Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation
Abstract
1. Introduction
2. Nitrogen Dynamics in Hydroponic Systems
2.1. Forms and Functions of Nitrogen in Hydroponics
2.2. N Uptake and Assimilation
2.3. NUE in Hydroponics
2.4. Environmental Impact of N Leaching in Hydroponic Discharge Water
3. BNF: Principles and Diazotrophic Microorganisms
3.1. Overview of Nitrogenase Enzyme and Energy Requirements
3.2. Plant–Microbe Symbiosis in BNF
3.2.1. Rhizospheric and Endophytic Diazotrophs
3.2.2. Symbiotic Diazotrophs
4. Plant Growth-Promoting Properties of Diazotrophs Beyond N2 Fixation
Microbial Species | Host Plants | Biostimulant Mechanisms | Plant Benefits | References |
---|---|---|---|---|
Bacterial Inoculants | ||||
Azospirillum brasilense | Maize, lettuce, common bean | IAA, GA, CKs, P solubilization, antioxidant enzymes, and siderophore production | Improved root/shoot growth and biomass, nutrient uptake (N, P, K, Ca, Fe, Zn), NUE, photosynthesis, abiotic stress tolerance | [62,76,77] |
Azotobacter chroococcum | Cotton, cucumber, tomato, cabbage, sugar beet | IAA, GA, JA, ACC deaminase, P and K solubilization, siderophore | Increased biomass, yield, leaf nutrients, photosynthesis, stress and disease resistance | [63,67,78] |
Rhizobium leguminosarum | Pea, common bean, soybean, peanut, chickpea, lentil, faba bean, cowpea, lupin | IAA, CKs, P solubilization | Improved seedling growth, vigor, biomass, and yield, antioxidant activity, and secondary metabolites (phenols, flavonoids, tannins) | [79,80,81] |
Gluconacetobacter diazotrophicus | Tomato, rice, Arabidopsis thaliana | Endophytic colonization, N2 fixation, modulation of growth- and defense-related gene expression | Increased plant height, fresh weight, leaf chlorophyll, yield under both N-rich and N-deficient conditions, and drought tolerance | [82,83,84] |
Herbaspirillum seropedicae | Palm, rice | Endophytic colonization; stimulation of vacuolar H+-ATPase and H+-PPase activity; N2 fixation | Enhanced plant growth, nutrients (N, K, Ca, and Mg), photosynthesis | [68,85] |
Pseudomonas fluorescens | Sedum alfredii, okra, tomato | IAA, ACC deaminase, P solubilization, ISR, VOC, antibiotic and siderophore production | Enhanced biomass, leaf chlorophyll, Cd uptake, essential oil biosynthesis, drought tolerance | [66,86,87] |
Bacillus amyloliquefaciens | Maize, soybean, tomato | IAA, GA, ABA, antibiotics (surfactin, bacillomycin D), VOCs (e.g., 2,3-butanediol), ACC deaminase, antifungal activity | Increased plant height, dry matter, yield, Fusarium and Alternaria inhibition, stress tolerance, and photosynthesis | [64,65,88] |
Cyanobacterial Inoculants | ||||
Nostoc muscorum | Basil, garlic, barley | IAA, CKs, EPS, secondary metabolite secretion, antioxidant induction | Fusarium oxysporum inhibition, increased leaf weight, essential oil yield, stress resilience, and biomass | [89,90,91] |
Anabaena variabilis | Basil, rice, soybean, wheat, okra, millet, mungbean | IAA, GA, N2 fixation, P solubilization, siderophore, EPS, hydrolytic enzyme (e.g., chitosanase) production | Enhanced growth, yield, seed germination, and root architecture, and reduced Fusarium infection and oxidative stress | [89,92,93] |
Tolypothrix sp. | Basil, tomato, barley | N2 fixation; phytohormone and organic acid secretion; defense enzyme and chitosanase production; antifungal activity | Improved seed germination, plant height, and soil quality, and reduced soil-borne diseases | [89,92] |
Microalgal Inoculants | ||||
Chlorella vulgaris | Arabidopsis thaliana, common bean, cucumber, wheat, soybean | IAA, GA | Increased root/shoot biomass, flower number, antioxidant capacity, glucosinolate biosynthesis, drought resistance | [94,95,96] |
Scenedesmus quadricauda | Lettuce, sugar beet | Activation of C and N metabolism enzymes (GOGAT, GS, CS, MDH), PAL activity, phytohormone production | Improved chlorophyll, carotenoid, proteins, biomass, nutrient uptake, root architecture | [97,98] |
Arthrospira platensis | Rosemary, wheat, tomato | IAA, GA, CKs, antioxidant enzymes (SOD, CAT, GR, PPO), improved nutrient uptake | Enhanced growth parameters (height, root length, fresh/dry weight); increased essential oil content and photosynthetic pigment levels; improved stress tolerance under drought and salinity | [99,100,101] |
5. Evidence of Diazotrophs in Hydroponics: A Case Series
6. Strategies to Improve Diazotroph Performance in Hydroponics
6.1. Microbial Strain Selection and Engineering
6.2. Formulation and Delivery Technologies
6.3. Optimization of Hydroponic Conditions
6.4. Omics-Based Monitoring and Precision Management
7. Policy, Regulation, and Commercialization of BNF-Based Inputs in Hydroponics
8. Challenges and Limitations
9. Conclusions and Future Perspectives
- Engineering diazotrophic consortia with complementary traits such as nitrogenase activity, abiotic stress tolerance, and quorum sensing capabilities.
- Application of genome editing (e.g., CRISPR-Cas9) to enhance N fixation genes in diazotrophs and non-diazotrophic hosts, expanding microbial applicability across diverse crops.
- Development of real-time biosensors and portable diagnostics for tracking BNF efficiency, nitrogenase function, and colonization dynamics.
- Standardizing protocols for the formulation, delivery, and efficacy validation of microbial bioinputs in hydroponic environments.
- Fostering regulatory frameworks that encourage innovation while ensuring safety, reproducibility, and scale-up feasibility.
- Facilitating public–private partnerships to promote translational research and commercialization of BNF-based solutions in vertical farming and urban agriculture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eleazar, F.; Jaime, R.; Renganathan, P.; Gaysina, L.A.; Sukhanova, N.V.; Puente, E.O. Microalgae as Functional Food Ingredients: Nutritional Benefits, Challenges, and Regulatory Considerations for Safe Consumption. Biomass 2025, 5, 25. [Google Scholar] [CrossRef]
- Andrade-Bustamante, G.; Martínez-Ruiz, F.E.; Ortega-García, J.; Renganathan, P.; Gaysina, L.A.; Mahendhiran, M.; Puente, E.O. Microalgae-Based Functional Foods: A Blue-Green Revolution in Sustainable Nutrition and Health. Appl. Microbiol. 2025, 5, 39. [Google Scholar] [CrossRef]
- Renganathan, P.; Puente, E.O.; Sukhanova, N.V.; Gaysina, L.A. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BioTech 2024, 13, 27. [Google Scholar] [CrossRef]
- Goh, Y.S.; Hum, Y.C.; Lee, Y.L.; Lai, K.W.; Yap, W.S.; Tee, Y.K. A Meta-Analysis: Food Production and Vegetable Crop Yields of Hydroponics. Sci. Hortic. 2023, 321, 112339. [Google Scholar] [CrossRef]
- Al Meselmani, M.A. Hydroponics: The Future of Sustainable Farming. In Hydroponics: The Future of Sustainable Farming; Springer US: New York, NY, USA, 2024; pp. 101–122. [Google Scholar]
- Hydroponics Market Size, Share & Trends Analysis Report by Type (Aggregate Systems, Liquid Systems), by Crops (Tomatoes, Lettuce, Peppers, Cucumbers, Herbs), by Region, and Segment Forecasts, 2021–2028. Available online: https://www.researchandmarkets.com/reports/5457654/hydroponics-market-size-share-and-trends-analysis (accessed on 14 April 2025).
- Babcock-Jackson, L.; Konovalova, T.; Krogman, J.P.; Bird, R.; Díaz, L.L. Sustainable Fertilizers: Publication Landscape on Wastes as Nutrient Sources, Wastewater Treatment Processes for Nutrient Recovery, Biorefineries, and Green Ammonia Synthesis. J. Agric. Food Chem. 2023, 71, 8265. [Google Scholar] [CrossRef]
- Sabina, R.; Paul, J.; Sharma, S.; Hussain, N. Synthetic Nitrogen Fertilizer Pollution: Global Concerns and Sustainable Mitigating Approaches. In Agricultural Nutrient Pollution and Climate Change: Challenges and Opportunities; Springer Nature: Cham, Switzerland, 2025; pp. 57–101. [Google Scholar]
- Threatt, S.D.; Rees, D.C. Biological Nitrogen Fixation in Theory, Practice, and Reality: A Perspective on the Molybdenum Nitrogenase System. FEBS Lett. 2023, 597, 45–58. [Google Scholar] [CrossRef]
- Cowan, N.; White, S.; Olszewska, J.; Dobel, A.; Sim, G.; Eades, L.J.; Skiba, U. Integration of Algae Treatment with Hydroponic Crop Waste to Reduce Impact of Nutrient Waste Streams. J. Sustain. Agric. Environ. 2022, 1, 203–215. [Google Scholar] [CrossRef]
- Mishra, A.; Rajput, S.; Gupta, P.S.; Goyal, V.; Singh, S.; Sharma, S.; Shukla, S.; Singh, A.; Shukla, K.; Varma, A. Role of cyanobacteria in Rhizospheric nitrogen fixation. In Soil Nitrogen Ecology; Springer: Cham, Switzerland, 2021; pp. 497–519. [Google Scholar]
- Bharti, A.; Prasanna, R.; Kumar, G.; Kumar, A.; Nain, L. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J. Appl. Phycol. 2019, 31, 3625–3635. [Google Scholar] [CrossRef]
- Safaei, F.; Alirezalu, A.; Noruzi, P.; Alirezalu, K. Phytochemical and Morpho-Physiological Response of Melissa officinalis L. to Different NH4+ to NO3− Ratios under Hydroponic Cultivation. BMC Plant Biol. 2024, 24, 968. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Jia, Z.; Tang, Y.; Liu, X.; Zhang, J.; Müller, C. Microbial inoculants drive changes in soil and plant microbiomes and improve plant functions in abandoned mine restoration. Plant Cell Environ. 2025, 48, 1162–1178. [Google Scholar] [CrossRef]
- Arkani, M.; Babaeipour, V.; Mohammadi, R.; Deldar, A. Expression of Vitreoscilla hemoglobin gene in different organisms: A new approach to increase the efficiency of various biological processes. Prep. Biochem. Biotechnol. 2025, in press. [Google Scholar]
- Srikanth, P.; Sivakumar, D.; Sharma, A.; Kaushik, N. Recent developments in omics techniques for improving plant abiotic stress using microbes. Int. J. Environ. Sci. Technol. 2025, 22, 3787–3810. [Google Scholar] [CrossRef]
- Diaz-Delgado, D.; Rodriguez, C.; Bernuy-Alva, A.; Navarro, C.; Inga-Alva, A. Optimization of Vegetable Production in Hydroculture Environments Using Artificial Intelligence: A Literature Review. Sustainability 2025, 17, 3103. [Google Scholar] [CrossRef]
- Santos, F.; Melkani, S.; Oliveira-Paiva, C.; Bini, D.; Pavuluri, K.; Gatiboni, L.; Mahmud, A.; Torres, M.; McLamore, E.; Bhadha, J.H. Biofertilizer use in the United States: Definition, regulation, and prospects. Appl. Microbiol. Biotechnol. 2024, 108, 511. [Google Scholar] [CrossRef]
- Biological Products Industry Alliance—BPIA. The Listening Session Report: Identifying Ambiguities, Gaps, Inefficiencies, and Uncertainties in the Coordinated Framework for the Regulation of Biotechnology; Biological Products Industry Alliance: Oakton, VA, USA, 2023; p. 27. [Google Scholar]
- Chen, X.; Guo, P.; Wang, Z.; Liang, J.; Li, G.; He, W.; Zhen, A. Grafting Improves Growth and Nitrogen-Use Efficiency by Enhancing NO3− Uptake, Photosynthesis, and Gene Expression of Nitrate Transporters and Nitrogen Metabolizing Enzymes in Watermelon under Reduced Nitrogen Application. Plant Soil 2022, 480, 305–327. [Google Scholar] [CrossRef]
- Liu, X.; Hu, B.; Chu, C. Nitrogen Assimilation in Plants: Current Status and Future Prospects. J. Genet. Genom. 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3− Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the pH Value of Nutrient Solution. Front. Plant Sci. 2021, 12, 685508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Liu, H.; Sun, G.; Song, S.; Chen, R. High NH4+/NO3− Ratio Inhibits the Growth and Nitrogen Uptake of Chinese Kale at the Late Growth Stage by Ammonia Toxicity. Horticulturae 2021, 8, 8. [Google Scholar] [CrossRef]
- Thapa, U.; Nandi, S.; Rai, R.; Upadhyay, A. Effect of Nitrogen Levels and Harvest Timing on Growth, Yield and Quality of Lettuce under Floating Hydroponic System. J. Plant Nutr. 2022, 45, 2563–2577. [Google Scholar] [CrossRef]
- Glass, A.D.; Britto, D.T.; Kaiser, B.N.; Kinghorn, J.R.; Kronzucker, H.J.; Kumar, A.; Okamoto, M.; Rawat, S.; Siddiqi, M.Y.; Unkles, S.E.; et al. The Regulation of Nitrate and Ammonium Transport Systems in Plants. J. Exp. Bot. 2002, 53, 855–864. [Google Scholar] [CrossRef]
- Djidonou, D.; Leskovar, D.I. Seasonal Changes in Growth, Nitrogen Nutrition, and Yield of Hydroponic Lettuce. HortScience 2019, 54, 76–85. [Google Scholar] [CrossRef]
- Goins, G.D.; Yorio, N.C.; Wheeler, R.M. Influence of Nitrogen Nutrition Management on Biomass Partitioning and Nitrogen Use Efficiency Indices in Hydroponically Grown Potato. J. Am. Soc. Hortic. Sci. 2004, 129, 134–140. [Google Scholar] [CrossRef]
- Chan-Navarrete, R.; Kawai, A.; Dolstra, O.; Lammerts van Bueren, E.T.; van der Linden, C.G. Genetic Diversity for Nitrogen Use Efficiency in Spinach (Spinacia oleracea L.) Cultivars Using the Ingestad Model on Hydroponics. Euphytica 2014, 199, 155–166. [Google Scholar] [CrossRef]
- Chen, M.; Chen, G.; Di, D.; Kronzucker, H.J.; Shi, W. Higher Nitrogen Use Efficiency (NUE) in Hybrid “Super Rice” Links to Improved Morphological and Physiological Traits in Seedling Roots. J. Plant Physiol. 2020, 251, 153191. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen Use and Uptake Efficiency and Crop Performance of Baby Spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) Grown under Variable Sub-Optimal N Regimes Combined with Plant-Based Biostimulant Application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef]
- Renganathan, P.; Gaysina, L.A.; Jaime, R.; Carlos, J.; Omar, E. Phycoremediated Microalgae and Cyanobacteria Biomass as Biofertilizer for Sustainable Agriculture: A Holistic Biorefinery Approach to Promote Circular Bioeconomy. Biomass 2024, 4, 1047–1077. [Google Scholar] [CrossRef]
- Kwon, M.J.; Hwang, Y.; Lee, J.; Ham, B.; Rahman, A.; Azam, H.; Yang, J.S. Waste Nutrient Solutions from Full-Scale Open Hydroponic Cultivation: Dynamics of Effluent Quality and Removal of Nitrogen and Phosphorus Using a Pilot-Scale Sequencing Batch Reactor. J. Environ. Manag. 2021, 281, 111893. [Google Scholar] [CrossRef]
- Park, B.; Cho, H.; Kim, M. Environmental Impact of Hydroponic Nutrient Wastewater, Used Hydroponic Growing Media, and Crop Wastes from Acyclic Hydroponic Farming System. J. Korea Org. Resour. Recycl. Assoc. 2021, 29, 19–27. [Google Scholar]
- Karlowsky, S.; Gläser, M.; Henschel, K.; Schwarz, D. Seasonal Nitrous Oxide Emissions from Hydroponic Tomato and Cucumber Cultivation in a Commercial Greenhouse Company. Front. Sustain. Food Syst. 2021, 5, 626053. [Google Scholar] [CrossRef]
- Recycle of Water, Recovery of Dissolved Nitrogen in Greenhouse Horticulture—Closing Water and Nitrate Cycles Towards Zero Liquid Discharge. Available online: https://www.wur.nl/en/research-results/chair-groups/research-funded-by-the-ministry-of-lvvn/soorten-onderzoek/kennisonline/recyle-of-water-recovery-of-dissolved-nitrogen-in-greenhouse-horticulture-closing-water-and-nitrate-cycles-towards-zero-liquid-discharge.htm (accessed on 18 April 2025).
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Collado, L.; Pizarro, A.H.; Barawi, M.; García-Tecedor, M.; Liras, M. Light-driven nitrogen fixation routes for green ammonia production. Chem. Soc. Rev. 2024, 53, 11334–11389. [Google Scholar] [CrossRef]
- Wiskich, A.; Rapson, T. Economics of emerging ammonia fertilizer production methods–a role for on-farm synthesis? ChemSusChem 2023, 16, e202300565. [Google Scholar] [CrossRef]
- Holland, B.L.; Matthews, M.L.; Bota, P.; Sweetlove, L.J.; Long, S.P. A genome-scale metabolic reconstruction of soybean and Bradyrhizobium diazoefficiens reveals the cost–benefit of nitrogen fixation. New Phytol. 2023, 240, 744–756. [Google Scholar] [CrossRef]
- Imran, A.; Hakim, S.; Tariq, M.; Nawaz, M.S.; Laraib, I.; Gulzar, U.; Hanif, M.K.; Siddique, M.J.; Hayat, M.; Fraz, A.; et al. Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep Into the Roots. Front. Microbiol. 2021, 12, 637815. [Google Scholar] [CrossRef]
- Oelze, J. Respiratory protection of nitrogenase in Azotobacter species: Is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev. 2000, 24, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Flores, E.; Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 2010, 8, 39–50. [Google Scholar] [CrossRef]
- Lery, L.M.; Bitar, M.; Costa, M.G.; Rössle, S.C.; Bisch, P.M. Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria. BMC Genom. 2010, 11, S7. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.L.; Balsemão-Pires, E.; Saraiva, R.M.; Ferreira, P.C.; Hemerly, A.S. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot. 2014, 65, 5631–5642. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, J.; Thajudeen, J.; Rahiman, M.; Krishnankutty, S.; Alikunj, P.; Abdulla, A.M.H. Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J. Basic Microbiol. 2017, 57, 922–932. [Google Scholar] [CrossRef]
- Kahindi, J.; Woomer, P.; George, T.; De Souza Moreira, F.; Karanja, N.; Giller, K. Agricultural intensification, soil biodiversity and ecosystem function in the tropics: The role of nitrogen-fixing bacteria. Appl. Soil Ecol. 1997, 6, 55–76. [Google Scholar] [CrossRef]
- Roper, M.M.; Gupta, V.V. Enhancing non-symbiotic N2 fixation in agriculture. Open Agric. J. 2016, 10, 7–27. [Google Scholar] [CrossRef]
- Goebel, N.L.; Edwards, C.A.; Church, M.J.; Zehr, J.P. Modeled contributions of three types of diazotrophs to nitrogen fixation at Station ALOHA. ISME J. 2007, 1, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Gradoville, M.R.; Cabello, A.M.; Wilson, S.T.; Turk-Kubo, K.A.; Karl, D.M.; Zehr, J.P. Light and depth dependency of nitrogen fixation by the non-photosynthetic, symbiotic cyanobacterium UCYN-A. Environ. Microbiol. 2021, 23, 4518–4531. [Google Scholar] [CrossRef]
- Renganathan, P.; Borboa-Flores, J.; Rosas-Burgos, E.C.; Cárdenas-López, J.L.; Murillo-Amador, B.; Ortega-García, J.; Rueda-Puente, E.O. Inoculation of nitrogen-fixing halobacteria in the contribution to tolerance to salt stress in bean tepary. Rev. Mex. Cienc. Agric. 2018, 9, 4289–4300. [Google Scholar]
- Pal, G.; Saxena, S.; Kumar, K.; Verma, A.; Sahu, P.K.; Pandey, A.; White, J.F.; Verma, S.K. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol. Res. 2022, 265, 127201. [Google Scholar] [CrossRef]
- Saranraj, P.; Al-Tawaha, A.R.; Sivasakthivelan, P.; Al-Tawaha, A.R.; Amala, K.; Thangadurai, D.; Sangeetha, J. Azospirillum Bioinoculant Technology: Past To Current Knowledge And Future Prospects. In Organic Farming for Sustainable Development; Apple Academic Press: Burlington, ON, Canada, 2022; pp. 51–76. [Google Scholar]
- Upadhyay, D.; Shukla, K.; Mishra, A.; Jindal, T.; Sharma, S.; Shukla, S. Molecular aspects and oxygen relations of nitrogen fixation in cyanobacteria. In Soil Nitrogen Ecology; Springer: Cham, Switzerland, 2021; pp. 521–568. [Google Scholar]
- Nong, Q.; Malviya, M.K.; Solanki, M.K.; Solanki, A.C.; Lin, L.; Xie, J.; Mo, Z.; Wang, Z.; Song, X.; Huang, X.; et al. Sugarcane Root Transcriptome Analysis Revealed the Role of Plant Hormones in the Colonization of an Endophytic Diazotroph. Front. Microbiol. 2022, 13, 924283. [Google Scholar] [CrossRef]
- Li, X.; Xiao, R. Molecular dialogue in legume-rhizobium symbiosis: Signaling mechanisms and genetic insights. Rhizosphere 2025, 33, 101034. [Google Scholar] [CrossRef]
- Fedorova, E.; Pueyo, J.J.; Lucas, M.M. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? Front. Plant Sci. 2018, 8, 305846. [Google Scholar]
- Mathesius, U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. J. Plant Physiol. 2022, 276, 153765. [Google Scholar] [CrossRef]
- Gupta, S.M.; Kumar, K.; Joshi, R.K.; Gupta, S.; Bala, M. Frankia: A promising N-fixing plant growth promoting rhizobacteria (PGPR) improved drought tolerance in crops at higher altitude. In Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability; Springer: Singapore, 2020; pp. 411–431. [Google Scholar]
- Scaria, S.S.; Ravi, L. Symbiotic associations of Frankia in actinorhizal plants. In Microbial Symbionts; Academic Press: Cambridge, MA, USA, 2022; pp. 397–416. [Google Scholar]
- Hu, B.; Flemetakis, E.; Liu, Z.; Hänsch, R.; Rennenberg, H. Significance of nitrogen-fixing actinorhizal symbioses for restoration of depleted, degraded, and contaminated soil. Trends Plant Sci. 2023, 28, 752–764. [Google Scholar] [CrossRef]
- Yusupova, A.; Kartabayeva, B.; Sushchenko, R.; Gaysina, K.; Renganathan, P.; Gaysina, L.A. Antifungal Potential of Cyanobacterium Nostoc sp. BCAC 1226 Suspension as a Biocontrol Agent Against Phytopathogenic Fungi and Oomycetes. Appl. Microbiol. 2025, 6, 46. [Google Scholar] [CrossRef]
- Condori, T.; Alarcón, S.; Huasasquiche, L.; García-Blásquez, C.; Padilla-Castro, C.; Velásquez, J.; Solórzano, R. Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru. Microorganisms 2024, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Romero-Perdomo, F.; Abril, J.; Camelo, M.; Moreno-Galván, A.; Pastrana, I.; Rojas-Tapias, D.; Bonilla, R. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Rev. Argent. Microbiol. 2017, 49, 377–383. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Savy, D.; Drosos, M.; Piccolo, A. Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 2018, 429, 437–450. [Google Scholar] [CrossRef]
- Kim, M.J.; Radhakrishnan, R.; Kang, S.M.; You, Y.H.; Jeong, E.J.; Kim, J.G.; Lee, I.J. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol. Mol. Biol. Plants 2017, 23, 571–580. [Google Scholar] [CrossRef]
- Chen, B.; Luo, S.; Wu, Y.; Ye, J.; Wang, Q.; Xu, X.; Pan, F.; Khan, K.Y.; Feng, Y.; Yang, X. The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Front. Microbiol. 2017, 8, 269386. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Ramos, A.C.; Melo, J.; de Souza, S.B.; Bertolazi, A.A.; Silva, R.A.; Rodrigues, W.P.; Campostrini, E.; Olivares, F.L.; Eutrópio, F.J.; Cruz, C.; et al. Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice. Planta 2020, 252, 87. [Google Scholar] [CrossRef]
- Delaporte-Quintana, P.; Grillo-Puertas, M.; Lovaisa, N.C.; Teixeira, K.R.; Rapisarda, V.A.; Pedraza, R.O. Contribution of Gluconacetobacter diazotrophicus to phosphorus nutrition in strawberry plants. Plant Soil 2017, 419, 335–347. [Google Scholar] [CrossRef]
- Arstol, E.; Hohmann-Marriott, M.F. Cyanobacterial Siderophores—Physiology, Structure, Biosynthesis, and Applications. Mar. Drugs 2019, 17, 281. [Google Scholar] [CrossRef]
- Ganusova, E.E.; Banerjee, I.; Seats, T.; Alexandre, G. Indole-3-acetic acid (IAA) protects Azospirillum brasilense from indole-induced stress. Appl. Environ. Microbiol. 2025, 91, e0238424. [Google Scholar] [CrossRef]
- Oliveira, C.E.; Jalal, A.; Aguilar, J.V.; De Camargos, L.S.; Zoz, T.; Ghaley, B.B.; Alarjani, K.M.; AbdElgawad, H.; Teixeira Filho, M.C. Yield, nutrition, and leaf gas exchange of lettuce plants in a hydroponic system in response to Bacillus subtilis inoculation. Front. Plant Sci. 2023, 14, 1248044. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Wu, G.; Veronican Njeri, K.; Shen, Q.; Zhang, N.; Zhang, R. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 2016, 158, 34–44. [Google Scholar] [CrossRef]
- Kawicha, P.; Nitayaros, J.; Saman, P.; Thaporn, S.; Thanyasiriwat, T.; Somtrakoon, K.; Sangdee, K.; Sangdee, A. Evaluation of soil Streptomyces spp. for the biological control of Fusarium wilt disease and growth promotion in tomato and banana. Plant Pathol. J. 2023, 39, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Worsley, S.F.; Newitt, J.; Rassbach, J.; Batey, S.F.; Holmes, N.A.; Murrell, J.C.; Wilkinson, B.; Hutchings, M.I. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 2020, 86, e01053-20. [Google Scholar] [CrossRef]
- Moreira, V.D.; Oliveira, C.E.; Jalal, A.; Gato, I.M.; Oliveira, T.J.; Boleta, G.H.; Giolo, V.M.; Vitória, L.S.; Tamburi, K.V.; Filho, M.C. Inoculation with Trichoderma harzianum and Azospirillum brasilense increases nutrition and yield of hydroponic lettuce. Arch. Microbiol. 2022, 204, 440. [Google Scholar] [CrossRef] [PubMed]
- Filipini, L.D.; Pilatti, F.K.; Meyer, E.; Ventura, B.S.; Lourenzi, C.R.; Lovato, P.E. Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Arch. Microbiol. 2021, 203, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Kerečki, S.; Pećinar, I.; Karličić, V.; Mirković, N.; Kljujev, I.; Raičević, V.; Jovičić-Petrović, J. Azotobacter chroococcum F8/2: A multitasking bacterial strain in sugar beet biopriming. J. Plant Interact. 2022, 17, 719–730. [Google Scholar] [CrossRef]
- Abdelkrim, S.; Jebara, S.H.; Saadani, O.; Jebara, M. Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress. Plant Biol. 2018, 20, 857–869. [Google Scholar] [CrossRef]
- James, E.K. Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Front. Microbiol. 2019, 10, 490875. [Google Scholar]
- Silva, L.R.; Bento, C.; Gonçalves, A.C.; Flores-Félix, J.D.; Ramírez-Bahena, M.H.; Peix, A.; Velázquez, E. Legume bioactive compounds: Influence of rhizobial inoculation. AIMS Microbiol. 2017, 3, 267. [Google Scholar] [CrossRef]
- Pallucchini, M.; Franchini, M.; Narraidoo, N.; Palframan, M.J.; Hayes, C.J.; Dent, D.; Cocking, E.C.; Perazzolli, M.; Fray, R.G.; Hill, P.J. Gluconacetobacter diazotrophicus AZ0019 requires functional nifD gene for optimal plant growth promotion in tomato plants. Front. Plant Sci. 2024, 15, 1469676. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Filgueiras, L.; Santos, B.; Coelho, M.; Silva, M.; Vidal, M.; Baldani, J.I.; Meneses, C. Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. Int. J. Mol. Sci. 2019, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.S.; Soares, A.L.; De Souza, S.A.; Pinto, V.B.; Matiello, L.; Da Silva, F.R.; Menossi, M.; Apolinário, G. Fine-tuning of Arabidopsis thaliana response to endophytic colonization by Gluconacetobacter diazotrophicus PAL5 revealed by transcriptomic analysis. Plants 2023, 13, 1719. [Google Scholar] [CrossRef]
- Lim, S.L.; Subramaniam, S.; Zamzuri, I.; Amir, H.G. Growth and biochemical profiling of artificially associated micropropagated oil palm plantlets with Herbaspirillum seropedicae. J. Plant Interact. 2018, 13, 173–181. [Google Scholar] [CrossRef]
- Pravisya, P.; Jayaram, K.M.; Yusuf, A. Biotic priming with Pseudomonas fluorescens induces drought stress tolerance in Abelmoschus esculentus (L.) Moench (Okra). Physiol. Mol. Biol. Plants 2019, 25, 101–112. [Google Scholar] [CrossRef]
- Al-Karablieh, N.; Al-Shomali, I.; Al-Elaumi, L.; Hasan, K. Pseudomonas fluorescens NK4 siderophore promotes plant growth and biocontrol in cucumber. J. Appl. Microbiol. 2022, 133, 1414–1421. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, M.; Kong, Z.; Chen, X.; Wang, X.; Ding, W.; Lai, H.; Guo, Q. Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiol. Spectr. 2021, 9, e0161521. [Google Scholar] [CrossRef] [PubMed]
- Santini, G.; Rodolfi, L.; Biondi, N.; Sampietro, G.; Tredici, M.R. Effects of cyanobacterial-based biostimulants on plant growth and development: A case study on basil (Ocimum basilicum L.). J. Appl. Phycol. 2022, 34, 2063–2073. [Google Scholar] [CrossRef]
- Uniyal, S.; Singh, P.; Singh, R.K.; Tiwari, S.P. Effects of Nostoc sp. inoculation on the yield and quality of a medicinal plant, Allium sativum. J. Appl. Phycol. 2024, 36, 3287–3300. [Google Scholar] [CrossRef]
- Koval, E.V.; Ogorodnikova, S.Y. The prospect of using the cyanobacterium Nostoc muscorum to improve vital activity of barley seedlings by various methods of seed treatment. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 36, p. 04005. [Google Scholar]
- Gonçalves, A.L. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 2020, 11, 871. [Google Scholar] [CrossRef]
- Kollmen, J.; Strieth, D. The beneficial effects of cyanobacterial co-culture on plant growth. Life 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Park, Y.J.; Choi, Y.B.; Truong, T.Q.; Huynh, P.K.; Kim, Y.B.; Kim, S.M. Physiological effects and mechanisms of Chlorella vulgaris as a biostimulant on the growth and drought tolerance of Arabidopsis thaliana. Plants 2023, 13, 3012. [Google Scholar] [CrossRef] [PubMed]
- El Lateef Gharib, F.A.; Abd El Sattar, A.M.; Ahmed, E.Z. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Sci. Rep. 2024, 14, 1398. [Google Scholar]
- Morillas-España, A.; Ruiz-Nieto, Á.; Lafarga, T.; Acién, G.; Arbib, Z.; González-López, C.V. Biostimulant capacity of Chlorella and Chlamydopodium species produced using wastewater and centrate. Biology 2022, 11, 1086. [Google Scholar] [CrossRef]
- Puglisi, I.; La Bella, E.; Rovetto, E.I.; Lo Piero, A.R.; Baglieri, A. Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants 2019, 9, 123. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 430391. [Google Scholar] [CrossRef]
- El Lateef Gharib, F.A.; Ahmed, E.Z. Spirulina platensis improves growth, oil content, and antioxidant activity of rosemary plant under cadmium and lead stress. Sci. Rep. 2023, 13, 8008. [Google Scholar]
- El-Shazoly, R.M.; Aloufi, A.S.; Fawzy, M.A. The potential use of arthrospira (Spirulina platensis) as a biostimulant for drought tolerance in wheat (Triticum aestivum L.) for sustainable agriculture. J. Plant Growth Regul. 2025, 44, 686–703. [Google Scholar] [CrossRef]
- Mostafa, M.M.; Hammad, D.M.; Reda, M.M.; El-Sayed, A.E. Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomato (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Convers. Biorefin. 2024, 14, 21181–21191. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Giagkou, S.; Stathi, E.; Savvas, D.; Iannetta, P.P. Responses of Hydroponically Grown Common Bean Fed with Nitrogen-Free Nutrient Solution to Root Inoculation with N2-Fixing Bacteria. HortScience 2015, 50, 597–602. [Google Scholar] [CrossRef]
- Oliveira, C.E.; Jalal, A.; Oliveira, J.R.; Tamburi, K.V.; Teixeira Filho, M.C. Leaf Inoculation of Azospirillum brasilense and Trichoderma harzianum in Hydroponic Arugula Improve Productive Components and Plant Nutrition and Reduce Leaf Nitrate. Pesqui. Agropecu. Trop. 2022, 52, e72755. [Google Scholar] [CrossRef]
- Llamas, A. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. Plants 2023, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Jalal, A.; Vitória, L.S.; Giolo, V.M.; Soares Sena Oliveira, T.J.; Aguilar, J.V.; Brambilla, M.R.; Fernandes, G.C.; Vargas, P.F.; Zoz, T.; et al. Inoculation with Azospirillum brasilense strains AbV5 and AbV6 increases nutrition, chlorophyll, and leaf yield of hydroponic lettuce. Plants 2023, 12, 3107. [Google Scholar] [CrossRef]
- da Fonseca Breda, F.A.; da Silva, T.F.; Dos Santos, S.G.; Alves, G.C.; Reis, V.M. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Arch. Microbiol. 2019, 201, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Setiawati, M.R.; Afrilandha, N.; Hindersah, R.; Suryatmana, P.; Fitriatin, B.N.; Kamaluddin, N.N. The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah J. Soil Sci. Agroclimatol. 2023, 20, 66–77. [Google Scholar] [CrossRef]
- Aini, N.; Dwi Yamika, W.S.; Pahlevi, R.W. The effect of nutrient concentration and inoculation of PGPR and AMF on the yield and fruit quality of hydroponic cherry tomatoes (Lycopersicon esculentum Mill. var. cerasiforme). J. Appl. Hortic. 2019, 21, 85–90. [Google Scholar] [CrossRef]
- Singh, K.; Guleria, V.; Kaushal, S. Utilization of biofertilizers and plant growth promoters in hydroponic production system. Curr. J. Appl. Sci. Technol. 2023, 42, 13–23. [Google Scholar] [CrossRef]
- Vildanova, G.I.; Allaguvatova, R.Z.; Kunsbaeva, D.F.; Sukhanova, N.V.; Gaysina, L.A. Application of Chlorella vulgaris Beijerinck as a biostimulant for growing cucumber seedlings in hydroponics. BioTech 2023, 12, 42. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Ntanasi, T.; Tampakaki, A.; Giannopoulou, A.; Pantazopoulou, D.; Sabatino, L.; Iannetta, P.P.; Savvas, D. Hydroponic common-bean performance under reduced N-supply level and rhizobia application. Plants 2022, 12, 646. [Google Scholar] [CrossRef]
- Nivedha, R.M.; Prasanna, R.; Bhardwaj, A.; Bavana, N.R.; Rudra, S.G.; Singh, A.K.; Lal, S.K.; Basu, S.; Shivay, Y.S. Cyanobacteria-based nutrimental strategy to enhance yield and quality of spinach. J. Appl. Phycol. 2024, 36, 2703–2720. [Google Scholar] [CrossRef]
- Alleman, A.B.; Mus, F.; Peters, J.W. Metabolic model of the nitrogen-fixing obligate aerobe Azotobacter vinelandii predicts its adaptation to oxygen concentration and metal availability. mBio 2021, 12, e02593-21. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, A.S.; Chia, M.A. Cyanobacteria’s power trio: Auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J. Microbiol. Biotechnol. 2024, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Balsanelli, E.; de Baura, V.A.; Pedrosa, F.O.; de Souza, E.M.; Monteiro, R.A. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS ONE 2014, 9, e110392. [Google Scholar] [CrossRef]
- Arruebarrena Di Palma, A.; Pereyra, C.M.; Moreno Ramirez, L.; Xiqui Vazquez, M.L.; Baca, B.E.; Pereyra, M.A.; Lamattina, L.; Creus, C.M. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol. Lett. 2013, 338, 77–85. [Google Scholar] [CrossRef]
- Balla, A.; Silini, A.; Chenari Bouket, A.; Alenezi, F.N.; Belbahri, L. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Appl. Sci. 2021, 12, 9020. [Google Scholar] [CrossRef]
- Gamalero, E.; Bona, E.; Glick, B.R. Current techniques to study beneficial plant-microbe interactions. Microorganisms 2022, 10, 1380. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; Ikiz, B.; Gruda, N.S. Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef] [PubMed]
- Kurdish, I.K.; Chobotarov, A.Y.; Brovarska, O.S.; Parkhomenko, N.Y.; Chobotarova, V.V. The influence of Azotobacter vinelandii IMV B-7076 on the buckwheat development and exometabolite composition in the root zone. Mikrobiol. Zh. 2024, 86, 39–46. [Google Scholar] [CrossRef]
- Putra, A.M.; Anastasya, N.A.; Rachmawati, S.W.; Yusnawan, E.; Syib‘li, M.A.; Trianti, I.; Setiawan, A.; Aini, L.Q. Growth performance and metabolic changes in lettuce inoculated with plant growth promoting bacteria in a hydroponic system. Sci. Hortic. 2024, 327, 112868. [Google Scholar] [CrossRef]
- Sebring, R.L.; Duiker, S.W.; Berghage, R.D.; Regan, J.M.; Lambert, J.D.; Bryant, R.B. Gluconacetobacter diazotrophicus inoculation of two lettuce cultivars affects leaf and root growth under hydroponic conditions. Appl. Sci. 2021, 12, 1585. [Google Scholar] [CrossRef]
- Plocek, G.; Rueda Kunz, D.; Simpson, C. Impacts of Bacillus amyloliquefaciens and Trichoderma spp. on Pac Choi (Brassica rapa var. chinensis) grown in different hydroponic systems. Front. Plant Sci. 2024, 15, 1438038. [Google Scholar] [PubMed]
- Gayathri, M.; Shunmugam, S.; Sridhar, J.; Muralitharan, G. Evaluating the augmented effect of potential plant growth promoting cyanobacterial strains on salinity and insecticidal stress tolerance of Oryza sativa L. under hydroponic cultivation. J. Appl. Phycol. 2024, 36, 1885–1899. [Google Scholar] [CrossRef]
- Rueda, D.; Valencia, G.; Soria, N.; Rueda, B.B.; Manjunatha, B.; Kundapur, R.R.; Selvanayagam, M. Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J. Appl. Pharm. Sci. 2016, 6, 048–054. [Google Scholar] [CrossRef]
- Gravel, V.; Martinez, C.; Antoun, H.; Tweddell, R.J. Control of greenhouse tomato root rot [Pythium ultimum] in hydroponic systems, using plant-growth-promoting microorganisms. Can. J. Plant Pathol. 2006, 28, 475–483. [Google Scholar] [CrossRef]
- Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J.B.; Rothberg, J.M.; Link, D.R.; Perrimon, N.; Samuels, M.L. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 2009, 106, 14195–14200. [Google Scholar] [CrossRef]
- Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009. [Google Scholar] [CrossRef]
- Yuan, H.; Tu, R.; Tong, X.; Lin, Y.; Zhang, Y.; Wang, Q. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system. J. Ind. Microbiol. Biotechnol. 2022, 49, kuac007. [Google Scholar] [CrossRef]
- Rud, I.; Jensen, P.R.; Naterstad, K.; Axelsson, L. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 2006, 152, 1011–1019. [Google Scholar] [CrossRef]
- Ito, Y.; Yoshidome, D.; Hidaka, M.; Araki, Y.; Ito, K.; Kosono, S.; Nishiyama, M. Improvement of the nitrogenase activity in Escherichia coli that expresses the nitrogen fixation-related genes from Azotobacter vinelandii. Biochem. Biophys. Res. Commun. 2024, 728, 150345. [Google Scholar] [CrossRef]
- Wang, L.; Rubio, M.C.; Xin, X.; Zhang, B.; Fan, Q.; Wang, Q.; Ning, G.; Becana, M.; Duanmu, D. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytol. 2019, 224, 818–832. [Google Scholar] [CrossRef]
- Gao, J.P.; Su, Y.; Jiang, S.; Liang, W.; Lou, Z.; Frugier, F.; Xu, P.; Murray, J.D. Applying conventional and cell-type-specific CRISPR/Cas9 genome editing in legume plants. aBIOTECH 2024, in press. [Google Scholar]
- Shang, Y.; Shi, H.; Liu, M.; Lan, P.; Li, D.; Liu, X.; Wang, M.; Zhang, Z.; Chen, S. Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol. Trends Biotechnol. 2025, 43, 946–968. [Google Scholar] [CrossRef]
- Rojas-Sánchez, B.; Guzmán-Guzmán, P.; Morales-Cedeño, L.R.; Orozco-Mosqueda, M.d.C.; Saucedo-Martínez, B.C.; Sánchez-Yáñez, J.M.; Fadiji, A.E.; Babalola, O.O.; Glick, B.R.; Santoyo, G. Bioencapsulation of microbial inoculants: Mechanisms, formulation types and application techniques. Appl. Biosci. 2022, 1, 198–220. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; García-Simarro, M.P.; Navarro-Simarro, P.; Gómez-Gómez, L.; Ahrazem, O.; Niza, E. A review on the encapsulation of “eco-friendly” compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int. J. Biol. Macromol. 2024, in press. [Google Scholar]
- Holkem, A.T.; Raddatz, G.C.; Nunes, G.L.; Cichoski, A.J.; Jacob-Lopes, E.; Ferreira Grosso, C.R.; De Menezes, C.R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Sci. Technol. 2016, 71, 302–308. [Google Scholar] [CrossRef]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int. 2009, 43, 193–202. [Google Scholar] [CrossRef]
- Comite, E.; El-Nakhel, C.; Rouphael, Y.; Ventorino, V.; Pepe, O.; Borzacchiello, A.; Vinale, F.; Rigano, D.; Staropoli, A.; Lorito, M.; et al. Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Wang, L.; Ahmad, H.; Akhtar, K.; Roy, R.; Khan, M.I.; Zhao, T. Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism. Microb. Ecol. 2022, 83, 971–988. [Google Scholar] [CrossRef]
- Sulaiman, H.; Yusof, A.A.; Mohamed Nor, M.K. Automated Hydroponic Nutrient Dosing System: A Scoping Review of pH and Electrical Conductivity Dosing Frameworks. AgriEngineering 2025, 7, 43. [Google Scholar] [CrossRef]
- Langenfeld, N.J.; Bugbee, B. Sustainable Hydroponics Using Zero-discharge Nutrient Management and Automated pH Control. HortScience 2024, 59, 1202–1206. [Google Scholar] [CrossRef]
- Roosta, H.R. The responses of pepper plants to nitrogen form and dissolved oxygen concentration of nutrient solution in hydroponics. BMC Plant Biol. 2024, 24, 281. [Google Scholar] [CrossRef]
- Chaudhary, A.; Anand, S. Soilless cultivation: A distinct vision for sustainable agriculture. In Artificial Intelligence and Smart Agriculture: Technology and Applications; Springer Nature: Singapore, 2024; pp. 337–368. [Google Scholar]
- Zehr, J.P.; Capone, D.G. Factors Controlling N2 Fixation. In Marine Nitrogen Fixation; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Agustian, I.; Prayoga, B.I.; Santosa, H.; Daratha, N.; Faurina, R. NFT Hydroponic Control Using Mamdani Fuzzy Inference System. arXiv 2022, arXiv:2208.00364. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Yan, Z.; Li, X. Effects of exogenous organic acids and flooding on root exudates, rhizosphere bacterial community structure, and iron plaque formation in Kandelia obovata seedlings. Sci. Total Environ. 2022, 830, 154695. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Huang, K.; Wang, F.; Mei, Z. Molecular Mechanism and Agricultural Application of the NifA–NifL System for Nitrogen Fixation. Int. J. Mol. Sci. 2022, 24, 907. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Y.; Hang, H. Differential contributions of NO3−/NH4+ to nitrogen use in response to a variable inorganic nitrogen supply in plantlets of two Brassicaceae species in vitro. Plant Methods 2019, 15, 86. [Google Scholar] [CrossRef]
- Lim, D.; Keerthi, K.; Perumbilavil, S.; Suchand Sandeep, C.S.; Antony, M.M.; Matham, M.V. A real-time on-site precision nutrient monitoring system for hydroponic cultivation utilizing LIBS. Chem. Biol. Technol. Agric. 2024, 11, 111. [Google Scholar] [CrossRef]
- Gul, Z.; Bora, S. Exploiting Pre-Trained Convolutional Neural Networks for the Detection of Nutrient Deficiencies in Hydroponic Basil. Sensors 2023, 23, 5407. [Google Scholar] [CrossRef]
- Mostafa, S.; Mondal, D.; Panjvani, K.; Kochian, L.; Stavness, I. Explainable deep learning in plant phenotyping. Front. Artif. Intell. 2023, 6, 1203546. [Google Scholar] [CrossRef] [PubMed]
- Sordo, Z.; Andeer, P.; Sethian, J.; Northen, T.; Ushizima, D. RhizoNet segments plant roots to assess biomass and growth for enabling self-driving labs. Sci. Rep. 2024, 14, 12907. [Google Scholar] [CrossRef]
- Catota-Ocapana, P.; Minaya-Andino, C.; Astudillo, P.; Pichoasamin, D. Smart control models used for nutrient management in hydroponic crops: A systematic review. IEEE Access 2025, 13, 13070–13087. [Google Scholar] [CrossRef]
- Hydroponics Market Size, Share, Trends and Forecast by Type, Crop Type, Equipment, and Region, 2025–2033. Available online: https://www.imarcgroup.com/hydroponics-market (accessed on 11 June 2025).
- Hydroponics Technologies Market. Available online: https://dataintelo.com/report/global-hydroponics-technologies (accessed on 11 June 2025).
- EU Regulation 2019/1009. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj/eng (accessed on 8 May 2025).
- Ibáñez, A.; Garrido-Chamorro, S.; Vasco-Cárdenas, M.F.; Barreiro, C. From lab to field: Biofertilizers in the 21st century. Horticulturae 2023, 9, 1306. [Google Scholar] [CrossRef]
- Malusá, E.; Vassilev, N. A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol. 2014, 98, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Naresh, R.; Jadav, S.K.; Singh, M.; Patel, A.; Singh, B.; Beese, S.; Pandey, S.K. Role of hydroponics in improving water-use efficiency and food security. Int. J. Environ. Clim. Change 2024, 14, 608–633. [Google Scholar] [CrossRef]
- BIS. Indian Standards for Liquid Biofertilizer Specifications: IS 17134, IS 17135, IS 17136, IS 17137, IS 17672, IS 17755. Bureau of Indian Standards 2021–2022. Available online: https://www.services.bis.gov.in/php/BIS_2.0/bisconnect/get_is_list_by_category_id/15 (accessed on 25 May 2025).
- Arjjumend, H.; Koutouki, K. Analysis of Indian and Canadian Laws on Biofertilizers. J. Agric. Environ. Law 2021, 16, 7. [Google Scholar] [CrossRef]
- Biofertilizers Market by Type (Nitrogen-Fixing, Phosphate Solubilizing & Mobilizing, Potassium Solubilizing & Mobilizing), Mode of Application (Soil Treatment, Seed Treatment), Form, Crop Type and Region–Global Forecast to 2028. Available online: https://www.marketsandmarkets.com/Market-Reports/compound-biofertilizers-customized-fertilizers-market-856.html (accessed on 25 May 2025).
- Kulakowski, S.; Rivier, A.; Kuo, R.; Mengel, S.; Eng, T. Development of modular expression across phylogenetically distinct diazotrophs. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae033. [Google Scholar] [CrossRef]
- Martinez-Feria, R.; Simmonds, M.B.; Ozaydin, B.; Lewis, S.; Schwartz, A.; Pluchino, A.; McKellar, M.; Gottlieb, S.S.; Kayatsky, T.; Vital, R.; et al. Genetic remodeling of soil diazotrophs enables partial replacement of synthetic nitrogen fertilizer with biological nitrogen fixation in maize. Sci. Rep. 2024, 14, 27754. [Google Scholar] [CrossRef]
- CORDIS Projects 832574. Available online: https://cordis.europa.eu/project/id/832574 (accessed on 25 May 2025).
- CORDIS Projects 961930. Available online: https://cordis.europa.eu/project/id/961930 (accessed on 25 May 2025).
Microbial Species | Estimated N2 Fixation Rate | Reference |
---|---|---|
Bacillus megaterium | 210.05 ± 7.0 nmol C2H4 mg−1 protein day−1 | [45] |
Bacillus flexus | 108.76 ± 3.66 nmol C2H4 mg−1 protein day−1 | |
Bacillus circulans | 98.28 ± 4.32 nmol C2H4 mg−1 protein day−1 | |
Rhizobium spp. | 24–584 kg ha−1 | [46] |
Frankia spp. | 2–362 kg ha−1 | |
Anabaena spp. | 45–450 kg ha−1 | |
Anabaena spp. | 0.0216–0.073 g N m−2 day−1 | [47] |
Nostoc spp. | 0.11–0.48 N m−2 day−1 | |
Trichodesmium spp. | 92 mmol N m−2 year−1 (range: 40–150) | [48] |
UCYN-A (Candidatus Atelocyanobacterium thalassa) | 4.9–9.1 nmol N L−1 d−1 | [49] |
Host Plant | N2-Fixing Microbial Species | Key Findings | Reference |
---|---|---|---|
Basil (Ocimum basilicum L.) | Chlorella vulgaris, Bacillus subtilis, Bacillus megaterium, and Pseudomonas fluorescens | Increased yield, leaf area, branches, phenolics, flavonoids, antioxidants, nutrients (N, P, K, Ca, Mg, Fe, Mn, Zn, Cu) | [119] |
Buckwheat (Fagopyrum esculentum) | Azotobacter vinelandii | Enhanced plant growth, chlorophyll A, exometabolites, proteins, carbohydrates, phenolics | [120] |
Chrysanthemum (Chrysanthemum morifolium) | Anabaena torulosa, Anabaena doliolum, Anabaena laxa | Improved IAA production, biofilm formation, PEPC, leaf chlorophyll | [118] |
Common bean (Phaseolus vulgaris L.) | Rhizobium sophoriradicis, Rhizobium tropici | Increased nodulation, N2 fixation, and pod yield | [111] |
Lettuce (Lactuca sativa) | Azospirillum brasilense | Increased fresh biomass, nutrient uptake (N, P, K, Ca, Zn, Cu, Mn, Fe), leaf chlorophyll content, photosynthesis | [119] |
A brasilense, Trichoderma harzianum | Increased root growth, leaf number, nutrient uptake (K, P, Ca, Mg, Fe, Mn, Cu, Zn), reduced NO3– accumulation | [76] | |
Pseudomonas lundensis, Pseudomonas migulae | Improved plant growth, IAA, ISR, myo-inositol, and acetic acid | [121] | |
Gluconacetobacter diazotrophicus | Increased plant biomass, NUE | [122] | |
Maize (Zea mays L.) | Herbaspirillum seropedicae, A. brasilense | Enhanced dry biomass, nutrients (N, P, K), NO3– assimilation, NO3− reductase activity, reduced NH4+ and sugar levels | [120] |
Bacillus amyloliquefaciens | Promoted seedling growth, leaf chlorophyll, soluble sugars, glutathione, antioxidant enzyme activity (POD, CAT), reduced Na+ accumulation and modulated stress-related genes (e.g., RBCS, RBCL, HKT1, NHX1-3) | [73] | |
Pac choi (Brassica rapa var. chinensis) | Bacillus amyloliquefaciens | Improved NUE | [123] |
Rice (Oryza sativa L.) | Nostoc commune, Scytonema bohneri | Increased shoot and root length, biomass, and leaf area under chlorpyrifos stress | [124] |
Strawberry (Fragaria vesca) | Azotobacter spp., Azospirillum spp. | Increased plant height, leaf chlorophyll, root biomass, yield, and soluble solid content | [125] |
Tomato (Solanum lycopersicum L.) | Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas syringae | Reduced Pythium ultimum-induced root rot, increased seedling growth and fruit yield | [126] |
Arthrospira platensis | Increased plant growth, root weight, and node development | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renganathan, P.; Astorga-Eló, M.; Gaysina, L.A.; Puente, E.O.R.; Sainz-Hernández, J.C. Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation. Sustainability 2025, 17, 5922. https://doi.org/10.3390/su17135922
Renganathan P, Astorga-Eló M, Gaysina LA, Puente EOR, Sainz-Hernández JC. Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation. Sustainability. 2025; 17(13):5922. https://doi.org/10.3390/su17135922
Chicago/Turabian StyleRenganathan, Prabhaharan, Marcia Astorga-Eló, Lira A. Gaysina, Edgar Omar Rueda Puente, and Juan Carlos Sainz-Hernández. 2025. "Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation" Sustainability 17, no. 13: 5922. https://doi.org/10.3390/su17135922
APA StyleRenganathan, P., Astorga-Eló, M., Gaysina, L. A., Puente, E. O. R., & Sainz-Hernández, J. C. (2025). Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation. Sustainability, 17(13), 5922. https://doi.org/10.3390/su17135922