Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacillus spp. and F. oxysporum Strains
2.2. Test for Inhibition of F. oxysporum Growth by Volatile Organic Compounds Produced by Bacillus Bacteria
2.3. Analysis of Volatile Organic Compounds Produced by Bacillus Bacteria and F. oxysporum Using Headspace Solid-Phase Microextraction and Gas Chromatography with Mass Spectrometry (HS-SPME/GC–MS)
3. Results
3.1. Inhibition of F. oxysporum Growth by Volatile Organic Compounds Produced by Bacillus
3.2. Volatile Organic Compounds Produced by Bacillus Bacteria and F. oxysporum
3.2.1. Volatile Organic Compounds Produced by Bacillus Bacteria
3.2.2. Volatile Organic Compounds Produced by F. oxysporum
3.2.3. Volatile Organic Compounds Produced by the Interaction of B. amyloliquefaciens and F. oxysporum
4. Discussion
4.1. Test of Antagonism
4.2. Volatile Secondary Metabolites
4.3. Interactions Between Fungus and Bacteria
4.4. Chemical Compounds Detected by GC–MS
4.5. Future Work
5. Summary and Conclusions
- Volatile organic compounds produced by three tested species of Bacillus bacteria (B. amyloliquefaciens, B. subtilis and B. thuringiensis) inhibited the growth of the fungus F. oxysporum.
- The highest inhibition of F. oxysporum’s growth (70%) was observed with B. amyloliquefaciens after 24 h of the antagonism test, while the inhibition decreased to 45% after 96 h. With the growth of F. oxysporum, the quantity of VOCs produced by B. amyloliquefaciens decreased in relation to the surface area of the fungus. This could be the reason for the decrease in inhibition over time.
- The quantitative and qualitative compositions of the VOCs emitted by the studied Bacillus bacteria were different. B. amyloliquefaciens was characterised by a higher content of carbonyl compounds (46.83 ± 8.41%) than B. subtilis (41.50 ± 6.45%) and B. thuringiensis (34.62 ± 4.77%). 3-Hydroxybutan-2-one, undecan-2-one, dodecan-5-one and tetradecan-5-one were only identified in the volatile emissions of B. amyloliquefaciens.
- The main components of the volatile emission of F. oxysporum were chlorinated benzaldehyde derivatives (e.g., 3,5-dichloro-4-methoxybenzaldehyde) and chlorinated benzene derivatives (e.g., 1,4-dichloro-2,5-dimethoxybenzene) as well as carbonyl compounds (e.g., benzaldehyde) and alcohols (e.g., benzyl alcohol).
- During the interaction of B. amyloliquefaciens and F. oxysporum, new compounds (e.g., -cubebene, linalool, undecan-2-ol, decan-2-one and 2,6-dichloroanisole) were found that were not present in the volatile emissions of the separated bacteria and fungal strains. On the other hand, some compounds found in the emissions of B. amyloliquefaciens (including limonene, nonan-2-ol, phenethyl alcohol, heptan-2-one and tridecan-2-one) or F. oxysporum (including propan-1-ol, 2-methylbutan-1-ol, isopentanal, 3-chloro-4-(methyloxy)benzaldehyde and 3,5-dichloro-4-methoxybenzaldehyde) were not found in the interaction of the microorganisms. The explanation for this could be that the two microorganisms interact via volatile compounds, thereby stimulating some metabolic pathways and inhibiting others.
- Standards of chemical compounds identified in the volatile emission of B. amyloliquefaciens or the interaction of the microorganisms can be used for further testing of the inhibition of F. oxysporum. In particular, it is worth focussing on compounds that occur exclusively in the interaction or on compounds whose content in the interaction was higher in relation to the content in B. amyloliquefaciens strains (i.e., butan-2-one, 5-methylhexan-2-one, 5-methylheptan-2-one and 2-methyldecanal). The bacteria can start producing a new compound or increase the production of a compound to combat the fungus.
- The results presented are a prerequisite for the creation of an alternative solution or supplement to the currently used methods of plant protection against F. oxysporum based on the application of volatile organic compounds produced by Bacillus bacteria.
- The application of selected species of Bacillus bacteria can be a method of biological protection of plants against the fungus F. oxysporum, especially in greenhouses or tunnels where plants are grown intensively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ekwomadu, T.I.; Mwanza, M. Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Kuzdraliński, A.; Gierasimiuk, N.; Paterek, A. Charakterystyka GrzybóW z Rodzaju Fusarium Oraz Nowoczesne Metody Ich Identyfikacji. 2014. Available online: http://www.naukowcy.org.pl/wp-content/uploads/2017/05/Nauki-Przyrodnicze-2-4-2014.pdf (accessed on 4 June 2025).
- Admas, A.M.; Kebede, L. Effects of Fusarium Diseases on Forest Nursery and Its Controlling Mechanisms. In Fusarium; Abdurakhmonov, I.Y., Ed.; IntechOpen: Rijeka, Croatia, 2024; Chapter 6. [Google Scholar] [CrossRef]
- Gordon, T. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Haddoudi, I.; Cabrefiga, J.; Mora, I.; Mhadhbi, H.; Montesinos, E.; Mrabet, M. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol. Control 2021, 160, 104671. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Lv, Q. Suspensions Derived from Anaerobically Fermented Tilapia Offal Inhibit Fusarium oxysporum f. sp. cubense in Banana. Agric. Sci. 2018, 9, 1506–1515. [Google Scholar] [CrossRef]
- Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and its biocontrol. New Phytol. 2003, 157, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Wit, M.; Sierota, Z.; Oszako, T.; Mirzwa-Mróz, E.; Wakulinski, W. Fusarium spp. na nadziemnych organach zamierających dębów-nowe zagrożenie? Sylwan 2015, 159, 403–410. [Google Scholar]
- Degani, O.; Dimant, E.; Gordani, A.; Graph, S.; Margalit, E. Prevention and Control of Fusarium spp., the Causal Agents of Onion (Allium cepa) Basal Rot. Horticulturae 2022, 8, 1071. [Google Scholar] [CrossRef]
- Paul, P.; Lipps, P.; Hershman, D.; Mcmullen, M.; Draper, M.; Madden, L. Efficacy of Triazole-Based Fungicides for Fusarium Head Blight and Deoxynivalenol Control in Wheat: A Multivariate Meta-Analysis. Phytopathology 2008, 98, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- El-Nagar, A.; Elzaawely, A.; El-Zahaby, H.; Dang Xuan, T.; Khanh, T.; Gaber, M.; Elwakiel, N.; El-Sayed, Y.; Nehela, Y. Benzimidazole Derivatives Suppress Fusarium Wilt Disease via Interaction with ERG6 of Fusarium equiseti and Activation of the Antioxidant Defense System of Pepper Plants. J. Fungi 2023, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Khan, A. In vitro chemical control of Fusarium oxysporum f. sp. lycopersici. Mycopath 2013, 10, 57–61. [Google Scholar]
- Zeng, R.; Huang, C.; Wang, J.; Zhong, Y.; Fang, Q.; Xiao, S.; Nie, X.; Chen, S.; Peng, D. Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives. Crystals 2023, 13, 1254. [Google Scholar] [CrossRef]
- Fakher, A.; Daami-Remadi, M.; Jabnoun-Khiareddine, H.; Hibar, K.; Mahjoub, M. Evaluation of Fungicides for Control of Fusarium Wilt of Potato. Plant Pathol. J. 2006, 5, 239–243. [Google Scholar] [CrossRef]
- Grahovac, J.; Danilov, I.; Vlajkov, V. Bacillus VOCs in the Context of Biological Control. Antibiotics 2023, 12, 581. [Google Scholar] [CrossRef] [PubMed]
- Dyrektywa Parlamentu Europejskiego i Rady 2009/128/WE z Dnia 21 Października 2009 r. Ustanawiająca Ramy Wspólnotowego Działania na Rzecz Zrównoważonego Stosowania PestycydóW (Tekst Mający Znaczenie dla EOG). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=uriserv%3AOJ.L_.2009.309.01.0071.01.POL&toc=OJ%3AL%3A2009%3A309%3AFULL (accessed on 10 June 2025).
- Stocka, N.; Butarewicz, A.; Stocki, M.; Borowik, P.; Oszako, T. Biological Pollution of Indoor Air, Its Assessment and Control Methods. Encyclopedia 2024, 4, 1217–1235. [Google Scholar] [CrossRef]
- Kumar, R.; Mall, P. Effect of thiamethoxam 25 WG spray at pre-bloom on the foraging activity of Apis mellifera in mustard crop under open field condition. J. Entomol. Zool. Stud. 2021, 9, 2047–2052. [Google Scholar] [CrossRef]
- Loulier, J.; Lefort, F.; Stocki, M.; Asztemborska, M.; Szmigielski, R.; Siwek, K.; Grzywacz, T.; Hsiang, T.; Ślusarski, S.; Oszako, T.; et al. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules 2020, 25, 5749. [Google Scholar] [CrossRef] [PubMed]
- Microbial Volatile Organic Compound Database. Available online: http://bioinformatics.charite.de/mvoc/ (accessed on 6 April 2023).
- Kemmler, E.; Lemfack, M.C.; Goede, A.; Gallo, K.; Toguem, S.M.; Ahmed, W.; Millberg, I.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 4.0: A database of microbial volatiles. Nucleic Acids Res. 2025, 53, D1692–D1696. [Google Scholar] [CrossRef] [PubMed]
- Lòpez, C.; Serio, A.; Gianotti, A.; Sacchetti, G.; Ndagijimana, M.; Ciccarone, C.; Stellarini, A.; Corsetti, A.; Paparella, A. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J. Appl. Microbiol. 2015, 119, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Kai, M. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front. Microbiol. 2020, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, J.; Li, C.; Ma, Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 2019, 8, e00813. [Google Scholar] [CrossRef] [PubMed]
- Sinuco, D.; Coconubo, L.; Castellanos, L. Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides. Rev. Colomb. Química 2020, 49, 20–25. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream 2005, 16, 65–120. [Google Scholar]
- Tkachev, A.V. Chirospecific analysis of plant volatiles. Russ. Chem. Rev. 2007, 76, 951. [Google Scholar] [CrossRef]
- Munoz Moreno, C. Antimicrobial and Beneficial Properties of Bacterial Species Isolated from Phyllospheric Microbiota. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Santos, J.E.d.Á.; de Brito, M.V.; Pimenta, A.T.Á.; da Silva, G.S.; Zocolo, G.J.; Muniz, C.R.; de Medeiros, S.C.; Grangeiro, T.B.; Lima, M.A.S.; da Silva, C.d.F.B. Antagonism of volatile organic compounds of the Bacillus sp. against Fusarium kalimantanense. World J. Microbiol. Biotechnol. 2023, 39, 60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Raza, W.; Shen, Q.; Huang, Q. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 2012, 78, 5942–5944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kim, L.; Kim, J.W.; Ryu, C.M. Volatile organic compounds produced by Bacillus subtilis inhibit the growth of the plant pathogen Fusarium oxysporum. Appl. Environ. Microbiol. 2013, 79, 846–854. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, M.H.; Lee, S.S.; Ryu, C.M. Volatile organic compounds emitted by Pseudomonas chlororaphis O6 suppress growth and virulence of fungal pathogen Fusarium oxysporum. Front. Microbiol. 2015, 6, 761. [Google Scholar] [CrossRef]
- Kai, M.; Haustein, M.; Molina, F.; Petri, A.; Scholz, B.; Piechulla, B. Bacterial volatiles and their action. Appl. Microbiol. Biotechnol. 2008, 81, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Rath, M.; Mitchell, T.; Gold, S. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol. Res. 2018, 208, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, P.; Wu, S.; Zhou, M.; Zhi, R.; Gao, H. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Bruce, A.; Wheatley, R.; Humphris, S.; Hackett, C.; Florence, M. Production of Volatile Organic Compounds by Trichoderma in Media Containing Different Amino Acids and Their Effect on Selected Wood Decay Fungi. Holzforschung 2000, 54, 481–486. [Google Scholar] [CrossRef]
- Minerdi, D.; Bossi, S.; Gullino, M.; Garibaldi, A. Volatile organic compounds: A potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ. Microbiol. 2009, 11, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yuan, J.; Zhang, J.; Shen, Z.; Zhang, M.; Rong, L.; Ruan, Y.; Shen, Q. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol. Fertil. Soils 2012, 49, 435–446. [Google Scholar] [CrossRef]
- He, C.N.; Ye, W.Q.; Zhu, Y.Y.; Zhou, W.W. Antifungal Activity of Volatile Organic Compounds Produced by Bacillus methylotrophicus and Bacillus thuringiensis against Five Common Spoilage Fungi on Loquats. Molecules 2020, 25, 3360. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Jeong, Y.; Lee, Y.S.; Song, C. Isolation and Identification of Antifungal Compounds from Bacillus subtilis C9 Inhibiting the Growth of Plant Pathogenic Fungi. Mycobiology 2012, 40, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.; Ryu, C.M.; Sumner, L.; Pare, P. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced resistance in plants. Phytochemistry 2006, 67, 2262–2268. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, D.; Trung, N.; Thao, N.; Nguyen, T.; Nguyen, N.; Tuyet, N.; Tien Cuong, N.; Chan, S.; Khoo, K.S.; Show, P.L. Antifungal activity of secondary metabolites purified from Bacillus subtilis isolated in Vietnam and evaluated on in vitro and in vivo models. Int. Biodeterior. Biodegrad. 2023, 179, 105558. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Shi, X.; Wang, B.; Li, M.; Wang, Q.; Zhang, S. Antifungal Effect of Volatile Organic Compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum. Processes 2020, 8, 1674. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, B.; Liu, H.; Han, J.; Zhang, Y.J. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 2017, 105, 27–39. [Google Scholar] [CrossRef]
- Du, J.; Ji, Y.; Li, Y.; Liu, B.; Yu, Y.; Chen, D.; Li, Z.; Zhao, T.; Xu, X.; Chang, Q.; et al. Microbial volatile organic compounds 2-heptanol and acetoin control Fusarium crown and root rot of tomato. J. Cell. Physiol. 2022, 239, e30889. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.; Mah, S.; Tee, C.S. Detection of potential volatile inhibitory compounds produced by endobacteria with biocontrol properties towards Fusarium oxysporum f. sp. cubense race 4. World J. Microbiol. Biotechnol. 2010, 27, 229–235. [Google Scholar] [CrossRef]
- Guevara-Avendaño, E.; Bejarano-Bolívar, A.A.; Kiel-Martínez, A.L.; Ramírez-Vázquez, M.; Méndez-Bravo, A.; von Wobeser, E.A.; Sánchez-Rangel, D.; Guerrero-Analco, J.A.; Eskalen, A.; Reverchon, F. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol. Res. 2019, 219, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Velivelli, S.; Kromann, P.; Lojan, P.; Rojas, M.; Franco, J.; Suárez, J.; Doyle, B. Identification of mVOCs from Andean Rhizobacteria and Field Evaluation of Bacterial and Mycorrhizal Inoculants on Growth of Potato in its Center of Origin. Microb. Ecol. 2015, 69, 652–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yuan, J.; Raza, W.; Shen, Q.; Huang, Q. Biocontrol Traits and Antagonistic Potential of Bacillus amyloliquefaciens Strain NJZJSB3 Against Sclerotinia sclerotiorum, a Causal Agent of Canola Stem Rot. J. Microbiol. Biotechnol. 2014, 24, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Massawe, V.; Hanif, A.; Farzand, A.; Mburu, D.; Ochola, S.; Wu, L.; Abdul Samad Tahir, H.; Wu, H.; Gu, Q.; Gao, X. Volatile Organic Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum. Phytopathology 2018, 108, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Fiddaman, P.; Rossall, S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J. Appl. Microbiol. 1994, 76, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.A.; Schrevens, S.; van Dijck, P.; Goldman, G.H. Fungal G-protein-coupled receptors: Mediators of pathogenesis and targets for disease control. Nat. Microbiol. 2018, 3, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Fan, L.; Yang, C.; Cui, L.; Jin, M.; Osei, R. Analysis of Bacillus mojavensis ZA1 volatile anti-pathogen substances against Colletotrichum coccodes. J. Plant Dis. Prot. 2023, 130, 633–642. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Mo, M.H.; Zhou, J.P.; Zou, C.; Zhang, K.Q. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol. Biochem. 2007, 39, 2567–2575. [Google Scholar] [CrossRef]
- Wang, C.; An, Y.; Xu, J.; Zhang, D. Linalool disrupts membrane integrity and induces ROS-mediated apoptosis-like death in Candida albicans. Front. Microbiol. 2021, 12, 669719. [Google Scholar]
- Kai, M.; Effmert, I.; Berg, J.; Piechulla, B. Volatile organic compounds of bacteria and their effects on fungal growth. Appl. Environ. Microbiol. 2009, 75, 558–563. [Google Scholar]
- Kanchiswamy, C.N.; Malnoy, I.; Maffei, M.; Gennaro, L.D.; Santoro, M.; Bosco, L.E.; Scuderi, C. Volatile organic compounds: What they are, why they matter, and how they can help sustainable agriculture. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef]
Group of Compounds | Relative Content [% TIC] | |||
---|---|---|---|---|
I | II | III | ||
Carbonyl compounds, including the following: | 46.83 ± 8.41 | 41.50 ± 6.45 | 34.62 ± 4.77 | |
Acetone | 480 | 6.92 ± 1.54 | 10.14 ± 0.52 | 8.70 ± 1.31 |
Butan-2-one | 560 | 0.64 ± 0.19 | 1.01 ± 0.06 | 2.88 ± 0.49 |
1-Hydroxypropan-2-one | 661 | - | 0.46 ± 0.10 | - |
Pentan-2-one | 671 | 1.08 ± 0.27 | 0.56 ± 0.05 | 0.60 ± 0.08 |
3-Hydroxybutan-2-one | 706 | 3.12 ± 0.72 | - | - |
3-Methylpentan-2-one | 743 | - | - | 1.26 ± 0.22 |
5-Methylhexan-2-one | 851 | 1.49 ± 0.16 | 1.89 ± 0.33 | 1.87 ± 0.31 |
Heptan-2-one | 886 | 14.13 ± 2.01 | 8.43 ± 1.43 | 9.54 ± 0.91 |
6-Methylheptan-2-one | 951 | 2.88 ± 0.71 | 3.22 ± 0.98 | 3.25 ± 0.51 |
Benzaldehyde | 957 | - | 0.97 ± 0.14 | 0.78 ± 0.09 |
5-Methylheptan-2-one | 961 | 3.33 ± 0.61 | 6.99 ± 1.62 | 1.40 ± 0.38 |
Nonan-5-one | 1054 | 1.10 ± 0.14 | 1.35 ± 0.13 | 0.71 ± 0.12 |
Acetophenone | 1065 | 1.22 ± 0.11 | 1.61 ± 0.08 | 1.87 ± 0.15 |
Nonan-2-one | 1092 | 1.84 ± 0.31 | 1.17 ± 0.14 | 0.59 ± 0.07 |
Decan-5-one | 1163 | 0.93 ± 0.16 | 0.79 ± 0.19 | - |
Undecan-2-one | 1295 | 1.05 ± 0.14 | - | - |
Dodecan-5-one | 1359 | 1.00 ± 0.17 | - | - |
2-Methyldecanal | 1366 | 1.15 ± 0.15 | 0.69 ± 0.11 | - |
4-Acetyl-1-methylcyclohexene | 1145 | 2.87 ± 0.55 | 1.17 ± 0.27 | 0.53 ± 0.07 |
Tridecan-2-one | 1498 | 1.13 ± 0.30 | 1.04 ± 0.30 | - |
Tetradecan-5-one | 1569 | 0.95 ± 0.16 | - | - |
Pentadecan-2-one | 1700 | - | - | 0.64 ± 0.05 |
Alcohols, including the following: | 4.58 ± 0.68 | 6.69 ± 1.27 | 3.44 ± 0.56 | |
3-Methylbutan-1-ol | 725 | - | 0.63 ± 0.06 | 0.45 ± 0.04 |
Heptan-2-ol | 896 | 2.51 ± 0.39 | 2.63 ± 0.53 | 2.99 ± 0.52 |
5-Methyl-2-heptanol | 968 | - | 1.28 ± 0.33 | - |
Nonan-2-ol | 1100 | 1.41 ± 0.20 | 1.03 ± 0.21 | - |
Phenethyl alcohol | 1114 | 0.66 ± 0.09 | 1.12 ± 0.15 | - |
Alkanes, including the following: | 0.78 ± 0.20 | 1.49 ± 0.26 | - | |
n-Hexadecane | 1600 | - | 0.71 ± 0.09 | - |
n-Heptadecan | 1700 | 0.78 ± 0.20 | 0.78 ± 0.17 | - |
Pyrazine derivatives, including the following: | 32.76 ± 3.82 | 40.46 ± 3.38 | 48.98 ± 4.37 | |
2-Methylpyrazine | 818 | 1.42 ± 0.22 | 2.42 ± 0.27 | 1.71 ± 0.06 |
2,5-Dimethylpyrazine | 906 | 23.94 ± 2.03 | 30.92 ± 1.74 | 34.17 ± 3.37 |
2,3,5-Trimethylpyrazine | 998 | 6.96 ± 1.51 | 6.58 ± 1.25 | 11.09 ± 0.81 |
2-Methyl-3-izopropylpyrazine | 1051 | 0.44 ± 0.06 | 0.54 ± 0.12 | - |
2,5-Dimethyl-3-ethylpyrazine | 1078 | - | - | 2.01 ± 0.13 |
Amides, including the following: | - | - | 3.54 ± 0.13 | |
Acetamide | 771 | - | - | 3.18 ± 0.11 |
Propanamide | 855 | - | - | 0.37. ± 0.02 |
Sulfides, including the following: | - | 0.73 ± 0.14 | 3.73 ± 0.26 | |
1,2-Dimethylsulfide | 735 | - | - | 2.69 ± 0.11 |
Dimethyl trisulfide | 965 | - | 0.73 ± 0.14 | 1.04 ± 0.16 |
Monoterpenes, including: | 3.12 ± 0.47 | 3.81 ± 0.66 | 2.99 ± 0.21 | |
-Pinene | 930 | 0.80 ± 0.04 | 1.15 ± 0.20 | 1.09 ± 0.06 |
-3-Carene | 1007 | 1.68 ± 0.28 | 1.89 ± 0.34 | 1.90 ± 0.15 |
Limonene | 1027 | 0.65 ± 0.16 | 0.77 ± 0.11 | - |
Other compounds, including the following: | 9.51 ± 1.39 | 4.35 ± 0.69 | 0.78 ± 0.13 | |
Methyl N-hydroxybenzenecarboximidoate | 903 | 3.66 ± 0.53 | 3.15 ± 0.35 | - |
Phenolic compound (C9H12O) | 1260 | 3.92 ± 0.72 | 1.20 ± 0.34 | 0.78 ± 0.13 |
Phenolic compound (C9H12O) | 1264 | 1.92 ± 0.14 | - | - |
Unidentified compounds, including the following: | 2.42 ± 0.37 | 0.97 ± 0.16 | 1.91 ± 0.29 | |
NN | 1118 | 0.93 ± 0.14 | - | - |
NN | 1150 | - | 0.97 ± 0.16 | 0.39. ± 0.04 |
NN | 1724 | 1.49 ± 0.24 | - | 1.52 ± 0.24 |
Group of Compounds | Relative Content [% TIC] | |
---|---|---|
Sesquiterpenes, including the following: | 8.49 ± 0.62 | |
Cyclosativene | 1370 | 0.10 ± 0.01 |
Spiroaxa-5,7-diene | 1391 | 0.33 ± 0.03 |
-Elemene | 1391 | 0.10 ± 0.01 |
Sativene | 1391 | 0.20 ± 0.01 |
-Copaene | 1435 | 0.11 ± 0.01 |
Sesquiterpene (C15H22) | 1487 | 3.09 ± 0.07 |
-Murolene | 1505 | 0.10 ± 0.01 |
-Cadinene | 1529 | 0.68 ± 0.03 |
Zonarene | 1530 | 0.20 ± 0.02 |
-Vatirenene | 1556 | 2.44 ± o.31 |
Sesquiterpene (C15H24) | 1574 | 0.53 ± 0.07 |
Glenol | 1590 | 0.12 ± 0.01 |
1-epi-Cubenol | 1635 | 0.27 ± 0.03 |
Cubenol | 1646 | 0.21 ± 0.01 |
Alcohols, including the following: | 14.53 ± 0.42 | |
Ethanol | 450 | 4.62 ± 0.01 |
Propan-1-ol | 530 | 0.57 ± 0.04 |
Isobutanol | 594 | 0.32 ± 0.03 |
2-Methylbutan-1-ol | 728 | 0.84 ± 0.07 |
Benzyl alcohol | 1030 | 8.18 ± 0.27 |
Carbonyl compounds, including the following: | 26.69 ± 1.67 | |
Isopentanal | 626 | 0.54 ± 0.04 |
Benzaldehyde | 959 | 25.83 ± 1.61 |
Acetofenone | 1065 | 0.11 ± 0.01 |
Anisaldehyde | 1247 | 0.09 ± 0.01 |
Undecan-2-one | 1294 | 0.11 ± 0.01 |
Carboxylic acids, including the following: | 0.58 ± 0.06 | |
Acetic acid | 612 | 0.10 ± 0.01 |
Isovaleric acid | 830 | 0.35 ± 0.03 |
2-Methylbutanoic acid | 835 | 0.13 ± 0.03 |
Esters, including the following: | 0.72 ± 0.05 | |
Methyl isopentanoate | 770 | 0.38 ± 0.02 |
Methyl benzoate | 1095 | 0.26 ± 0.01 |
Ethyl benzoate | 1172 | 0.08 ± 0.01 |
Chlorinated benzene derivatives and chlorinated benzaldehyde derivatives, including the following: | 48.45 ± 1.46 | |
2-Chloro-1,4-dimethoxybenzene | 1353 | 2.55 ± 0.17 |
1,4-Dichloro-2,5-dimethoxybenzene | 1444 | 13.07 ± 0.43 |
3-Chloro-4-(methyloxy)benzaldehyde | 1453 | 2.04 ± 0.02 |
3,5-Dichloro-4-methoxybenzaldehyde | 1465 | 30.79 ± 0.83 |
Other compounds, including the following: | 0.54 ± 0.04 | |
Methyl N-hydroxybenzenecarboximidoate | 903 | 0.19 ± 0.02 |
-Decalactone | 1471 | 0.36 ± 0.02 |
Group of Compounds | Relative Content [% TIC] | |||
---|---|---|---|---|
I | II | III | ||
Sesquiterpenes, including the following: | 50.99 ± 2.26 | - | 8.49 ± 0.62 | |
Bicycloelemene | 1341 | 0.28 ± 0.03 | - | - |
-Cubebene | 1354 | 1.80 ± 0.15 | - | - |
Cyclosativene | 1370 | 0.71 ± 0.06 | - | 0.10 ± 0.01 |
-Kopaene | 1380 | 0.53 ± 0.03 | - | - |
Spiroaxa-5,7-diene | 1391 | 16.06 ± 0.54 | - | 0.33 ± 0.03 |
-Elemene | 1393 | 0.96 ± 0.11 | - | 0.10 ± 0.01 |
Sativene | 1394 | 2.54 ± 0.25 | - | 0.20 ± 0.01 |
Isosativene | 1417 | 0.21 ± 0.01 | - | - |
Sesquiterpene (C15H24) | 1420 | 0.14 ± 0.01 | - | - |
Sesquiterpene (C15H24) | 1425 | 0.23 ± 0.03 | - | - |
Sesquiterpene (C15H24) | 1429 | 0.16 ± 0.01 | - | - |
-Copaene | 1435 | 1.21 ± 0.07 | - | 0.11 ± 0.01 |
Aromadendrene | 1443 | 0.25 ± 0.01 | - | - |
(E)--Famesen | 1460 | 0.51 ± 0.02 | - | - |
Alloaromadendrene | 1468 | 0.37 ± 0.03 | - | - |
trans-Cadina-1(6),4-diene | 1479 | 0.73 ± 0.03 | - | - |
-Murolene | 1482 | 0.38 ± 0.01 | - | - |
Sesquiterpene (C15H24) | 1488 | 4.20 ± 0.09 | - | 3.09 ± 0.07 |
Alloaromadendr-9-ene | 1493 | 1.79 ± 0.04 | - | - |
trans-Murola-4(14),5-diene | 1497 | 1.10 ± 0.05 | - | - |
epi-Cubebol | 1497 | 0.44 ± 0.01 | - | - |
Bicyclogermacren | 1504 | 1.01 ± 0.03 | - | - |
-Murolene | 1506 | 0.45 ± 0.04 | - | 0.10 ± 0.01 |
Germacrene A | 1510 | 0.14 ± 0.02 | - | - |
-Cadinene | 1519 | 0.33 ± 0.02 | - | - |
-Cadinene | 1529 | 4.83 ± 0.02 | - | 0.68 ± 0.03 |
Zonarene | 1530 | 0.43 ± 0.04 | - | 0.20 ± 0.02 |
Cadina-1,4-diene | 1539 | 0.38 ± 0.04 | - | - |
-Vatirenen | 1558 | 3.52 ± 0.26 | - | 2.44 ± 0.31 |
Sesquiterpene (C15H24) | 1565 | 0.45 ± 0.02 | - | - |
Sesquiterpene (C15H24) | 1574 | 0.38 ± 0.04 | - | 0.53 ± 0.07 |
Glenol | 1591 | 0.59 ± 0.04 | - | 0.12 ± 0.01 |
1-epi-Cubenol | 1635 | 3.43 ± 0.08 | - | 0.27 ± 0.03 |
Cubenol | 1647 | 0.43 ± 0.02 | - | 0.21 ± 0.01 |
Monoterpenes, including the following: | 1.68 ± 0.10 | 3.12 ± 0.47 | - | |
-Pinene | 930 | 0.27 ± 0.01 | 0.80 ± 0.04 | - |
-3-Carene | 1007 | 0.56 ± 0.02 | 1.68 ± 0.28 | - |
Limonene | 1027 | - | 0.65 ± 0.16 | - |
Linalool | 1097 | 0.85 ± 0.07 | - | - |
Alkanes, including the following: | 0.58 ± 0.03 | 0.78 ± 0.20 | - | |
n-Heptadecan | 1700 | 0.58 ± 0.03 | 0.78 ± 0.20 | - |
Alcohols, including the following: | 4.04 ± 0.28 | 4.58 ± 0.68 | 14.53 ± 0.42 | |
Ethanol | 450 | 0.47 ± 0.04 | - | 4.62 ± 0.01 |
Propan-1-ol | 530 | - | - | 0.57 ± 0.04 |
Isobutanol | 594 | - | - | 0.32 ± 0.03 |
Isopentanol | 724 | 0.22 ± 0.01 | - | - |
2-Methylbutan-1-ol | 728 | - | - | 0.84 ± 0.07 |
Butane-2,3-diol | 785 | 0.26 ± 0.03 | - | - |
Heptan-2-ol | 896 | 0.54 ± 0.01 | 2.51 ± 0.39 | - |
1-Octen-3-ol | 976 | 0.29 ± 0.01 | - | - |
Benzyl alcohol | 1030 | 1.75 ± 0.14 | - | 8.18 ± 0.27 |
Nonan-2-ol | 1100 | - | 1.41 ± 0.20 | - |
Phenethyl alcohol | 1114 | - | 0.66 ± 0.09 | - |
Undecan-2-ol | 1301 | 0.51 ± 0.04 | - | - |
Carbonyl compounds, including the following: | 27.70 ± 1.61 | 43.96 ± 7.85 | 27.04 ± 1.68 | |
Acetone | 480 | 3.55 ± 0.03 | 6.92 ± 1.54 | - |
Butan-2-one | 560 | 1.29 ± 0.11 | 0.64 ± 0.19 | - |
Isopentanal | 626 | - | - | 0.54 ± 0.04 |
Pentan-2-one | 671 | 0.66 ± 0.01 | 1.08 ± 0.27 | - |
3-Hydroxybutan-2-one | 708 | 0.18 ± 0.01 | 3.12 ± 0.72 | - |
3-Methylpentan-2-one | 743 | 0.73 ± 0.01 | - | - |
Hexan-2-one | 783 | 0.45 ± 0.01 | - | - |
5-Methylhexan-2-one | 851 | 1.63 ± 0.11 | 1.49 ± 0.16 | - |
Heptan-2-one | 886 | - | 14.13 ± 2.01 | - |
6-Methylheptan-2-one | 951 | 2.54 ± 0.22 | 2.88 ± 0.71 | - |
Benzaldehyde | 958 | 3.59 ± 0.14 | - | 25.83 ± 1.61 |
5-Methylheptan-2-one | 961 | 3.40 ± 0.19 | 3.33 ± 0.61 | - |
Nonan-5-one | 1054 | 0.61 ± 0.05 | 1.10 ± 0.14 | - |
Acetofenone | 1065 | 1.25 ± 0.10 | 1.22 ± 0.11 | 0.11 ± 0.01 |
Nonan-2-one | 1092 | 1.46 ± 0.11 | 1.84 ± 0.31 | - |
Decan-5-one | 1163 | 0.87 ± 0.05 | 0.93 ± 0.16 | - |
Decan-2-one | 1193 | 0.75 ± 0.07 | - | - |
Anisaldehyde | 1251 | 0.54 ± 0.06 | - | 0.09 ± 0.01 |
Undecan-2-one | 1294 | 1.32 ± 0.18 | 1.05 ± 0.14 | 0.11 ± 0.01 |
Dodecan-5-one | 1359 | 0.98 ± 0.05 | 1.00 ± 0.17 | - |
2-Methyldecanal | 1367 | 1.30 ± 0.09 | 1.15 ± 0.15 | - |
-Decalactone | 1471 | 0.11 ± 0.01 | - | 0.36 ± 0.02 |
Tridecan-2-one | 1498 | - | 1.13 ± 0.30 | - |
Tetradecan-5-one | 1569 | 0.49 ± 0.02 | 0.95 ± 0.16 | - |
Carboxylic acids, including the following: | 0.37 ± 0.01 | - | 0.58 ± 0.06 | |
Acetic acid | 612 | 0.37 ± 0.01 | - | 0.10 ± 0.01 |
Isovaleric acid | 830 | - | - | 0.35 ± 0.03 |
2-Methylbutanoic acid | 835 | - | - | 0.13 ± 0.03 |
Esters, including the following: | 0.14 ± 0.02 | - | 0.72 ± 0.05 | |
Methyl isopentanoate | 770 | - | - | 0.38 ± 0.02 |
Methyl benzoate | 1095 | 0.14 ± 0.02 | - | 0.26 ± 0.01 |
Ethyl benzoate | 1172 | - | - | 0.08 ± 0.01 |
Benzene and benzaldehyde chlorine derivatives, including the following: | 1.56 ± 0.12 | - | 48.45 ± 1.46 | |
2-Chlorophenol | 986 | 0.37 ± 0.02 | - | - |
2-Chloro-1,4-dimethoxybenzene | 1353 | 0.85 ± 0.07 | - | 2.55 ± 0.17 |
1,4-Dichloro-2,5-dimethoxybenzene | 1442 | 0.34 ± 0.03 | - | 13.07 ± 0.43 |
3-Chloro-4-(methyloxy)benzaldehyde | 1453 | - | - | 2.04 ± 0.02 |
3,5-Dichloro-4-methoxybenzaldehyde | 1465 | - | - | 30.79 ± 0.83 |
Pyrazine derivatives, including the following: | 7.85 ± 0.49 | 32.76 ± 3.82 | - | |
2-Methylpyrazine | 820 | 0.58 ± 0.07 | 1.42 ± 0.22 | - |
2,5-Dimethylpyrazine | 905 | 5.66 ± 0.35 | 23.94 ± 2.03 | - |
2,3,5-Trimethylpyrazine | 1000 | 1.61 ± 0.06 | 6.96 ± 1.51 | - |
2-Methyl-3-izopropylpyrazine | 1051 | - | 0.44 ± 0.06 | - |
Benzene derivatives, including the following: | 2.84 ± 0.13 | - | - | |
Styrene | 886 | 1.57 ± 0.07 | - | - |
Phenol | 980 | 1.13 ± 0.05 | - | - |
Methoxy-2-vinylbenzene | 1153 | 0.13 ± 0.01 | - | - |
Anisole chlorine derivatives, including the following: | 1.17 ± 0.08 | - | - | |
4-Chloroanisole | 1123 | 0.57 ± 0.02 | - | - |
2,6-Dichloroanisole | 1199 | 0.60 ± 0.06 | - | - |
Other compounds, including the following: | 1.08 ± 0.10 | 12.37 ± 1.94 | 0.19 ± 0.02 | |
Methyl N-hydroxybenzenecarboximidoate | 907 | 0.07 ± 0.01 | 3.66 ± 0.53 | 0.19 ± 0.02 |
Benzylnitrile | 1139 | 0.33 ± 0.04 | - | - |
4-Acetyl-1-methylcyclohexene | 1145 | 0.68 ± 0.05 | 2.87 ± 0.55 | - |
Phenolic compound (C9H12O) | 1260 | - | 3.92 ± 0.72 | - |
Phenolic compound (C9H12O) | 1264 | - | 1.92 ± 0.14 | - |
Unidentified compounds, including the following: | - | 2.42 ± 0.37 | - | |
NN | 1118 | - | 0.93 ± 0.14 | - |
NN | 1724 | - | 1.49 ± 0.24 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stocki, M.; Stocka, N.; Borowik, P.; Dudzińska, M.; Staszowska, A.; Okorski, A.; Oszako, T. Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum. Forests 2025, 16, 1220. https://doi.org/10.3390/f16081220
Stocki M, Stocka N, Borowik P, Dudzińska M, Staszowska A, Okorski A, Oszako T. Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum. Forests. 2025; 16(8):1220. https://doi.org/10.3390/f16081220
Chicago/Turabian StyleStocki, Marcin, Natalia Stocka, Piotr Borowik, Marzenna Dudzińska, Amelia Staszowska, Adam Okorski, and Tomasz Oszako. 2025. "Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum" Forests 16, no. 8: 1220. https://doi.org/10.3390/f16081220
APA StyleStocki, M., Stocka, N., Borowik, P., Dudzińska, M., Staszowska, A., Okorski, A., & Oszako, T. (2025). Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum. Forests, 16(8), 1220. https://doi.org/10.3390/f16081220