Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = alternative antibacterial treatments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 523 KiB  
Review
Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections
by Xin Meng, Chao Ning, Mengna Kang, Xiuwen Wang, Zhiyun Yu, Xueyu Hao and Haiyong Guo
Molecules 2025, 30(17), 3464; https://doi.org/10.3390/molecules30173464 - 22 Aug 2025
Abstract
The emergence of bacterial strains resistant to available antibiotics due to overprescription has prompted a search for alternative treatments. Among the most promising is baicalin, a flavonoid extracted from the roots of Scutellaria baicalensis. Roots, the primary natural source of baicalin, have [...] Read more.
The emergence of bacterial strains resistant to available antibiotics due to overprescription has prompted a search for alternative treatments. Among the most promising is baicalin, a flavonoid extracted from the roots of Scutellaria baicalensis. Roots, the primary natural source of baicalin, have been extensively explored using emerging extraction technologies such as ultrasonic-assisted extraction and supercritical fluid extraction. These methods offer significant advantages over traditional reflux extraction for baicalin preparation, including shorter extraction times, lower energy consumption, and improved environmental sustainability. Baicalin exhibits remarkable antibacterial activity in vitro and has demonstrated therapeutic efficacy against gastrointestinal infections, meningitis, pulmonary diseases, and sepsis, among other infectious disorders, in animal models. Documented mechanisms of action include disrupting the Escherichia coli membrane, downregulating quorum-sensing gene expression in Pseudomonas aeruginosa, and inhibiting host inflammatory pathways such as PI3K/Akt/NF-κB. However, its clinical translation faces several bottlenecks, including reliance on animal experiment data, low bioavailability, and regulatory compliance issues. This review compares baicalin extraction yields from different natural sources, summarizes the advantages and disadvantages of various extraction technologies, analyzes possible mechanisms of action in treating different bacterial diseases, and discusses outstanding challenges and best strategies for expanded clinical use against bacterial infection. Our aim is to provide a valuable reference for future research and clinical applications. Full article
Show Figures

Figure 1

28 pages, 2883 KiB  
Review
Natural Biomolecules and Light: Antimicrobial Photodynamic Strategies in the Fight Against Antibiotic Resistance
by Greta Amendola, Mariagrazia Di Luca and Antonella Sgarbossa
Int. J. Mol. Sci. 2025, 26(16), 7993; https://doi.org/10.3390/ijms26167993 - 19 Aug 2025
Viewed by 203
Abstract
The alarming increase in infections caused by antimicrobial-resistant bacteria is increasingly posing a critical threat to public health. For this reason, the scientific community is focusing on alternative therapeutic strategies, such as antimicrobial photodynamic therapy (aPDT). This review examined the use of natural [...] Read more.
The alarming increase in infections caused by antimicrobial-resistant bacteria is increasingly posing a critical threat to public health. For this reason, the scientific community is focusing on alternative therapeutic strategies, such as antimicrobial photodynamic therapy (aPDT). This review examined the use of natural photosensitizers (PSs) in aPDT, emphasizing how they may produce high yields of reactive oxygen species when activated by light and consequently inactivate a wide range of pathogens, including bacteria embedded in biofilms, efficiently. The main methodologies and several strategies of incorporation into cutting-edge nanotechnological delivery systems of the most prevalent natural PSs (curcuminoids, perylenequinones, tetrapyrrolic macrocycles, and flavins) have been analyzed. Although natural PSs have benefits in terms of environmental sustainability and biocompatibility, their clinical use is frequently constrained by low bioavailability and solubility, issues that are being addressed more and more through novel formulations and dual-mode treatments. Studies conducted both in vitro and in vivo highlight these compounds’ strong antibacterial and wound-healing properties. In conclusion, natural molecule-based aPDT is a flexible and successful strategy for combating antimicrobial resistance, deserving of more translational study and clinical advancement. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

13 pages, 1801 KiB  
Article
Monoterpene Indole Alkaloids with Antimicrobial Activity Against Helicobacter pylori
by Andreia T. Marques, Luís Tanoeiro, Angela Paterna, Maria Filomena Caeiro, David Cardoso, Silva Mulhovo, Joana S. Vital, Ana Carolina Pimentel, Maria-José U. Ferreira and Filipa F. Vale
Int. J. Mol. Sci. 2025, 26(16), 7904; https://doi.org/10.3390/ijms26167904 - 15 Aug 2025
Viewed by 242
Abstract
Helicobacter pylori infection, a leading cause of gastric ulcers and gastric cancer, presents a major health challenge, exacerbated by rising antibiotic resistance. This study investigated the antibacterial potential of plant-derived compounds, isolated from different plant species, against H. pylori. Thus, a library [...] Read more.
Helicobacter pylori infection, a leading cause of gastric ulcers and gastric cancer, presents a major health challenge, exacerbated by rising antibiotic resistance. This study investigated the antibacterial potential of plant-derived compounds, isolated from different plant species, against H. pylori. Thus, a library of 153 natural compounds and derivatives, including monoterpene indole and bisindole alkaloids, obtained from the African medicinal plant Tabernaemontana elegans was screened in vitro for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against H. pylori. Active compounds (17) were tested for anti-biofilm activity and cytotoxicity on VERO cells to determine their half-maximal cytotoxic concentrations (CC50). Six monoterpene indole alkaloid azine derivatives (16) and vobasinyl-iboga type bisindole alkaloid (7) displayed antibacterial activity, with MICs between 10 and 20 µM. Compounds 2, 3, and 6 exhibited bactericidal activity, with MBCs of 20 µM. Notably, compounds 1 to 4 inhibited H. pylori biofilm formation at sub-inhibitory concentrations. Cytotoxicity assays revealed CC50 values above MICs, indicating a favorable safety profile for potential therapeutic use. This study highlights the potential of T. elegans monoterpene indole alkaloids as antibacterial agents and supports further exploration of plant-derived compounds as alternative treatments for H. pylori, offering a promising approach to address antibiotic resistance in gastrointestinal diseases. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 26470 KiB  
Article
Advanced Electrospun Chitosan-(Polylactic Acid)-(Silver Nanoparticle)-Based Scaffolds for Facilitated Healing of Purulent Wounds: A Preclinical Investigation
by Yevhen Samokhin, Yuliia Varava, Anna Butsyk, Roman Moskalenko, Yevheniia Husak, Bohdan Dryhval, Valeriia Korniienko, Ihor Zhyvotovskyi, Vyacheslav Kukurika, Artem Shmatkov, Agne Ramanaviciute, Rafal Banasiuk, Maksym Pogorielov, Arunas Ramanavicius and Viktoriia Korniienko
Polymers 2025, 17(16), 2225; https://doi.org/10.3390/polym17162225 - 15 Aug 2025
Viewed by 413
Abstract
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of [...] Read more.
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of electrospun chitosan/polylactic acid (Ch/PLA) membranes enriched with silver nanoparticles (AgNPs) for purulent wound treatment. The composite biomaterial integrates chitosan’s biocompatibility and antimicrobial activity with PLA’s structural integrity, while AgNPs enhance antibacterial efficacy against major wound pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia aureus. A full-thickness purulent wound model was established in a rat model, and the animals were divided into three treatment groups: (i) Ch/PLA, (ii) Ch/PLA-AgNPs, and (iii) PLA-chlorhexidine (control). Wound healing was monitored over 21 days through macroscopic evaluation, histology, immunohistochemistry, and microbiological analysis. The Ch/PLA-AgNPs membranes significantly reduced bacterial colonization within 4–6 days, promoted granulation tissue formation, and accelerated epithelialization compared to the non-modified Ch/PLA scaffold. By day 15, complete wound closure was observed in the Ch/PLA-AgNPs group, comparable to PLA-chlorhexidine-treated wounds. Immunohistochemical analysis revealed a controlled inflammatory response with a balanced macrophage M1/M2 transition, supporting efficient tissue regeneration. Furthermore, systemic toxicity assessments indicated no significant adverse effects on internal organs. These findings demonstrate that electrospun Ch/PLA-AgNPs membranes effectively accelerate purulent wound healing by combining antimicrobial protection with biocompatible tissue support. This innovative approach presents a promising alternative to conventional wound dressings and paves the way for clinical applications in managing infected wounds. Full article
Show Figures

Figure 1

25 pages, 6993 KiB  
Article
Electrospun Polyvinyl Alcohol/Sodium Alginate Nanocomposite Dressings Loaded with ZnO and Bioglass: Characterization, Antibacterial Activity, and Cytocompatibility
by J. Andrés Ortiz, Francesca Antonella Sepúlveda, Siomara Flores, Marcela Saavedra, Suhelen Sáez-Silva, Thomas Jiménez, Paola Murgas, Scarlett Troncoso, Camila Sanhueza, María T. Ulloa, Lorena Porte Torre, Manuel Ahumada, Teresa Corrales, Humberto Palza and Paula A. Zapata
Polymers 2025, 17(16), 2185; https://doi.org/10.3390/polym17162185 - 9 Aug 2025
Viewed by 323
Abstract
Chronic wounds pose a great challenge due to their slow healing and susceptibility to infections, hence the need for innovative alternatives to conventional antibiotics, as increasing bacterial resistance limits the efficacy of current treatments. This paper addresses the development of novel electrospun membranes [...] Read more.
Chronic wounds pose a great challenge due to their slow healing and susceptibility to infections, hence the need for innovative alternatives to conventional antibiotics, as increasing bacterial resistance limits the efficacy of current treatments. This paper addresses the development of novel electrospun membranes based on polyvinyl alcohol (PVA) and sodium alginate, incorporating therapeutic ZnO and bioglass (54SiO2:40CaO:6P2O5) nanoparticles. While nanocomposites presented smaller fiber diameters than pure polymers, ternary nanocomposites displayed higher values, e.g., in porous areas, values were in the ca. 80–240 nm range and 0.06–0.60 μm2, respectively. The Young’s modulus of the PVA/SA membrane, initially 15.9 ± 2.0 MPa, decreased by 65% with 10 wt.% ZnO NPs, whereas 10 wt.% BG NPs increased it by 100%. The membranes demonstrated efficacy against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) isolated from a human wound secretion, as well as two ATCC strains: Staphylococcus aureus and Staphylococcus epidermidis. A cell viability assay conducted with HaCaT cells demonstrated nearly complete survival following 72 h of membrane exposure. Their combined Gram-positive antibacterial activity and cytocompatibility support their potential application as biofunctional dressings for the management of chronic and hospital-acquired topical infections, while also contributing to the global effort to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Electrospun Nanofibers: Current Advances and Future Perspective)
Show Figures

Graphical abstract

37 pages, 3266 KiB  
Review
Phage Therapy: Combating Evolution of Bacterial Resistance to Phages
by Stephen T. Abedon
Viruses 2025, 17(8), 1094; https://doi.org/10.3390/v17081094 - 8 Aug 2025
Viewed by 1000
Abstract
Treatments for bacterial infections can be less effective due to toxicities, bacterial tolerance, or genetic resistance to antibacterial agents. The emphasis here is on combating genetic bacterial resistance to bacteriophages. Commonly described simply as phages, bacteriophages are the viruses of bacteria. As phage [...] Read more.
Treatments for bacterial infections can be less effective due to toxicities, bacterial tolerance, or genetic resistance to antibacterial agents. The emphasis here is on combating genetic bacterial resistance to bacteriophages. Commonly described simply as phages, bacteriophages are the viruses of bacteria. As phage therapies, they are one of the oldest clinical treatments for bacterial infections. Thwarting bacterial evolution of resistance to phages, particularly during phage treatments, typically involves targeting more than one bacterial characteristic. This can be achieved serially, involving phage substitution after bacterial resistance has become problematic, something that is used especially during more personalized therapies. Substitution phages can be sourced in various ways. This includes as autophages, from phage banks, or via phage training—all as considered here—as well as through phage engineering. An alternative approach is preventing bacterial mutations from occurring at all. In addition, there is simultaneous targeting of multiple bacterial characteristics. These latter strategies include all of the following: using phages that target bacterial fitness or virulence determinants, employing individual phages that recognize multiple receptors, using phage cocktails, or applying phages in combination with antibiotics. This review discusses these different approaches for combating treatment resistance, highlighting various pros and cons. Full article
(This article belongs to the Collection Phage Therapy)
Show Figures

Graphical abstract

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 495
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

33 pages, 1821 KiB  
Review
The “Colors” of Moringa: Biotechnological Approaches
by Edgar Yebran Villegas-Vazquez, Juan Ramón Padilla-Mendoza, Mayra Susana Carrillo-Pérez, Rocío Gómez-Cansino, Liliana Altamirano-Garcia, Rocío Cruz Muñoz, Alvaro Diaz-Badillo, Israel López-Reyes and Laura Itzel Quintas-Granados
Plants 2025, 14(15), 2338; https://doi.org/10.3390/plants14152338 - 29 Jul 2025
Viewed by 702
Abstract
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although [...] Read more.
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although MO’s resilience offers promise for climate-smart agriculture and public health, challenges remain in standardizing cultivation and verifying therapeutic claims. This work underscores MO’s translational potential and the need for integrative, interdisciplinary research. MO is used in advanced materials, like electrospun fibers and biopolymers, showing filtration, antibacterial, anti-inflammatory, and antioxidant properties—important for the biomedical industry and environmental remediation. In textiles, it serves as an eco-friendly alternative for wastewater treatment and yarn sizing. Biotechnological advancements, such as genome sequencing and in vitro culture, enhance traits and metabolite production. MO supports green biotechnology through sustainable agriculture, nanomaterials, and biocomposites. MO shows potential for disease management, immune support, metabolic health, and dental care, but requires further clinical trials for validation. Its resilience is suitable for land restoration and food security in arid areas. AI and deep learning enhance Moringa breeding, allowing for faster, cost-effective development of improved varieties. MO’s diverse applications establish it as a key element for sustainable development in arid regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 2887 KiB  
Article
Effects of Natural Ingredient Xanthohumol on the Intestinal Microbiota, Metabolic Profiles and Disease Resistance to Streptococcus agalactiae in Tilapia Oreochromis niloticus
by Aiguo Huang, Yanqin Wei, Jialong Huang, Songlin Luo, Tingyu Wei, Jing Guo, Fali Zhang and Yinghui Wang
Microorganisms 2025, 13(7), 1699; https://doi.org/10.3390/microorganisms13071699 - 20 Jul 2025
Viewed by 480
Abstract
Streptococcus agalactiae (SA) is a severe prevalent pathogen, resulting in high morbidity and mortality in the global tilapia industry. With increasing bacterial resistance to antibiotics, alternative strategies are urgently needed. This study aims to investigate the antibacterial activity and the underlying mechanisms of [...] Read more.
Streptococcus agalactiae (SA) is a severe prevalent pathogen, resulting in high morbidity and mortality in the global tilapia industry. With increasing bacterial resistance to antibiotics, alternative strategies are urgently needed. This study aims to investigate the antibacterial activity and the underlying mechanisms of the natural product xanthohumol (XN) against SA infection in tilapia (Oreochromis niloticus). The results showed that XN could significantly reduce the bacterial loads of SA in different tissues (liver, spleen and brain) after treatment with different tested concentrations of XN (12.5, 25.0 and 50.0 mg/kg). Moreover, XN could improve the survival rate of SA-infected tilapia. 16S rRNA gene sequencing demonstrated that the alpha-diversity index (Chao1 and Shannon_e) was significantly increased in the XN-treated group (MX group) compared to the SA-infected group (CG group) (p < 0.05), and the Simpson diversity index significantly decreased. The Bray–Curtis similarity analysis of non-metric multidimensional scaling (NMDS) and principal coordinate analysis (PCA) showed that there were significant differences in microbial composition among groups. At the phylum level, the relative abundance of the phyla Actinobacteria, Proteobacteria and Bacteroidetes decreased in the MX group compared to the CG group, while the relative abundance of the phyla Fusobacteria, Firmicutes and Verrucomicrobia increased. Differences were also observed at the genus level; the relative abundance of Mycobacterium decreased in the MX group, but the abundance of Cetobacterium and Clostridium_sensu_stricto_1 increased. Metabolomics analysis revealed that XN changed the metabolic profile of the liver and significantly enriched aspartate metabolism, glycine and serine metabolism, phosphatidylcholine biosynthesis, arginine and proline metabolism, glutamate metabolism, urea cycle, purine metabolism, methionine metabolism, betaine metabolism, and carnitine synthesis. Correlation analysis indicated an association between the intestinal microbiota and metabolites. In conclusion, XN may be a potential drug for the prevention and treatment of SA infection in tilapia, and its mechanism of action may be related to the regulation of the intestinal microbiota and liver metabolism. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 376
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

32 pages, 3005 KiB  
Review
Photophysical Process of Hypocrellin-Based Photodynamic Therapy: An Efficient Antimicrobial Strategy for Overcoming Multidrug Resistance
by Pazhani Durgadevi, Koyeli Girigoswami and Agnishwar Girigoswami
Physics 2025, 7(3), 28; https://doi.org/10.3390/physics7030028 - 15 Jul 2025
Viewed by 729
Abstract
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of [...] Read more.
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of hope in the fight against MDR microorganisms. Among the natural photosensitizers, hypocrellins (A and B) have shown remarkable potential with their dual-mode photodynamic action, generating ROS via both Type I (electron transfer) and Type II (singlet oxygen) pathways. This unique action disrupts bacterial biofilms and inactivates MDR pathogens. The amphiphilic nature of hypocrellins further enhances their promise, enabling deep biofilm penetration and ensuring potent antibacterial effects even in hypoxic environments, surpassing the capabilities of synthetic photosensitizers. This study critically examines the antimicrobial properties of hypocrellin-based PDT, emphasizing its mechanisms, advantages over traditional antibiotics, and effectiveness against MDR pathogens. Comparative analysis with other photosensitizers, the role of nanotechnology-enhanced delivery systems, and future clinical applications are explored. Its combination with nanotechnology enhances therapeutic outcomes, providing a viable alternative to conventional antibiotics. Further clinical research is essential to optimize its application and integration into antimicrobial treatment protocols. Full article
(This article belongs to the Section Biophysics and Life Physics)
Show Figures

Figure 1

13 pages, 1288 KiB  
Article
A Novel Synthesis of Highly Efficient Antimicrobial Quaternary Ammonium Pyridine Resin and Its Application in Drinking Water Treatment
by Huaicheng Zhang, Haolin Liu, Wei Wang, Fengxia Dong, Yanting Zuo, Shouqiang Huang, Daqian Zhang, Ji Wu, Shi Cheng and Aimin Li
Polymers 2025, 17(13), 1885; https://doi.org/10.3390/polym17131885 - 7 Jul 2025
Viewed by 463
Abstract
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous [...] Read more.
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous water disinfection and purification, their limited bactericidal efficacy hinders broader utilization. Therefore, a deeper understanding of the structure-dependent antimicrobial mechanism in QAPRs is crucial for improving their antibacterial performance. Hexyl (C6) was proved to be the optimal antibacterial alkyl in the QAPRs. A new antibacterial quaternary ammonium pyridine resin Py-61 was prepared by more surficial bactericidal N+ groups and higher efficient antibacterial hexyl, performing with the excellent antibacterial efficiency of 99.995%, far higher than the traditional resin Py-6C (89.53%). The antibacterial resin Py-61 completed the disinfection of sand-filtered water independently to produce safe drinking water, removing the viable bacteria from 3600 to 17 CFU/mL, which meets the drinking water standard of China in GB5749-2022 (<100 CFU/mL). Meanwhile, the contaminants in sand-filtered water were obviously removed by the resin Py-61, including anions and dissolved organic matter (DOM). The resin Py-61 can be regenerated by 15% NaCl solution, and keeps the reused antibacterial efficiency of >99.97%. As an integrated disinfection–purification solution, the novel antibacterial resin presents a promising alternative for enhancing safety in drinking water treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 3732 KiB  
Article
Baicalein and Berberine Inhibit the Growth and Virulence of Clostridioides difficile
by Xue Yang, Dongming Zheng, Jiangyan Yong, Yuchen Li, Yunzhi Sun, Fei Zhao, Daiyan Tang, Yi Xie and Dongming Bi
Pathogens 2025, 14(7), 662; https://doi.org/10.3390/pathogens14070662 - 4 Jul 2025
Viewed by 606
Abstract
Clostridioides difficile is a leading pathogen involved in healthcare-associated diarrhea. With its increasing incidence, mortality, and antibiotic resistance, there is an urgent need for novel therapeutic strategies to address the infection and prevent its recurrence. Gegen Qinlian Decoction (GQD) is a traditional Chinese [...] Read more.
Clostridioides difficile is a leading pathogen involved in healthcare-associated diarrhea. With its increasing incidence, mortality, and antibiotic resistance, there is an urgent need for novel therapeutic strategies to address the infection and prevent its recurrence. Gegen Qinlian Decoction (GQD) is a traditional Chinese medicine for the treatment of diarrhea, but its main active ingredient is not known. Therefore, in this study, we evaluated the biological activity of berberine (BER) and baicalein (BAI), key components of GQD, against C. difficile. Time–kill curves and scanning electron microscopy were employed to assess their effects on C. difficile growth, while Enzyme-Linked Immunosorbnent Assay (ELISA) and cytotoxicity assays were used to examine their impact on toxin production. We also employed Quantitative Reverse Transcription PCR (qRT-PCR) to examine how BER and BAI influenced the expression of toxin-associated genes. At sub-inhibitory concentrations, these compounds exerted antibacterial activity against C. difficile by disrupting the integrity of the cell membrane and cell wall. Furthermore, BER and BAI also suppressed toxin production, demonstrating effects comparable to those of vancomycin. This suppression likely resulted from their bactericidal activity and the inhibition of toxin gene expression. This study not only highlights the potential application of GQD in treating C. difficile infections but also offers promising options for developing drugs targeting the growth and virulence of this pathogen. C. difficile infection (CDI) is a leading cause of severe diarrhea, and its treatment remains challenging due to limited drug options and its high recurrence rate. BAI and BER, the main active components of the traditional Chinese medicinal formula GQD, inhibited the growth of C. difficile by disrupting its cellular structure and significantly reduced the production of toxins associated with disease severity. Furthermore, the effects of BAI and BER on C. difficile were comparable to those of conventional antibiotics, suggesting that these compounds could be potential alternative therapies for CDI. This study not only highlights the therapeutic potential of GQD in treating CDI but also provides a replicable research strategy for the development of novel anti-CDI agents. Full article
Show Figures

Figure 1

18 pages, 468 KiB  
Review
Can New Remineralizing Agents Serve as Fluoride Alternatives in Caries Prevention? A Scoping Review
by Jekaterina Gudkina, Bennett T. Amaechi, Stephen H. Abrams and Anda Brinkmane
Oral 2025, 5(3), 47; https://doi.org/10.3390/oral5030047 - 2 Jul 2025
Viewed by 2278
Abstract
Background: Due to limitations of fluoride (F) treatment as a main caries preventive measure, it is important to consider the use of other dental caries preventive measures to reduce caries prevalence, especially in its early stages. Recently, new remineralizing agents appeared on the [...] Read more.
Background: Due to limitations of fluoride (F) treatment as a main caries preventive measure, it is important to consider the use of other dental caries preventive measures to reduce caries prevalence, especially in its early stages. Recently, new remineralizing agents appeared on the market, with their commercial availability in a variety of oral care products. Objectives: The purposes include providing a scoping review that represents caries remineralizing efficacies of only commercially available products and their existing adverse effects (if it is presented) and ensuring that only evidence-based approved products are included. Methods: The following databases were used in searching scientific literature on 28 October 2024: PubMed, PubMed Advanced Search, MeSH database, and PubMed Clinical Queries. The study selection criteria were as follows: for laboratory, in vitro, and/or in situ—remineralization of enamel-scanning electron microscopy, spectroscopy, microhardness test, light microscopy, profilometry, transverse microhardness microradiography, integrated mineral loss, light microscopy, photothermal radiometry; if it was a randomized controlled trial—CONSORT protocol, ICDAS system (to detect dental caries), diagnostic additional devices; antibacterial ability-colony forming units, DNA-based sequencing, scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy. Results: This review includes 98 papers: 14 of them describing the current status of caries patterns in the world, 60 studies (45 laboratory studies and 15 RCTs), and 24 systematic reviews were analyzed in order to detect whether new remineralizing agents can replace fluoride in further caries prevention. Conclusions: All reviewed new remineralization agents could be used without additives to treat early caries lesions, but the combination with F promotes better remineralization. Only HAP demonstrated its potential to serve as an alternative to fluoride in oral care products. However, further clinical studies are needed to prove its role in the remineralizing process of initial caries lesions. One also needs to ensure that both the clinical trials and in vitro lab studies use the best gold standards to validate any changes in the tooth structure, both remineralization and demineralization. Full article
Show Figures

Graphical abstract

14 pages, 1057 KiB  
Article
Antibacterial Activity of Jelleine-I, a Peptide Isolated from Royal Jelly of Apis mellifera, Against Colistin-Resistant Klebsiella pneumoniae
by William Gustavo Lima, Rayssa Maria Rodrigues Laia, Julio Cesar Moreira Brito, Daniel Augusto Guedes Reis Michel, Rodrigo Moreira Verly, Jarbas Magalhães Resende and Maria Elena de Lima
Toxins 2025, 17(7), 325; https://doi.org/10.3390/toxins17070325 - 25 Jun 2025
Viewed by 639
Abstract
Klebsiella pneumoniae can acquire resistance mechanisms to colistin and present a pan-resistant phenotype. Therefore, new alternative agents are imperative to control this pathogen, and the peptide Jelleine-I stands out as a promising prototype. Here, the antibacterial activity of Jelleine-I against clinical isolates of [...] Read more.
Klebsiella pneumoniae can acquire resistance mechanisms to colistin and present a pan-resistant phenotype. Therefore, new alternative agents are imperative to control this pathogen, and the peptide Jelleine-I stands out as a promising prototype. Here, the antibacterial activity of Jelleine-I against clinical isolates of colistin-resistant K. pneumoniae (CRKP) was investigated. Antimicrobial activity was assessed by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time kill-curve assay. The release of 260 nm-absorbing materials (DNA/RNA) and the release of proteins were used in the lysis assay. Anti-biofilm activity was studied in microplates. In vivo activity was determined by the lethality assay using Tenebrio molitor larvae. The results show that the MIC of Jelleine-I ranged from 16 to 128 µM and the MBC was on average 128 µM. Jelleine-I at 200 µM killed all CRKP cells in suspension (106 colony-forming units (CFU)/mL) after 150 min of incubation. Jelleine-I acts on the CRKP cell membrane inducing lysis. Biomass and viability of CRKP-induced biofilms are reduced after treatment with Jelleine-I, and the use of this peptide in T. molitor larvae infected with CRKP reduces lethality and improves overall larval health. In conclusion, Jelleine-I is a potential prototype for the development of new antimicrobial agents. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

Back to TopTop