Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = alternative plant protection products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4387 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
Show Figures

Figure 1

24 pages, 2289 KiB  
Article
Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum
by Marcin Stocki, Natalia Stocka, Piotr Borowik, Marzenna Dudzińska, Amelia Staszowska, Adam Okorski and Tomasz Oszako
Forests 2025, 16(8), 1220; https://doi.org/10.3390/f16081220 - 24 Jul 2025
Viewed by 337
Abstract
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit [...] Read more.
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit the growth of the pathogen F. oxysporum Schltdl. emend. Snyder & Hansen in forest nurseries. The highest inhibition of fungal growth (70%) was observed with B. amyloliquefaciens after 24 h of antagonism test, which had a higher content of carbonyl compounds (46.83 ± 8.41%) than B. subtilis (41.50 ± 6.45%) or B. thuringiensis (34.62 ± 4.77%). Only in the volatile emissions of B. amyloliquefaciens were 3-hydroxybutan-2-one, undecan-2-one, dodecan-5-one and tetradecan-5-one found. In contrast, the main components of the volatile emissions of F. oxysporum were chlorinated derivatives of benzaldehyde (e.g., 3,5-dichloro-4-methoxybenzaldehyde) and chlorinated derivatives of benzene (e.g., 1,4-dichloro-2,5-dimethoxybenzene), as well as carbonyl compounds (e.g., benzaldehyde) and alcohols (e.g., benzyl alcohol). Further compounds were found in the interactions between B. amyloliquefaciens and F. oxysporum (e.g., α-cubebene, linalool, undecan-2-ol, decan-2-one and 2,6-dichloroanisole). Specific substances were found for B. amyloliquefaciens (limonene, nonan-2-ol, phenethyl alcohol, heptan-2-one and tridecan-2-one) and for F. oxysporum (propan-1-ol, propan-2-ol, heptan-2-one and tridecan-2-one). The amounts of volatile chemical compounds found in B. amyloliquefaciens or in the bacterium–fungus interaction can be used for further research to limit the pathogenic fungus. In the future, one should focus on the compounds that were found exclusively in interactions and whose content was higher than in isolated bacteria. In order to conquer an ecological niche, bacteria increase the production of secondary metabolites, including specific chemical compounds. The results presented are a prerequisite for creating an alternative solution or supplementing the currently used methods of plant protection against F. oxysporum. Understanding and applying the volatile organic compounds produced by bacteria can complement chemical plant protection against the pathogen, especially in greenhouses or tunnels where plants grow in conditions that favour fungal growth. Full article
(This article belongs to the Special Issue Advances in Forest Tree Seedling Cultivation Technology—2nd Edition)
Show Figures

Figure 1

34 pages, 2621 KiB  
Article
Priestia megaterium KW16: A Novel Plant Growth-Promoting and Biocontrol Agent Against Rhizoctonia solani in Oilseed Rape (Brassica napus L.)—Functional and Genomic Insights
by Bożena Nowak, Daria Chlebek and Katarzyna Hupert-Kocurek
Agriculture 2025, 15(13), 1435; https://doi.org/10.3390/agriculture15131435 - 3 Jul 2025
Viewed by 337
Abstract
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In [...] Read more.
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In this context, a novel endophytic Priestia megaterium strain, KW16, originated from the bluegrass (Poa pratensis L.), demonstrated distinct biocontrol potential against R. solani. in vitro assays showed that KW16 inhibited R. solani growth by up to 58%, primarily by releasing volatile compounds. In planta experiments further highlighted KW16′s ability to colonize oilseed rape internal tissues, significantly enhancing its growth and development. In the presence of the pathogen, KW16 abolished the negative impact of R. solani and promoted plant growth, increasing shoot and root biomass by 216% and 1737%, respectively, when compared to the plants grown in fungal-infested soil. Biochemical and genome analyses confirmed the strain’s metabolic versatility, resistance to biotic and abiotic factors, and a whole spectrum of PGP and biocontrol traits such as biofilm formation, production of phytohormones, and synthesis of lytic enzymes, siderophores, and volatiles, alongside its ability to survive in the presence of autochthonous soil microflora. These findings position KW16 as a potent biological alternative to synthetic fungicides, with significant potential for sustainable crop protection. Full article
Show Figures

Figure 1

15 pages, 1741 KiB  
Article
Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting
by Gengyun Li, Jiamei Zou, Tianrui Gong, Xuejiao Li, Jing Meng, Jie Zhang, Bin Xu and Shuilian He
Horticulturae 2025, 11(7), 778; https://doi.org/10.3390/horticulturae11070778 - 3 Jul 2025
Viewed by 306
Abstract
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is [...] Read more.
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is partly due to the insufficient collection and evaluation of local figleaf gourd germplasm, which has obscured its potential as a rootstock. Based on prior screening, four wild figleaf gourd genotypes from Yunnan Province were selected and compared with seven commercial white-seeded pumpkin rootstocks. Scions grafted onto figleaf gourd exhibited vegetative growth (stem diameter, plant height, and leaf area) and fruit morphology (length, diameter, biomass, and surface bloom) comparable to the top-performing white-seeded pumpkin genotypes. Fruits from figleaf gourd rootstocks also displayed comparable or significantly higher nutritional quality, including vitamin C, total soluble solids, soluble sugars, and proteins. Notably, figleaf gourd itself showed significantly greater intrinsic resistance to Fusarium wilt than white-seeded pumpkin. When used as a rootstock, it protected the scion from pathogen stress by triggering a stronger antioxidant response (higher SOD and POD activity) and mitigating cellular damage (lower MDA levels and electrolyte leakage). These results provide evidence that these figleaf gourd genotypes are not merely viable alternatives but are high-performing rootstocks, particularly in enhancing nutritional value and providing elite disease resistance. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

29 pages, 4367 KiB  
Article
Endophytic Microbiome Is a Unique Repository of Bio-Foes Against Toxigenic Fungi Harming Peanut Productivity
by Nagwa I. M. Helal, Mona H. Badawi, Abeer M. El-Hadidy, Mohamed K. M. Agha, Ahmed Abou-Shady and Mohamed Fayez
Microbiol. Res. 2025, 16(7), 141; https://doi.org/10.3390/microbiolres16070141 - 1 Jul 2025
Viewed by 360
Abstract
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture [...] Read more.
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture media (PDA, RBCA, YES, CA), 10 isolates qualitatively producing AFB1, besides 10 OTA-producers, were assayed by HPLC for quantitative toxin production. Aspergillus spp. isolate Be 13 produced an extraordinary quantity of 1859.18 μg mL−1 AFB1, against the lowest toxin level of 280.40 μg mL−1 produced by the fungus isolate IS 4. The estimated amounts of OTA were considerably lower and fell in the range 0.88–6.00 μg mL−1; isolate Sa 1 was superior, while isolate Be 7 seemed inferior. Based on ITS gene sequencing, the highly toxigenic Aspergillus spp. isolates Be 13 and Sa 1 matched the description of A. novoparasiticus and A. ochraceus, respectively, ochraceus, respectively, which are present in GenBank with identity exceeding 99%. According to 16S rRNA gene sequencing, these antagonists labeled Ar6, Ma27 and So34 showed the typical characteristics of Pseudomonas aeruginosa, Bacillus subtilis and Bacillus velezensis, respectively, with similarity percentages of 99–100. The plant growth-promoting activity measurements of the identified endophytes indicated the production of 16.96–80.00 μg/100 mL culture medium of IAA. Phosphate-solubilizing capacity varied among endophytes from 2.50 to 21.38 μg/100 mL. The polysaccharide production pool of bacterial strains ranged between 2.74 and 6.57 mg mL−1. P. aeruginosa Ar6 and B. velezensis successfully produced HCN, but B. subtilis failed. The in vitro mycotoxin biodegradation potential of tested bacterial endophytes indicated the superiority of B. velezensis in degrading both mycotoxins (AFB1-OTA) with average percentage of 88.7; B. subtilis ranked thereafter (85.6%). The 30-day old peanut (cv. Giza 6) seedlings grown in gnotobiotic system severely injured due to infection with AFB1/OTA-producing fungi, an effect expressed in significant reductions in shoot and root growth traits. Simultaneous treatment with the endophytic antagonists greatly diminished the harmful impact of the pathogens; B. velezensis was the pioneer, not P. aeruginosa Ar6. In conclusion, these findings proved that several endophytic bacterial species have the potential as alternative tools to chemical fungicides for protecting agricultural commodities against mycotoxin-producing fungi. Full article
Show Figures

Figure 1

28 pages, 683 KiB  
Review
Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation
by Prabhaharan Renganathan, Marcia Astorga-Eló, Lira A. Gaysina, Edgar Omar Rueda Puente and Juan Carlos Sainz-Hernández
Sustainability 2025, 17(13), 5922; https://doi.org/10.3390/su17135922 - 27 Jun 2025
Viewed by 585
Abstract
Sustainable agriculture and food security are challenged by the indiscriminate use of synthetic nitrogen (N2) fertilizers, inefficient water management, and land degradation. Hydroponic cultivation uses nutrient-rich aqueous media and is a climate-resilient and resource-efficient alternative to traditional farming methods, whose dependence [...] Read more.
Sustainable agriculture and food security are challenged by the indiscriminate use of synthetic nitrogen (N2) fertilizers, inefficient water management, and land degradation. Hydroponic cultivation uses nutrient-rich aqueous media and is a climate-resilient and resource-efficient alternative to traditional farming methods, whose dependence on synthetic N2 fertilizers reduces their long-term sustainability. Biological nitrogen fixation (BNF), which is mediated by diazotrophs that reduce atmospheric N2 to plant-available ammonium, has emerged as a sustainable alternative to synthetic N2 input in hydroponic systems. This review discusses the integration of BNF into hydroponic systems by exploring the functional diversity of diazotrophs, root–microbe interactions, and environmental constraints. It further highlights recent advances in strain improvement, microbial consortia development, nitrogenase protection, and genome editing tools, novel bioformulation strategies to enhance microbial compatibility with hydroponic nutrient regimes, and omics-based tools for the real-time assessment of N2 fixation and microbial functionality. Key challenges, such as microbial leaching, nitrate-induced inhibition of nitrogenase activity, and the absence of standardized biostimulant protocols, are discussed. Case studies on staple crops have demonstrated enhanced NUE and yield productivity following diazotroph applications. This review concludes with future perspectives on synthetic biology, regulatory policies, and omics-based tools for the real-time assessment of N2 fixation and microbial functionality. Full article
Show Figures

Figure 1

16 pages, 7959 KiB  
Article
Biocontrol Potential of Microfighter: A Zeolite-Based Product Enriched with Pseudomonas synxantha DSL65
by Elena Cudazzo, Lucia Morrone, Giacomo Ferretti, Barbara Faccini, Daniele Mirandola, Luca Fagioli and Annalisa Rotondi
Agronomy 2025, 15(7), 1563; https://doi.org/10.3390/agronomy15071563 - 27 Jun 2025
Viewed by 416
Abstract
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, [...] Read more.
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, their use has been increasingly restricted by European regulations, making the management of widespread diseases such as Olive Knot (Pseudomonas savastanoi pv. savastanoi) and Downy Mildew (Plasmopara viticola) more difficult. The LIFE Microfighter project addresses this problem by testing a novel Zeo-Biopesticide (ZBp), in which natural zeolite serves as a carrier for the beneficial bacterium Pseudomonas synxantha DLS65. Field trials conducted in high-rainfall areas of Emilia-Romagna (Italy) evaluated the product’s distribution and persistence on olive and grape leaves through ESEM (Environmental Scanning Electron Microscopy) observations, its ability to retain the microorganism, and its effectiveness for disease control. Results showed that ZBp significantly reduced Olive Knot incidence compared to both the untreated control and Cu-based treatments (p < 0.05), supporting its potential as an alternative for bacterial disease management, while showing no statistically significant difference compared to the control in either the incidence or severity of Downy Mildew (p > 0.05). Its persistence and adherence to plant surfaces, which could influence its overall field performance, were affected by environmental conditions, particularly rainfall. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

32 pages, 1859 KiB  
Review
Bibliometric Analysis Towards Industrial-Scale Use of Marine Algae and Lichens as Soil Amendments and Plant Biofertilizers for Sustainable Agriculture
by Oumaima Ouala, Yasser Essadki, Brahim Oudra, Fatima El Khalloufi and Rosario Martins
Phycology 2025, 5(3), 29; https://doi.org/10.3390/phycology5030029 - 25 Jun 2025
Viewed by 519
Abstract
The nutrient-rich composition of seaweeds and lichens makes them well-suited for agricultural applications. Their use as alternatives to synthetic fertilizers contributes to sustainable agricultural production, enabling farmers to adopt ecological practices while maintaining or increasing crop productivity. This review aims to highlight the [...] Read more.
The nutrient-rich composition of seaweeds and lichens makes them well-suited for agricultural applications. Their use as alternatives to synthetic fertilizers contributes to sustainable agricultural production, enabling farmers to adopt ecological practices while maintaining or increasing crop productivity. This review aims to highlight the status and trends of research, along with a literature analysis on the application of these biomasses in sustainable agriculture. A bibliometric analysis was performed based on two databases (Scopus and Web of Science) to overview the main research topics regarding the use of biomasses studied in agriculture, thus providing useful information for future research. The biochemical composition and agricultural applications of these biomasses have been highlighted. The analysis shows that these biomasses are rich of nutrient compounds, revealing their roles and mechanisms of action on the chemical, nutritional properties, and soil microbial activities and their effect on plant growth, using various extraction and application methods. It also highlighted the potential of seaweeds for protection against biotic and abiotic stresses. In light of all the data presented in this review, it is possible to stimulate farmers’ interest in using seaweeds and lichens as natural fertilizers, with a focus on sustainable and ecological agriculture mainly in developing countries. Full article
Show Figures

Figure 1

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 511
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

14 pages, 1164 KiB  
Article
Alternative Plant Protection Strategies Using Bacteria and Thyme to Improve Strawberry (cv. Elsanta) Yield and Quality
by Neringa Rasiukevičiūtė, Armina Morkeliūnė, Ingrida Mažeikienė, Juozas Lanauskas and Alma Valiuškaitė
Plants 2025, 14(12), 1827; https://doi.org/10.3390/plants14121827 - 14 Jun 2025
Cited by 1 | Viewed by 452
Abstract
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for [...] Read more.
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for plant protection methods, decrease the adverse effects on the environment, and promote the diversity of living organisms. The use of synthetic and non-organic chemicals has significantly expanded, damaging human health and the environment. This study aimed to evaluate alternative plant protection solutions for the improvement of the strawberry cv. Elsanta plant’s generative development, yield, fruit quality, and biochemical composition. The two-year strawberry experiment conducted in a tunnel greenhouse included chemical and biological means (Bacteria and Thyme preparations). The experiment randomised a block design with four replicates and 32 plants per replicate. The treatments were conducted at the 10% flowering state (BBCH 61–65), every 7–10 days (a total of four times): (1) Control, (2) Chemical, (3) Bacteria, and (4) Thyme. We evaluated the yield, fruit weight, size, number of leaves, crowns, flowers, inflorescences, fruit firmness, soluble solids, and Vitamin C. The highest fruit weight at the first picking was in the Bacteria treatment. The number of rotten fruits was similar after all treatments. Additionally, they were firmer and bigger in size but had a smaller soluble solids content. The strawberry ascorbic acid and soluble solids content (Brix %) showed significant variation. The highest ascorbic acid concentration in the fruit was after the Thyme application (45.06%). Our study showed that alternative plant protection measures can reduce the use of chemical fungicides and maintain proper fruit quality. Full article
Show Figures

Figure 1

23 pages, 368 KiB  
Review
Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives
by Nikola Stanišić, Vladimir S. Kurćubić, Slaviša B. Stajić, Ivana D. Tomasevic and Igor Tomasevic
Foods 2025, 14(12), 2090; https://doi.org/10.3390/foods14122090 - 13 Jun 2025
Cited by 1 | Viewed by 777
Abstract
This review highlights the latest research on dietary fibre (DF) applications in meat and meat analogues, providing insights into their role in shaping future food innovations. DFs provide significant long-term health benefits, such as better gut health, lower cholesterol levels, and possible protection [...] Read more.
This review highlights the latest research on dietary fibre (DF) applications in meat and meat analogues, providing insights into their role in shaping future food innovations. DFs provide significant long-term health benefits, such as better gut health, lower cholesterol levels, and possible protection from metabolic diseases. They also enhance the texture, juiciness, and overall quality of plant-based meat alternatives (PMAs) and traditional meat products. Among the most effective fibres, cereal-derived fibres, fruit- and vegetable-derived fibres, and legume-based fibres have been shown to improve water-holding capacity (WHC) and emulsification properties, enhancing mouthfeel and juiciness. New processing methods, such as enzymatic hydrolysis and extrusion, can change how fibres work. By combining various fibre sources with innovative processing methods, the food industry can create meat and PMA products that are not only healthier but also tastier and more sustainable. Full article
43 pages, 15235 KiB  
Review
The Present and Future of Production of Green Hydrogen, Green Ammonia, and Green E-Fuels for the Decarbonization of the Planet from the Magallanes Region, Chile
by Carlos Cacciuttolo, Ariana Huertas, Bryan Montoya and Deyvis Cano
Appl. Sci. 2025, 15(11), 6228; https://doi.org/10.3390/app15116228 - 1 Jun 2025
Viewed by 1336
Abstract
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these [...] Read more.
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these energy vectors in the context of global decarbonization, highlighting the key role of the Magallanes region in the energy transition. Green hydrogen production, through wind-powered electrolysis, takes advantage of the region’s constant, high-speed winds, enabling competitive, low-emission generation. In turn, green ammonia, derived from GH2, emerges as a sustainable alternative for the agricultural industry and maritime transport, while synthetic fuels (e-fuels) offer a solution for sectors that are difficult to electrify, such as aviation. The sustainability approach addresses not only emissions reduction but also the responsible use of water resources, the protection of biodiversity, and integration with local communities. The article presents the following structure: (i) introduction, (ii) wind resource potential, (iii) water resource potential, (iv) different forms of hydrogen and its derivatives production (green hydrogen, green ammonia, and synthetic fuels), (v) pilot-scale demonstration plant for Haru Oni GH2 production, (vi) future industrial-scale GH2 production projects, (vii) discussion, and (viii) conclusions. In addition, the article discusses public policies, economic incentives, and international collaborations that promote these projects, positioning Magallanes as a clean energy export hub. Finally, the article concludes that the region can lead the production of green fuels, contributing to global energy security and the fulfillment of the Sustainable Development Goals (SDGs). However, advances in infrastructure, regulation, and social acceptance are required to guarantee a balanced development between technological innovation and environmental conservation. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
Exploring Microbial Diversity in Forest Litter-Based Fermented Bioproducts and Their Effects on Tomato (Solanum lycopersicum L.) Growth in Senegal
by Alexandre Mahougnon Aurel Zoumman, Paula Fernandes, Mariama Gueye, Clémence Chaintreuil, Laurent Cournac, Aboubacry Kane and Komi Assigbetse
Int. J. Plant Biol. 2025, 16(2), 55; https://doi.org/10.3390/ijpb16020055 - 23 May 2025
Viewed by 461
Abstract
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental [...] Read more.
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental impact of agricultural production and protecting soil health while enhancing crop yields and improving food security. This study sought to characterize the microbial biodiversity of local beneficial microorganisms (BMs) products from locally fermented forest litter and investigate their ability to enhance tomato plant growth and development. Beneficial microorganisms (BMs) were obtained by anaerobic fermentation of forest litter collected in four agroecological regions of Senegal mixed with sugarcane molasses and various types of carbon sources (groundnut shells, millet stovers, and rice bran in different proportions). The microbial community composition was analyzed using next-generation rDNA sequencing, and their effects on tomato growth traits were tested in greenhouse experiments. Results show that regardless of the litter geographical collection site, the dominant bacterial taxa in the BMs belonged to the phyla Firmicutes (27.75–97.06%) and Proteobacteria (2.93–72.24%). Within these groups, the most prevalent classes were Bacilli (14.41–89.82%), α-proteobacteria (2.83–72.09%), and Clostridia (0.024–13.34%). Key genera included Lactobacillus (13–65.83%), Acetobacter (8.91–72.09%), Sporolactobacillus (1.40–43.35%), and Clostridium (0.08–13.34%). Fungal taxa were dominated by the classes Leotiomycetes and Sordariomycetes, with a prevalence of the acidophilic genus Acidea. Although microbial diversity is relatively uniform across samples, the relative abundance of microbial taxa is influenced by the litter’s origin. This is illustrated by the PCoA analysis, which clusters microbial communities based on their litter source. Greenhouse experiments revealed that five BMs (DK-M, DK-G, DK-GM, NB-R, and NB-M) significantly (p < 0.05) enhanced tomato growth traits, including plant height (+10.75% for DK-G and +9.44% for NB-R), root length (+56.84–62.20%), root volume (+84.32–97.35%), root surface area (+53.16–56.72%), and both fresh and dry shoot biomass when compared to untreated controls. This study revealed that forest-fermented litter products (BMs), produced using litter collected from various regions in Senegal, contain beneficial microorganisms known as plant growth-promoting microorganisms (PGPMs), which enhanced tomato growth. These findings highlight the potential of locally produced BMs as an agroecological alternative to inorganic inputs, particularly within Senegal’s family farming systems. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

21 pages, 2052 KiB  
Article
Optimizing Oilfield-Produced Water Reuse for Sustainable Irrigation: Impacts on Soil Quality and Mineral Accumulation in Plants
by Khaled Al-Jabri, Ahmed Al-Busaidi, Mushtaque Ahmed, Rhonda R. Janke and Alexandros Stefanakis
Water 2025, 17(10), 1497; https://doi.org/10.3390/w17101497 - 16 May 2025
Viewed by 1861
Abstract
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW [...] Read more.
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW undergoes partial treatment in constructed wetlands vegetated with buffelgrass (Cenchrus ciliaris). This study investigated the reuse potential of treated PW for irrigation through two parallel field experiments conducted at Sultan Qaboos University (SQU) and the Nimr wetlands site. At the SQU site, native halophytic plants were irrigated with three water sources: treated municipal wastewater, underground water (from an on-site well), and treated produced water. At the Nimr site, irrigation was conducted using underground water and treated PW. Two soil types were used: well-draining control soil and Nimr soil from southern Oman. The treatments included: (i) PW + control soil, (ii) PW + Nimr soil, (iii) PW + gypsum (3.5 g/kg soil), (iv) PW + biochar (10 g/kg soil), (v) underground water + control soil, and (vi) treated municipal wastewater + control soil. Biochar, produced from locally sourced buffelgrass via low-temperature pyrolysis (300 °C for 3 h), and gypsum (46.57% acid-extractable sulfate) were mixed into the soil before sowing. The impact of each treatment was assessed in terms of soil quality (salinity, boron, major cations), plant physiological responses, and mineral accumulation. PW irrigation (TDS ~ 6500–7000 mg/L) led to a sixfold increase in soil sodium and raised boron levels in plant tissues to over 200 mg/kg, exceeding livestock feed safety limits. Copper remained within acceptable thresholds (≤9.5 mg/kg). Biochar reduced boron uptake, but gypsum showed limited benefit. Neither amendment improved plant growth under PW irrigation. These findings highlight the need for regulated PW reuse, emphasizing the importance of soil management strategies and alternating water sources to mitigate salinity stress. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Graphical abstract

27 pages, 1679 KiB  
Review
Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges
by Stefano Civolani, Massimo Bariselli, Riccardo Osti and Giovanni Bernacchia
Insects 2025, 16(5), 528; https://doi.org/10.3390/insects16050528 - 15 May 2025
Cited by 1 | Viewed by 1422
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative [...] Read more.
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

Back to TopTop