Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = alternative food resource

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

25 pages, 2805 KiB  
Review
Cascade Processing of Agricultural, Forest, and Marine Waste Biomass for Sustainable Production of Food, Feed, Biopolymers, and Bioenergy
by Swarnima Agnihotri, Ellinor B. Heggset, Juliana Aristéia de Lima, Ilona Sárvári Horváth and Mihaela Tanase-Opedal
Energies 2025, 18(15), 4093; https://doi.org/10.3390/en18154093 - 1 Aug 2025
Viewed by 298
Abstract
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both [...] Read more.
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both human and feed grade proteins, as well as for biopolymers and bioenergy. As such, agricultural, forest, and marine waste biomass represent a valuable feedstock for production of food and feed ingredients, biopolymers, and bioenergy. However, the lack of integrated and efficient valorization strategies for these diverse biomass sources remains a major challenge. This literature review aims to give a systematic approach on the recent research status of agricultural, forest, and marine waste biomass valorization, focusing on cascade processing (a sequential combination of processes such as pretreatment, extraction, and conversion methods). Potential products will be identified that create the most economic value over multiple lifetimes, to maximize resource efficiency. It highlights the challenges associated with cascade processing of waste biomass and proposes technological synergies for waste biomass valorization. Moreover, this review will provide a comprehensive understanding of the potential of waste biomass valorization in the context of sustainable and circular bioeconomy. Full article
(This article belongs to the Special Issue Emerging Technologies for Waste Biomass to Green Energy and Materials)
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 230
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

18 pages, 2105 KiB  
Communication
Morphological and Nutritional Characterization of the Native Sunflower as a Potential Plant Resource for the Sierra Gorda of Querétaro
by Ana Patricia Arenas-Salazar, Mark Schoor, María Isabel Nieto-Ramírez, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramon Gerardo Guevara-González, Humberto Aguirre-Becerra and Ana Angélica Feregrino-Pérez
Resources 2025, 14(8), 121; https://doi.org/10.3390/resources14080121 - 29 Jul 2025
Viewed by 387
Abstract
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. [...] Read more.
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. In this regard, this study carries out the morphological and nutritional characterization of a native sunflower (Helianthus annuus) grown in the Sierra Gorda, Querétaro, Mexico, known as “Maíz de teja”, to implement a sustainable monoculture production system. The results were compared with some other sunflower varieties and other oilseeds grown and consumed in the country. This study determined that this native sunflower seed is a good source of linoleic acid (84.98%) and zinc (17.2 mg/100 g). It is an alternative protein source (18.6 g/100 g), comparable to foods of animal origin. It also provides a good amount of fiber (22.6 g/100 g) and bioactive compounds (total phenolic compounds (TPC) 3.434 ± 0.03 mg/g and total flavonoids (TFC) 0.67 ± 0.02 mg/g), and seed yield 341.13 kg/ha. This study demonstrated a valuable nutritional profile of this native seed and its potential for cultivation. Further research is needed to improve agricultural management to contribute to food security and improve the socioeconomic status of the community. Full article
Show Figures

Figure 1

19 pages, 2828 KiB  
Review
Microbial Proteins: A Green Approach Towards Zero Hunger
by Ayesha Muazzam, Abdul Samad, AMM Nurul Alam, Young-Hwa Hwang and Seon-Tea Joo
Foods 2025, 14(15), 2636; https://doi.org/10.3390/foods14152636 - 28 Jul 2025
Viewed by 409
Abstract
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are [...] Read more.
The global population is increasing rapidly and, according to the United Nations (UN), it is expected to reach 9.8 billion by 2050. The demand for food is also increasing with a growing population. Food shortages, land scarcity, resource depletion, and climate change are significant issues raised due to an increasing population. Meat is a vital source of high-quality protein in the human diet, and addressing the sustainability of meat production is essential to ensuring long-term food security. To cover the meat demand of a growing population, meat scientists are working on several meat alternatives. Bacteria, fungi, yeast, and algae have been identified as sources of microbial proteins that are both effective and sustainable, making them suitable for use in the development of meat analogs. Unlike livestock farming, microbial proteins produce less environmental pollution, need less space and water, and contain all the necessary dietary components. This review examines the status and future of microbial proteins in regard to consolidating and stabilizing the global food system. This review explores the production methods, nutritional benefits, environmental impact, regulatory landscape, and consumer perception of microbial protein-based meat analogs. Additionally, this review highlights the importance of microbial proteins by elaborating on the connection between microbial protein-based meat analogs and multiple UN Sustainable Development Goals. Full article
Show Figures

Figure 1

24 pages, 1412 KiB  
Article
Arthrospira platensis var. toliarensis: A Local Sustainable Microalga for Food System Resilience
by Antonio Fidinirina Telesphore, Andreea Veronica Botezatu, Daniela Ionela Istrati, Bianca Furdui, Rodica Mihaela Dinica and Valérie Lalao Andriamanamisata Razafindratovo
Foods 2025, 14(15), 2634; https://doi.org/10.3390/foods14152634 - 27 Jul 2025
Viewed by 343
Abstract
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study [...] Read more.
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study assessed growth kinetics, physicochemical parameters, and composition during two contrasting seasons. Biomass increased 7.5-fold in 10 days, reaching a productivity of 7.8 ± 0.58 g/m2/day and a protein yield of 4.68 ± 0.35 g/m2/day. The hot-season harvest showed significantly higher protein content (65.1% vs. 44.6%), enriched in essential amino acids. On a dry matter basis, mineral profiling revealed high levels of sodium (2140 ± 35.4 mg/100 g), potassium (1530 ± 21.8 mg/100 g), calcium (968 ± 15.1 mg/100 g), phosphorus (815 ± 13.2 mg/100 g), magnesium (389.28 ± 6.4 mg/100 g), and iron (235 ± 9.1 mg/100 g), underscoring its value as a micronutrient-rich supplement. The hydroethanolic extract had the highest polyphenol content (4.67 g GAE/100 g of dry extract), while the hexanic extract exhibited the strongest antioxidant capacity (IC50 = 101.03 ± 1.37 µg/mL), indicating fat-soluble antioxidants. Aflatoxin levels (B1, B2, G1, and G2) remained below EU safety thresholds. Compared to soy and beef, this strain showed superior protein productivity and water-use efficiency. These findings confirm A. platensis var. toliarensis as a promising, ecologically sound alternative for improving food and nutrition security, and its local production can offer substantial benefits to smallholder livelihoods. Full article
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 299
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

19 pages, 3806 KiB  
Article
Farmdee-Mesook: An Intuitive GHG Awareness Smart Agriculture Platform
by Mongkol Raksapatcharawong and Watcharee Veerakachen
Agronomy 2025, 15(8), 1772; https://doi.org/10.3390/agronomy15081772 - 24 Jul 2025
Viewed by 348
Abstract
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, [...] Read more.
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, and mitigate greenhouse gas (GHG) emissions. This study introduces Farmdee-Mesook, a mobile-first smart agriculture platform designed specifically for Thai rice farmers. The platform leverages AquaCrop simulation, open-access satellite data, and localized agronomic models to deliver real-time, field-specific recommendations. Usability-focused design and no-cost access facilitate its widespread adoption, particularly among smallholders. Empirical results show that platform users achieved yield increases of up to 37%, reduced agrochemical costs by 59%, and improved water productivity by 44% under alternate wetting and drying (AWD) irrigation schemes. These outcomes underscore the platform’s role as a scalable, cost-effective solution for operationalizing climate-smart agriculture. Farmdee-Mesook demonstrates that digital technologies, when contextually tailored and institutionally supported, can serve as critical enablers of climate adaptation and sustainable agricultural transformation. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

19 pages, 2552 KiB  
Article
The Biogeographic Patterns of Two Typical Mesopelagic Fishes in the Cosmonaut Sea Through a Combination of Environmental DNA and a Trawl Survey
by Yehui Wang, Chunlin Liu, Mi Duan, Peilong Ju, Wenchao Zhang, Shuyang Ma, Jianchao Li, Jianfeng He, Wei Shi and Yongjun Tian
Fishes 2025, 10(7), 354; https://doi.org/10.3390/fishes10070354 - 17 Jul 2025
Viewed by 285
Abstract
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a [...] Read more.
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a more cost-effective and sustainable alternative to traditional sampling approaches. To study the biogeographic patterns of two typical mesopelagic fishes, Antarctic lanternfish (Electrona antarctica) and Antarctic deep-sea smelt (Bathylagus antarcticus), in the Cosmonaut Sea in the Indian Ocean sector of the Southern Ocean, we conducted both eDNA and trawling sampling at a total of 86 stations in the Cosmonaut Sea during two cruises in 2021–2022. Two sets of species-specific primers and probes were developed for a quantitative eDNA analysis of two fish species. Both the eDNA and trawl results indicated that the two fish species are widely distributed in the Cosmonaut Sea, with no significant difference in eDNA concentration, biomass, or abundance between stations. Spatially, E. antarctica tended to be distributed in shallow waters, while B. antarcticus tended to be distributed in deep waters. Vertically, E. antarctica was more abundant above 500 m, while B. antarcticus had a wider range of habitat depths. The distribution patterns of both species were affected by nutrients, with E. antarctica additionally affected by chlorophyll, indicating that their distribution is primarily influenced by food resources. Our study provides broader insight into the biogeographic patterns of the two mesopelagic fishes in the remote Cosmonaut Sea, demonstrates the potential of combining eDNA with traditional methods to study biodiversity and ecosystem dynamics in the Southern Ocean and even at high latitudes, and contributes to future ecosystem research and biodiversity conservation in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

19 pages, 2440 KiB  
Article
Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties
by Kanokwan Promjeen, Suphat Phongthai, Kanjana Singh, Worrapob Chaisan, Peeraporn Pakakaew, Somdet Srichairatanakool, Rajnibhas Sukeaw Samakradhamrongthai and Niramon Utama-ang
Foods 2025, 14(14), 2459; https://doi.org/10.3390/foods14142459 - 13 Jul 2025
Viewed by 407
Abstract
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This [...] Read more.
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This study optimized mung bean protein hydrolysate (MBPH) production using response surface methodology (RSM), investigating the effects of alcalase concentration (2–7%) and hydrolysis time (2–7 h) on its physicochemical and functional properties. The results showed that an alcalase concentration of 5.88% and a hydrolysis duration of 3.56 h were the optimal conditions, resulting in a degree of hydrolysis of approximately 33.09%. Under these conditions, MBPH contained 79.33 ± 0.62% protein and a molecular weight distribution of 45.57% and 47.29% at 1.1–10 kDa and <10 kDa, respectively. Additionally, MBPH exhibited strong antioxidant activity, improved foam capacity, and enhanced solubility, making it a valuable ingredient for sustainable food production and promoting equitable access to nutritious functional ingredients. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

31 pages, 860 KiB  
Systematic Review
Advances in Biotechnology in the Circular Economy: A Path to the Sustainable Use of Resources
by Pedro Carmona Marques, Pedro C. B. Fernandes, Pedro Sampaio and Joaquim Silva
Sustainability 2025, 17(14), 6391; https://doi.org/10.3390/su17146391 - 12 Jul 2025
Viewed by 697
Abstract
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications [...] Read more.
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications aimed at the production of bioplastics, bioenergy, bioproducts, and bioremediation solutions, among others of interest. In addition, it highlights the potential of using agro-industrial waste as raw material in biotechnological processes, promoting more efficient production chains with less environmental impact. The methodology was based on a comprehensive review of recent advances in industrial biotechnology. The main results reveal successful applications in the production of polyhydroxyalkanoates (PHAs) from food waste, in the microbial bioleaching of metals from electronic waste, and in the bioconversion of agricultural byproducts into functional materials, among others. The article also discusses the regulatory and social factors that influence the integration of these solutions into circular value chains. It concludes that biotechnology is a key element for the circular bioeconomy, offering scalable and environmentally efficient alternatives to conventional linear models, although its large-scale adoption depends on overcoming technological and market challenges. Full article
Show Figures

Figure 1

15 pages, 1622 KiB  
Article
An Evaluation of the Rheological and Filtration Properties of Cow Bone Powder and Calcium Carbonate as Fluid-Loss Additives in Drilling Operations
by Humphrey Nwenenda Dike, Light Nneoma Chibueze, Sunday Ipinsokan, Chizoma Nwakego Adewumi, Oluwasanmi Olabode, Damilola Deborah Olaniyan, Idorenyen Edet Pius and Michael Abidemi Oke
Processes 2025, 13(7), 2205; https://doi.org/10.3390/pr13072205 - 10 Jul 2025
Cited by 1 | Viewed by 360
Abstract
Some additives currently used to enhance drilling mud’s rheological qualities have a substantial economic impact on society. Carboxymethyl cellulose (CMC) and calcium carbonate (CaCO3) are currently imported. Food crops have influences on food security; hence, this research explored the potential of [...] Read more.
Some additives currently used to enhance drilling mud’s rheological qualities have a substantial economic impact on society. Carboxymethyl cellulose (CMC) and calcium carbonate (CaCO3) are currently imported. Food crops have influences on food security; hence, this research explored the potential of utilizing cow bone powder (CBP), a bio-waste product and a renewable resource, as an environmentally friendly fluid-loss additive for drilling applications, in comparison with CaCO3. Both samples (CBP and CaCO3) were evaluated to determine the most efficient powder sizes (coarse, medium, and fine powder), concentrations (5–15 g), and aging conditions (before or after aging) that would offer improved rheological and fluid-loss control. The results obtained showed that CBP had a significant impact on mud rheology when compared to CaCO3. Decreasing the particle size (coarse to fine particles) and increasing the concentration from 5 to 15 g positively impacted mud rheology. Among all the conditions analyzed, fine-particle CBP with a 15 g concentration produced the best characteristics, including in the apparent viscosity (37 cP), plastic viscosity (29 cP), and yield point (25.5 lb/100 ft2), and a gel strength of 16 lb/100 ft2 (10 s) and 28 lb/100 ft2 (10 min). The filtration control ability of CaCO3 was observed to be better than that of the coarse and medium CBP particle sizes; however, fine-particle-size CBP demonstrated a 6.1% and 34.6% fluid-loss reduction at 10 g and 15 g concentrations when compared to respective amounts of CaCO3. The thermal behavior of the Mud Samples demonstrated that it positively impacted rheology before aging. In contrast, after aging, it exhibited a negative effect where samples grew more viscous and exceeded the API standard range for mud properties. Therefore, CBP’s excellent rheological and fluid-loss control ability makes it a potential, sustainable, and economically viable alternative to conventional materials. This superior performance enhances the thinning properties of drilling muds in stationary and circulating conditions. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

52 pages, 3535 KiB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 1 | Viewed by 1149
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 2237 KiB  
Article
Intercropping of Cereals with Lentil: A New Strategy for Producing High-Quality Animal and Human Food
by Theodoros Gkalitsas, Fokion Papathanasiou and Theano Lazaridou
Agronomy 2025, 15(7), 1658; https://doi.org/10.3390/agronomy15071658 - 8 Jul 2025
Viewed by 962
Abstract
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) [...] Read more.
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) under two spatial arrangements (1:1 alternate rows and mixed rows at a 50:50 seeding ratio) in northwestern Greece. A completely randomized design was applied with three replications. Differences were found between treatments regarding yield as well as protein content. Results showed that the highest total grain yield (2478.6 kg/ha) and land equivalent ratio (LER = 2.50) were recorded in the Yekora + Thessalia combination (alternate rows). Legume protein content remained consistently high (27–31%), while cereal protein content varied with genotype. Intercropping in alternate rows generally outperformed mixed sowing, indicating the importance of spatial arrangement in optimizing resource use. These findings suggest that properly designed cereal–lentil intercropping systems can enhance yield and quality while supporting sustainable agricultural practices. Intercropping of Yekora with lentil was superior compared to lentil and bread wheat monocultures and can be recommended as an alternative method for the production of human and animal food. Full article
Show Figures

Figure 1

32 pages, 2059 KiB  
Review
A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers
by Samson Okikiola Oparanti, Esther Ogwa Obebe, Issouf Fofana and Reza Jafari
Appl. Sci. 2025, 15(14), 7631; https://doi.org/10.3390/app15147631 - 8 Jul 2025
Viewed by 485
Abstract
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to [...] Read more.
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to their biodegradability, non-toxicity to aquatic and terrestrial ecosystems, and lower carbon emissions. Adopting vegetable-based insulating liquids also aligns with United Nations Sustainable Development Goals (SDGs) 7 and 13, which focus on cleaner energy sources and reducing carbon emissions. Despite these benefits, most commercially available vegetable-based insulating liquids are derived from edible seed oils, raising concerns about food security and the environmental footprint of large-scale agricultural production, which contributes to greenhouse gas emissions. In recent years, waste cooking oils (WCOs) have emerged as a promising resource for industrial applications through waste-to-value conversion processes. However, their potential as transformer insulating liquids remains largely unexplored due to limited research and available data. This review explores the feasibility of utilizing waste cooking oils as green transformer insulating liquids. It examines the conversion and purification processes required to enhance their suitability for insulation applications, evaluates their dielectric and thermal performance, and assesses their potential implementation in transformers based on existing literature. The objective is to provide a comprehensive assessment of waste cooking oil as an alternative insulating liquid, highlight key challenges associated with its adoption, and outline future research directions to optimize its properties for high-voltage transformer applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

Back to TopTop