts deposited on three different supports: γ-alumina, graphite and monocrystal clay. In this research work, the catalytic performance of the thermal decomposition of H2O2 was carried out by measuring the differential pressure (ΔP) versus time at initial constant temperatures and, for the first time, by the DTA-TG technique and by the DIP-MS technique at atmospheric pressure. The obtained preliminary results showed that copper deposited on alumina and on graphite are promising catalysts for the decomposition of the H2O2 liquid propellant. Moreover, the natural clay can be valorized on the thermal decomposition of H2O2 due to its high resistivity and high surface area. The N2-physisorption technique and scanning electron microscopy technique were used to characterize the effect of the texture properties on the decomposition and to understand the morphological characteristics of the catalyst. Full article
Show Figures

Figure 1

15 pages, 5940 KiB  
Article
Catalytic Methanation over Natural Clay-Supported Nickel Catalysts
by Alejandra Cue Gonzalez, Elsa Weiss-Hortala, Quoc Nghi Pham and Doan Pham Minh
Molecules 2025, 30(10), 2110; https://doi.org/10.3390/molecules30102110 - 9 May 2025
Viewed by 532
Abstract
The catalytic methanation reaction allows for the attainment of methane from carbon dioxide and hydrogen. This reaction is particularly interesting for the direct upgrading of biogas, which mainly contains methane and carbon dioxide, into biomethane. This work focused on the synthesis and evaluation [...] Read more.
The catalytic methanation reaction allows for the attainment of methane from carbon dioxide and hydrogen. This reaction is particularly interesting for the direct upgrading of biogas, which mainly contains methane and carbon dioxide, into biomethane. This work focused on the synthesis and evaluation of natural clay-supported nickel catalysts in the catalytic methanation reaction. Natural clay could be directly used as a low-cost catalyst support for the deposition of small nickel nanoparticles (1–15 nm) by the standard incipient wetness impregnation method. These catalysts showed high activity and excellent selectivity into methane and excellent catalytic stability (80% carbon dioxide conversion, nearly 100% methane selectivity at 500 °C, 1 bar, and WHSV = 17,940 mL·gcat−1·h−1 for 48 h on stream) and outperformed their counterparts prepared with an industrial alumina support as reference. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

18 pages, 7664 KiB  
Article
Single-Atom and Sub-Nano Ruthenium Cluster Catalysts—Application to Biomass Upgrading into Biofuel Additive
by Chaima Z. Tabet-Zatla, Sumeya Bedrane, José Juan Calvino, Miguel Ángel Cauqui, Fayçal Dergal, Redouane Bachir, Chewki Ziani-Cherif and Juan Carlos Hernández-Garrido
Catalysts 2025, 15(5), 449; https://doi.org/10.3390/catal15050449 - 3 May 2025
Viewed by 784
Abstract
Sub-nano metal clusters have important physicochemical features that lead to a wide range of applications. Herein, we point out an unfailing reproducible protocol to synthesize ruthenium single-atom catalysts and ultra-small clusters supported on various silica–alumina mixed oxides. The catalysts were synthesized via a [...] Read more.
Sub-nano metal clusters have important physicochemical features that lead to a wide range of applications. Herein, we point out an unfailing reproducible protocol to synthesize ruthenium single-atom catalysts and ultra-small clusters supported on various silica–alumina mixed oxides. The catalysts were synthesized via a dendrimer-free, sonication-assisted route, with ruthenium loadings up to 2 wt%. Raman spectroscopy mapping revealed a wide coverage of the materials’ surfaces by ruthenium, while HAADF-STEM evidenced that 100% of the ruthenium was at the sub-nano scale, with up to 74% of the single atoms and metal clusters having an average size between 0.3 and 0.7 nm, independently of the support or the metal’s loading. These materials exhibited highly selective size-dependent catalytic performances in upgrading biomass-derived furfural into transportation biofuel additive 2,2′-difurfurylether, with turnover frequencies up to 1148 h−1. Ruthenium single atoms and sub-nano clusters showed an exceptional resistance to sintering, with a size variation of ±0.1 nm before and after reaction, and no metal leaching was observed. Full article
Show Figures

Graphical abstract

14 pages, 6104 KiB  
Article
Investigating the Ag–Support Interaction in Silver Catalysts for Soot Combustion: The Importance of Coordination of Al3+ Ions in the Support
by Ewa M. Iwanek (nee Wilczkowska), Aleksandra Goździk and Zbigniew Kaszkur
Reactions 2025, 6(2), 27; https://doi.org/10.3390/reactions6020027 - 18 Apr 2025
Viewed by 624
Abstract
This study shows how important the coordination of Al3+ ions in the silver support is for the overall activity in soot combustion. Five silver catalysts with a silver content of 14.7 wt.% were prepared using the following supports: α-Al2O3 [...] Read more.
This study shows how important the coordination of Al3+ ions in the silver support is for the overall activity in soot combustion. Five silver catalysts with a silver content of 14.7 wt.% were prepared using the following supports: α-Al2O3, which has only octahedrally coordinated Al3+, θ-Al2O3, which has both octahedrally and tetrahedrally coordinated Al3+, and zeolites, which contain only tetrahedrally coordinated Al3+: 10X, 13X, and 5A. The analysis of the diffraction patterns showed that silver on the surface of catalysts made with the first four supports was mainly in the metallic form, except for Ag/5A in which there was a lack of reflections from Ag0 in the XRD pattern. Nevertheless, the difference in the activity of the support and the catalyst as well as the EDX results indicate the presence of silver on the catalyst. The SEM-EDX analysis showed that the silver dispersion strongly depends on the support and that even the zeolites with large silver particles on the surface have silver evenly distributed across the surface. The activity of the catalysts decreased in the following series: Ag/Al 1200 > Ag/5A ≈ Ag/13X > Ag/10X ≈ Ag/Al 550. Time-of-Flight Secondary Ion Mass Spectrometry was used to delve into the reason why the catalyst with the low-surface area α-Al2O3 support yielded a better catalyst than that obtained using the high-surface area alumina support and showed that different ratios of secondary ions were emitted from the two surfaces. Full article
Show Figures

Graphical abstract

10 pages, 7461 KiB  
Article
Novel Alumina–Copper Electrode Composites: Toward Efficient Glutamate and H2O2 Detection
by Tatjana Novaković, Dejan Pjević, Nadica Abazović and Zorica Mojović
Compounds 2025, 5(2), 10; https://doi.org/10.3390/compounds5020010 - 10 Apr 2025
Viewed by 489
Abstract
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of [...] Read more.
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of alumina, anhydrous (A) and trihydrate (T) alumina, were modified by copper through an ion-exchange procedure. The samples were characterized by diffuse reflectance UV–Vis spectroscopy. The obtained samples were used as modifiers of carbon paste electrodes. The electrochemical characterization of the samples was performed using cyclic voltammetry and two redox probes. The electrochemical behavior of samples was investigated in the alkaline and neutral media. The electroanalytical performance of the synthesized composites was tested on glutamate and hydrogen peroxide by linear sweep voltammetry. The functionalization of alumina with copper by ion exchange offered a fast and cost-effective procedure for obtaining a composite with enhanced electrochemical properties for sensing biologically important analytes. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

13 pages, 6288 KiB  
Article
Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene
by José R. Contreras Bárbara, Rogelio Cuevas García, Diego A. Fabila Bustos, Iván Puente Lee and Macaria Hernández Chávez
Crystals 2025, 15(3), 245; https://doi.org/10.3390/cryst15030245 - 4 Mar 2025
Viewed by 834
Abstract
Environmental legislation has focused its attention on improving air quality. In this context, the presence of sulfur compounds in fuels, such as diesel and gasoline, is undesirable. When sulfur is combusted, compounds are emitted as SOx (SO2 and SO3) [...] Read more.
Environmental legislation has focused its attention on improving air quality. In this context, the presence of sulfur compounds in fuels, such as diesel and gasoline, is undesirable. When sulfur is combusted, compounds are emitted as SOx (SO2 and SO3) into the atmosphere, causing acid rain and respiratory diseases. For this reason, environmental norms have been established to reduce the sulfur content of fuels. Sulfur (mainly as alkylbenzothiophenes, dibenzothiophenes and alkyldibenzothiophenes) is removed in refineries through a process called hydrodesulfurization (HDS). HDS is performed at an industrial level with the use of NiMo, CoMo or NiW catalysts supported on alumina. Unsupported MoS2 (bulk) catalysts have recently attracted attention due to their high activity and selectivity in HDS. In this study, bulk NiMo catalyst precursors were synthesized using solvothermal methods with varying pH and solvothermal synthesis time. The precursors and catalysts were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDS) microanalysis, X-ray diffraction (XRD), textural properties using liquid nitrogen physisorption at 77 K, Raman spectroscopy and high-resolution transmission electron microscopy (HTREM). The results indicate that the morphology of the NiMoO4 precursors synthesized in an ethanol/water mixture varies, forming “grains,” “flakes” or “rods,” depending on the dwell time and synthesis conditions. The catalytic activity results show that the bulk NiMo catalyst synthesized at 2 h presented higher selectivity and catalytic activity in the HDS of 4,6-DMDBT when compared to a supported reference catalyst (NiMo/γ-Al2O3). Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

12 pages, 2424 KiB  
Article
Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia
by Wasim Ullah Khan, Achmad Ferdiansyah Pradana Putra, Hamad AlMohamadi and Mohammad M. Hossain
Catalysts 2025, 15(3), 242; https://doi.org/10.3390/catal15030242 - 4 Mar 2025
Viewed by 1001
Abstract
This work presents the potential of various iron-based catalysts, with an iron content between 10 and 30 wt%, supported on alumina that were explored for pure hydrogen production from ammonia decomposition reaction. The X-ray diffraction (XRD) results indicated that major diffraction peaks associated [...] Read more.
This work presents the potential of various iron-based catalysts, with an iron content between 10 and 30 wt%, supported on alumina that were explored for pure hydrogen production from ammonia decomposition reaction. The X-ray diffraction (XRD) results indicated that major diffraction peaks associated with the alumina support and iron oxide were found along with fractions of iron aluminate. The reduction profiles from temperature-programmed reduction (TPR) showed that the extent of reduction, number of reducible species, and iron oxide interaction with alumina varied with an increase in iron oxide content, from 10 to 30 wt%, such that an increase in iron oxide loading promoted easier reduction, enhanced reducibility, and improved number of reducible species. Temperature-programmed desorption profiles using hydrogen and nitrogen showed that an increase in iron content increased the amount of hydrogen desorbed; however, nitrogen desorption exhibited a decreasing trend. These factors influenced catalytic activity results and an increase in iron content increased the ammonia conversion. Kinetic data also showed that a higher iron content (30 wt%) demonstrated the lowest apparent activation energy of 48.2 kJ/mol. Full article
(This article belongs to the Special Issue Catalysis for Hydrogen Storage and Release)
Show Figures

Graphical abstract

Back to TopTop