Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections
Abstract
1. Introduction
2. Natural Sources of Baicalin
3. Advances in Baicalin Extraction Technology
3.1. Reflux Extraction
3.2. Water Extraction
3.3. Ultrasonic-Assisted Extraction
3.4. Ultrahigh-Pressure Extraction
3.5. Microwave-Assisted Extraction
3.6. Enzyme-Assisted Extraction
Extraction Technology | Extraction Conditions | Extraction Content | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Reflux extraction | 50% ethanol aqueous solution as the solvent, extraction at 90 °C for 180 min | 155.5 ± 3.90 mg/g | high extraction efficiency; simple operation | long extraction time; high energy consumption; high temperatures may reduce pharmacological activity; environmental damage related to high energy consumption and toxic solvent use | [35,36] |
Water extraction | solid–liquid ratio 1:12, extraction time 30 min, soaking time 1 h | 32.7 mg/g | low raw material cost; simple operation; environmentally friendly | narrow application range (not suitable for fat-soluble substances); low purity yields | [38,40,41] |
Ultrasound-assist-ed extraction (UAE) | 80-mesh particle size, liquid–solid ratio 20:1, ethanol concentration 57%, temperature 68 °C, time 66 min, extracted twice | 129.5 mg/g | high extraction rate, yield, and purity; environmentally friendly | high energy consumption; high temperatures may reduce pharmacological activity; extensive equipment requirements and high cost; need to optimize the extraction conditions | [43,44,45,46,47,48,49] |
Ultra-high-pressure extraction (UHPE) | DES with a choline chloride to lactic acid molar ratio of 1:1, water content 40%, pressure 400 MPa, time 4 min, and liquid–solid ratio 110 mL/g | 116.8 mg/g | high extraction efficiency; high purity; suitable for thermolabile compounds; environmentally friendly; low energy consumption | high cost; complex operation; restricted solubility; need for co-solvents; limited extraction efficiency | [13,52,53] |
Microwave-assisted extraction (MAE) | hydrophobic DES with a DecA to N4444-Cl molar ratio of 1:2, water content 33%, temperature 85 °C, liquid–solid ratio 110 mL/g, extraction time 10 min | 106.96 mg/g | high efficiency; solvent-saving; low energy consumption; strong selectivity; simple operation | high cost; operating conditions must be optimized; safety concerns | [54,60,61,62] |
Enzyme-assisted extraction (EAE) | cellulase from the endogenous strain HG-5 (cultured with CMC/sucrose as the carbon source and peptone/yeast extract as the nitrogen source) for auxiliary extraction; E. coli and S. cerevisiae were added at the extraction end to eliminate metabolite feedback inhibition | 1.56 g | mild extraction conditions; high extraction efficiency; high selectivity; environmentally friendly | high cost; enzyme instability and limited reuse; complex operating requirements | [15,65] |
4. Therapeutic Efficacy of Baicalin Against Bacterial Diseases
4.1. Applications of Baicalin for Gastrointestinal Infections
4.1.1. Treatment of Enterotoxigenic Escherichia coli Infections
4.1.2. Treatment of Salmonella Infections
4.1.3. Treatment of Clostridioides difficile Infections
4.1.4. Management of Helicobacter pylori Infection
4.2. Therapeutic Effects of Baicalin Against Bacterial Meningitis
4.3. Therapeutic Effects for Lung Diseases
4.3.1. Treatment of Lung Infections
4.3.2. Therapeutic Effects on LPS-Induced Airway Inflammation
4.4. The Therapeutic Effect of Baicalin on Sepsis
Disease | Bacteria | Experimental System | Drug Concentration | Effect | Mechanisms | Reference |
---|---|---|---|---|---|---|
Gastrointestinal Diseases | Escherichia coli | In vivo | Baicalin: 100 and 500 mg/kg | Improved growth performance; repaired intestinal morphology; regulated intestinal flora (mitigated dysbiosis); alleviated inflammation | Promoted beneficial bacterial colonization, inhibited pathogen growth; reduced accumulation of inflammatory metabolites, increased phospholipids/amino acids; regulated Th17/Treg balance and the IL-17 pathway; restored immune homeostasis | [71] |
ETEC | In vitro | Baicalin complex: 0–100 μg/mL | Inhibited ETEC adhesion to IPEC-1 cells; reduced ETEC-induced intracellular cAMP/cGMP; decreased CFTR mRNA, increased NHE4 mRNA | Weakened ETEC adhesion to IPEC-1 cells; inhibited cAMP/cGMP–CFTR pathway activity; regulated gene expression | [73] | |
Salmonella enterica ser. Typhimurium | In vitro | Baicalin plus carvacrol, ratio set according to MIC | Exhibited strong antibacterial activity; no effect on chicken color/quality; destroyed biofilms, reduced pathogen viability; downregulated quorum sensing, virulence, and stress genes | Baicalin interfered with quorum sensing, inhibited synthesis, and destroyed bacterial membranes; carvacrol disturbed bacterial membranes increased permeability/depolarization; the combination targeted communication/virulence and demonstrated multifaceted antibacterial effects | [77] | |
Salmonella | In vitro | Baicalin (1250 mg/L); EDTA (125 mg/L or 62.5 mg/L); colistin (2–32 mg/L), alone or in combination. | Baicalin and EDTA alone or in combination enhanced colistin activity and reversed drug resistance of all Salmonella strains; the three-drug combination significantly reduced bacterial load in the liver and spleen of infected mice | Baicalin bound MCR-1 and EDTA chelated zinc ions, thereby jointly inhibiting MCR-1 activity; baicalin enhanced the effect of colistin through multiple pathways such as accelerating the tricarboxylic acid cycle | [78] | |
In vivo | Colistin (20 mg/kg) + Baicalin (50 mg/kg) + EDTA (10 mg/kg). | |||||
Clostridium difficile | In vitro | Baicalin: 700 μg/mL | Reduced Clostridium difficile toxin damage to Vero cells (cytotoxicity ↓~85%); spore count ↓1.1–1.3 log10 in 72 h, fully inhibiting proliferation | Downregulated tcdA/tcdB/tcdR, Spo0A/SigH, and fbp64/cwp84 | [86] | |
Clostridioides difficile | In vivo | Baicalin: 250 and 500 mg/kg | Reduced diarrhea rate/clinical score, promoted weight recovery; lowered the colonic pathology score, alleviated damage/inflammation; increased beneficial bacteria, reduced pathogens; reduced fecal spores, decreased toxin cytotoxicity | Inhibited the production of Clostridium difficile toxin and spore germination; regulated intestinal flora balance and enhanced colonization; suppressed inflammation and diarrhea; alleviated intestinal damage | [87] | |
Helicobacter pylori | In vitro | Baicalin: 1.00 mg/mL | The strongest activity against Helicobacter pylori, with an inhibition zone of 18.90 mm; promoted the growth of Lactobacillus casei and slightly promoted the growth of Lactobacillus brevis | Inhibited hefA/VacA (reduced resistance/virulence) and urease (interfered with gastric survival); blocked adhesion/invasion; promoted Lactobacillus casei, did not inhibit probiotics; bound transcription proteins (blocked RNA synthesis), target transporters, acted on drug-resistant bacteria | [96] | |
Helicobacter pylori | In vitro | Baicalin alone: 80 μM, 156.25 μM, 312.5 μM; combined with Lactobacillus rhamnosus JB3: 80 μM. | High baicalin (312.5 μM) reduced bacterial load, alleviated infection; 80 μM + LR-JB3 synergistically killed bacteria; reduced gastric inflammation/damage, inhibited vacA; no probiotic inhibition, maintained flora balance, mitigated antibiotic side effects | Inhibited hefA (increased antibiotic sensitivity) and urease; downregulated vacA (reduce toxin), inhibited adhesion/invasion; reduced IL-8/IL-1β, IgA/IgM (alleviated inflammation/immune damage); with LR-JB3, synergistically inhibited Helicobacter pylori | [97] | |
In vivo | 0–250 uM | |||||
Bacterial Meningitis | LPS | In vitro | Baicalin: 10, 25, 50 μM | Significantly reduced LPS-induced release of cytokines/chemokines (IL-6, G-CSF, etc.); inhibited NO, ROS, and intracellular calcium accumulation; downregulated inflammation-related genes; decreased phosphorylated p38 MAPK and Fas | Inhibited intracellular calcium release via the calcium-CHOP pathway; downregulated inflammatory-related genes; reduced p38 MAPK phosphorylation and inflammatory mediator production | [104] |
Escherichia coli | In vivo | Baicalin: 20 mg/kg | Mitigated ampicillin-aggravated increases in cerebrospinal fluid (CSF) white blood cells and protein; reduced CSF TNF-α/IL-1 to alleviate inflammation; decreased intracranial pressure (longer-lasting than mannitol) and mean arterial pressure; lowered CSF lactic acid and brain water content | Inhibited inflammatory genes and monocyte chemoattractant protein-1 (thereby reducing leukocyte recruitment, cytokine production, and chemokine binding); reduced TNF-α/IL-1/inflammatory mediators (thereby alleviating inflammation, cerebral edema, and brain damage); acted synergistically on E. coli when combined with ampicillin | [105] | |
Chronic Pneumonia | Mycobacterium tuberculosis (Mtb) | In vitro | Baicalin: 100 μM | Significantly enhanced macrophage clearance of intracellular Mtb (86.7% bactericidal rate); reduced Mtb-induced ASC speck formation, inhibited NLRP3 inflammasome activation and IL-1β secretion; effectively downregulated PI3K/Akt/mTOR and NF-κB pathway activation | Inhibited PI3K/Akt/mTOR pathway, activated macrophage autophagy (promoted LC3-II formation, p62 degradation); inhibited NLRP3 inflammasome activation (reduced component expression/interaction, mature IL-1β); inhibited NF-κB (reduced p65 phosphorylation/nuclear translocation); promoted autophagosome-inflammasome co-localization (indicating autophagic degradation of components, indirect anti-inflammatory effect) | [111] |
Tuberculosis | Mycobacterium tuberculosis (Mtb) | In vitro | Baicalin: 100 μM | Alleviated Mtb-induced macrophage pyroptosis (reduced GSDMD-N, LDH, and cell death); inhibited inflammation (lower IL-1β, HMGB1, and NLRP3 components); regulated endoplasmic reticulum stress (reduced BIP, CHOP, and inhibited PERK/eIF2α); blocked TXNIP–NLRP3 interaction to inhibit inflammasomes | Inhibited the PERK/TXNIP/NLRP3 axis (downregulated PERK/eIF2α phosphorylation, reduced ER stress proteins); decreased TXNIP and its binding to NLRP3; reduced the NLRP3–ASC–pro-caspase-1 interaction (thereby blocking inflammasome assembly); inhibited caspase-1-mediated IL-1β expression, GSDMD cleavage, and pyroptosis | [112] |
LPS | In vitro | Baicalin: 50, 75 μM | Significantly reduced LPS-induced A549 damage and IL-6 expression; reduced apoptosis, improved lung epithelial morphology; downregulated FSTL1 to inhibit inflammation/damage | Upregulated miR-200b-3p; inhibited ERK/JNK activity (reduced p-ERK1/2, p-JNK) and NF-κB activity (resulting in lower iNOS, COX-2); suppressed LPS-induced inflammation | [118] | |
LPS | In vivo (gavage administration) | Baicalin: 200 mg/kg | Significantly improved LPS-induced mouse acute lung injury (reduced lung injury score); reduced inflammatory cell infiltration in BALF and blood; lowered BALF total protein and TNF-α levels; restored SOD/CAT activity, reduced lipid peroxidation (MDA), and alleviated alveolar structure destruction | Activated the Nrf2-mediated HO-1 pathway; upregulated nuclear Nrf2 and cytoplasmic HO-1 in lung tissue, enhanced SOD/CAT activity, reduced MDA; inhibited LPS-induced TNF-α/IL-6/IL-1β release, alleviated oxidative stress and inflammation | [119] | |
Sepsis | MRSA | In vitro | Baicalin (50–200 μM); | Reduced the secretion of proinflammatory factors such as IL-6 and TNF-α while increasing IL-10 levels; decreased bacterial load in the liver and kidney, alleviated inflammatory cell infiltration and necrosis, and improved pathological scores; reduced the mortality of MRSA-infected mice when used alone or in combination with vancomycin/dexamethasone | Inhibited ERK/JNK MAPK and NF-κB activation, reduced proinflammatory factors; enhanced bacterial clearance, synergistically protected organs, and alleviated excessive inflammation when combined with vancomycin | [125] |
In vivo (intraperitoneal injection) | Baicalin (100 mg/kg) | |||||
Multiple microorganisms (from the intestinal flora) | In vivo | Baicalin: 100 mg/kg | Significantly improved the 8-day survival rate of CLP-septic mice; alleviated organ damage (e.g., lung, liver) and reduced damage scores; decreased bacterial counts and neutrophil infiltration in the blood and abdominal cavity; regulated cytokine balance, inhibited lymphocyte apoptosis, improved immune cell distribution, and enhanced anti-infection and immune regulation capabilities | Enhanced bacterial clearance and reduced bacterial load; inhibited excessive inflammation, reduced abdominal neutrophil infiltration and proinflammatory factors (e.g., TNF-α), while increasing anti-inflammatory factor IL-10; inhibited thymic CD3+ T cell apoptosis, increased splenic CD4+, CD8+ T cells, and dendritic cells, reduced the proportion of regulatory T cells, thereby improving immune function | [126] |
5. Efficacy of Baicalin in Combination with Other Bioactive Substances
6. Safety
7. Future Challenges and Novel Strategies for the Treatment of Bacterial Infections Using Baicalin
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Sudarshan, K.; Aidhen, I.S. Convenient Synthesis of 3-Glycosylated Isocoumarins. Eur. J. Org. Chem. 2017, 2017, 34–38. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Costine, B.; Zhang, M.; Chhajed, S.; Pearson, B.; Chen, S.; Nadakuduti, S.S. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties. Sci. Rep. 2022, 12, 13201. [Google Scholar] [CrossRef]
- Si, L.; Lai, Y. Pharmacological mechanisms by which baicalin ameliorates cardiovascular disease. Front. Pharmacol. 2024, 15, 1415971. [Google Scholar] [CrossRef]
- Li, K.; Liang, Y.; Cheng, A.; Wang, Q.; Li, Y.; Wei, H.; Zhou, C.; Wan, X. Antiviral Properties of Baicalin: A Concise Review. Rev. Bras. Farmacogn. 2021, 31, 408–419. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomed. 2014, 9, 3623–3630. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Feng, L.; Tan, Y.; Xiang, Y.; Zhang, R.; Yang, M. Preparation, Characterization, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposome on Cerebral Ischemia-Reperfusion after i.v. Administration in Rats. Molecules 2018, 23, 1747. [Google Scholar] [CrossRef] [PubMed]
- Sharawi, Z.W.; Ibrahim, I.M.; Abd-Alhameed, E.K.; Althagafy, H.S.; Jaber, F.A.; Harakeh, S.; Hassanein, E.H.M. Baicalin and lung diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, Y.; Zhao, C.; Zhao, B.; Wang, J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int. J. Mol. Sci. 2023, 24, 9317. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Hao, C.; Chen, L.; Dong, H.; Xing, W.; Xue, F.; Cheng, Y. Extraction of Flavonoids from Scutellariae Radix using Ultrasound-Assisted Deep Eutectic Solvents and Evaluation of Their Anti-Inflammatory Activities. ACS Omega 2020, 5, 23140–23147. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Cheng, Q.; Wang, L.; Zhang, L. Deep Eutectic Solvent-Based Ultrahigh Pressure Extraction of Baicalin from Scutellaria baicalensis Georgi. Molecules 2018, 23, 3233. [Google Scholar] [CrossRef]
- Kaushal, R.; Kaur, B.; Panesar, P.S.; Anal, A.K.; Chu-Ky, S. Valorization of pineapple rind for bromelain extraction using microwave assisted technique: Optimization, purification, and structural characterization. J. Food Sci. Technol. 2024, 61, 551–562. [Google Scholar] [CrossRef]
- Ma, X.D.; Zhang, X.G.; Guo, S.J.; Ma, G.Y.; Liu, W.J.; Wang, N.; Feng, M.; Su, Y. Application of enzyme-assisted extraction of baicalin from Scutellaria baicalensis Georgi. Prep. Biochem. Biotechnol. 2021, 51, 241–251. [Google Scholar] [CrossRef]
- Franco Meléndez, K.; Crenshaw, K.; Barrila, J.; Yang, J.; Gangaraju, S.; Davis, R.R.; Forsyth, R.J.; Ott, C.M.; Kader, R.; Curtiss, R., III; et al. Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. mSphere 2022, 7, e0021022. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Meng, J.; Zhu, J.; Qiu, T.; Wang, W.; Ding, J.; Liu, Z.; Li, K.; Lqbal, M.; et al. Baicalin acts as an adjuvant to potentiate the activity of azithromycin against Staphylococcus saprophyticus biofilm: An in vitro, in vivo, and molecular study. Vet. Res. 2022, 53, 83. [Google Scholar] [CrossRef]
- Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS ONE. 2017, 12, e0176883. [Google Scholar] [CrossRef]
- Ganguly, R.; Gupta, A.; Pandey, A.K. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J. Gastroenterol. 2022, 28, 3047–3062. [Google Scholar] [CrossRef] [PubMed]
- Zong, B.; Xiao, Y.; Ren, M.; Wang, P.; Fu, S.; Qiu, Y. Baicalin Weakens the Porcine ExPEC-Induced Inflammatory Response in 3D4/21 Cells by Inhibiting the Expression of NF-κB/MAPK Signaling Pathways and Reducing NLRP3 Inflammasome Activation. Microorganisms 2023, 11, 2126. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Wei, W.; Zhang, J.; Zhang, L.; Huo, J.; Wang, W. The mechanism of baicalin in improving pulmonary inflammatory response and injury and regulating intestinal flora in Mycoplasma pneumoniae pneumonia mice. Cell Signal. 2025, 126, 111530. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Cheng, N.M.; Liang, X.; Hu, H.; Luo, F.; Jin, J.; Li, Y.W. Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing. Sci. Rep. 2022, 12, 10900. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wei, Y.; Huang, Y.; He, B.; Zhou, Y.; Fu, J. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation. Int. J. Nanomed. 2013, 8, 3769–3779. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Q.; Shao, Q.; Peng, Y.; Yu, B.; Luo, F.; Chen, J.; Xu, C.; Li, Z.; Tam, M.; et al. A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions. Adv. Sci. 2025, 12, e2410951. [Google Scholar] [CrossRef]
- Chen, N.; Sun, H.; Wang, M.X.; Chen, M.; Guo, X.; Ren, Q.D.; Han, Q.Q.; Chen, Y.Y.; Liu, C.; Li, N.Y. Baicalin-loaded peony seed polypeptide nanoparticles via a pH-driven method: Characterization, release kinetics, and in vitro anti-inflammatory effects. Int. J. Biol. Macromol. 2025, 310, 142958. [Google Scholar] [CrossRef]
- Xu, H.; Park, N.I.; Li, X.; Kim, Y.K.; Lee, S.Y.; Park, S.U. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour. Technol. 2010, 101, 9715–9722. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, Y.; Wang, G.; Hill, L.; Weng, J.K.; Chen, X.Y.; Xue, H.; Martin, C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci. Adv. 2016, 2, e1501780. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kim, Y.S.; Kim, Y.; Thwe, A.A.; Li, X.; Park, C.H.; Lee, S.Y.; Park, S.U. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J. Biol. Sci. 2018, 25, 1639–1647. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, X.; Sun, X.; Yin, L.; He, H.; Guo, X.; Jiang, Z. Rapid extraction and analysis method for the simultaneous determination of 21 bioflavonoids in Siegesbeckia pubescens Makino. J. Sep. Sci. 2015, 38, 1130–1136. [Google Scholar] [CrossRef]
- Beara, I.; Jelena Živković, J.; Lesjak, M.; Ristić, J.; Šavikin, K.; Maksimović, Z.; Janković, T. Phenolic profile and anti-inflammatory activity of three Veronica species. Ind. Crops Prod. 2015, 63, 276–280. [Google Scholar] [CrossRef]
- Sithisarn, P.; Rojsanga, P.; Sithisarn, P. Flavone-Rich Fractions and Extracts from Oroxylum indicum and Their Antibacterial Activities against Clinically Isolated Zoonotic Bacteria and Free Radical Scavenging Effects. Molecules 2021, 26, 1773. [Google Scholar] [CrossRef]
- Nurul Islam, M.; Downey, F.; Ng, C.K.Y. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DADMS. Metabolomics 2011, 7, 446–453. [Google Scholar] [CrossRef]
- Cui, X.X.; Wang, L.; Fang, H.Y.; Zheng, Y.G.; Su, C.Y. The cultivable endophytic fungal community of Scutellaria baicalensis: Diversity and relevance to flavonoid production by the host. Plant Signal Behav. 2022, 17, 2068834. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.J.; Park, C.H.; Park, S.Y.; Chung, S.O.; Kim, J.K.; Park, S.U. Metabolic Analysis of Root, Stem, and Leaf of Scutellaria baicalensis Plantlets Treated with Different LED Lights. Plants 2021, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J. Sep. Sci. 2024, 47, e2300712. [Google Scholar] [CrossRef]
- Li, H.; Luo, S.L.; Su, J.C.; Ke, H.X.; Wang, W.H.; Yang, B. Optimization of Extraction Conditions for Flavonoid Composition and Antioxidant Activity of Radix Scutellariae. Anal. Lett. 2015, 48, 1234–1244. [Google Scholar] [CrossRef]
- Dent, R.G. Defatting technique for two ground spices using simple reflux apparatus: Collaborative study. J. Assoc. Off. Anal. Chem. 1982, 65, 1089–1092. [Google Scholar] [CrossRef]
- Adeeyo, A.O.; Odiyo, J.O.; Alabi, M.A.; Bamigboye, C.O.; Makungo, R. Green Synthesis of Mycometabolites: A Review on Aqueous Extraction and Bioactivities. Int. J. Med. Mushrooms 2021, 23, 15–28. [Google Scholar] [CrossRef]
- Li, J.C.; Wang, R.; Sheng, Z.L.; Wu, Z.Y.; Chen, C.L.; Ishfaq, M. Optimization of Baicalin, Wogonoside, and Chlorogenic Acid Water Extraction Process from the Roots of Scutellariae Radix and Lonicerae japonicae Flos Using Response Surface Methodology (RSM). Processes 2019, 7, 854. [Google Scholar] [CrossRef]
- Ni, H.L.; Wu, Z.Y.; Muhammad, I.; Lu, Z.Y.; Li, J.C. Optimization of baicalin water extraction process from Scutellaria baicalensis (a traditional Chinese medicine) by using orthogonal test and HPLC. Rev. Bras. Farmacogn. 2018, 28, 151–155. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wu, Y.S.; Chao, M.Y.; Yang, D.J.; Liu, C.W.; Tseng, J.K.; Chen, Y.C. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. Environ. Toxicol. 2024, 39, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Mikucka, W.; Zielińska, M.; Bułkowska, K.; Witońska, I. Valorization of distillery stillage by polyphenol recovery using microwave-assisted, ultrasound-assisted and conventional extractions. J. Environ. Manage. 2022, 322, 116150. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.J.; Zhang, M.; Cao, B.; Che, L.Y.; Su, Y.Y.; Zhou, X.F.; Li, X.; Chen, C.; Li, G.S.; Bai, C.K. Optimization of extraction, separation and purification of baicalin in Scutellaria baicalensis using response surface methodology. Ind. Crops Prod. 2024, 214, 118555. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Shen, H.; Fan, X.H.; Shen, Y.; Wang, X.; Song, Y. Changes of gallic acid mediated by ultrasound in a model extraction solution. Ultrason. Sonochem. 2015, 22, 149–154. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Sun, J.; Xu, D.X.; Wang, S.J.; Yuan, Y.M.; Cao, Y.P. Investigation of (+)-catechin stability under ultrasonic treatment and its degradation kinetic modeling. J. Food Process Eng. 2018, 41, e12904. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Lv, G.Y.; Song, T.T.; Chen, J.F.; Cai, W.M. Recovery and analysis of phenolic extracts from Oudemansiella radicata using ultrasonic-assisted extraction. J. Food Meas. Charact. 2020, 14, 2176–2184. [Google Scholar] [CrossRef]
- Fang, X.; Gu, S.; Jin, Z.; Hao, M.; Yin, Z.; Wang, J. Optimization of Ultrasonic-Assisted Simultaneous Extraction of Three Active Compounds from the Fruits of Forsythia suspensa and Comparison with Conventional Extraction Methods. Molecules 2018, 23, 2115. [Google Scholar] [CrossRef]
- Yeom, S.; Gam, D.H.; Kim, J.H.; Kim, J.W. Development of Ultrasound-Assisted Extraction to Produce Skin-Whitening and Anti-Wrinkle Substances from Safflower Seed. Molecules 2022, 27, 1296. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Huang, X.; Chen, J.L.; Qin, Y.Y.; Gao, X.L. Recent research and prospects of non-thermal physical technologies in green and high-efficient extraction of natural pigments: A review. Innov. Food Sci. Emerg. 2024, 92, 103593. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Xue, Q.; Zhen, L.; Wang, Y.; Cao, J.; Liu, Y.; Khan, A.; Zhao, T.; Cheng, G. Effect of ultra-high pressure pretreatment on the phenolic profiles, antioxidative activity and cytoprotective capacity of different phenolic fractions from Que Zui tea. Food Chem. 2023, 409, 135271. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Venkatesu, P. Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Phys. Chem. Chem. Phys. 2022, 24, 13474–13509. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, R.; Wu, H.; Wang, C. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure. J. Pharm. Biomed. Anal. 2006, 41, 57–63. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Peng, X.J.; Zhao, R.; Yang, X.Y.; Feng, C.T.; Gu, H.Y.; Yang, L. Separation of essential oil from fresh leaves of Phellodendron amurense rupr. By solvent-free microwave-assisted distillation with the addition of lithium salts. J. Clean. Prod. 2022, 372, 133772. [Google Scholar] [CrossRef]
- Jie, X.; Wu, J.J.; Qi, J.; Li, J.; Liu, Y.J.; Miao, Z.K.; Qiu, G.F.; Jia, W.K. Microwave-assisted Extraction of Flavonoids from Phyllostachys heterocycla Leaves: Optimization, Mechanism, and Antioxidant Activity in vitro. BioResources 2021, 16, 21. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Kumar, R.; Mandal, A.; Saha, S.; Dutta, A.; Chawla, G.; Das, A.; Kundu, A. Zanthoxylum alatum fruits: Process optimization for tambulin-rich valuable phyto-compounds, antifungal action coupled with molecular modeling analysis. Biomass Convers. Biorefin. 2024, 14, 30467–30484. [Google Scholar] [CrossRef]
- Akbari, S.; Nour, A.H.; Yunus, R.M. Determination of phenolics and saponins in fenugreek seed extracted via microwave-assisted extraction method at the optimal condition. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022024. [Google Scholar] [CrossRef]
- Hao, J.Y.; Han, W.; Huang, S.D.; Xue, B.Y.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- Zou, R.G.; Zhou, X.; Qian, M.; Wang, C.X.; Boldor, D.; Lei, H.W.; Zhang, X. Advancements and applications of microwave-assisted deep eutectic solvent (MW-DES) lignin extraction: A comprehensive review. Green Chem. 2024, 26, 17. [Google Scholar] [CrossRef]
- Saifullah, M.; Akanbi, T.O.; McCullum, R.; Vuong, Q.V. Optimization of Commercial Microwave Assisted-Extraction Conditions for Recovery of Phenolics from Lemon-Scented Tee Tree (Leptospermum petersonii) and Comparison with Other Extraction Techniques. Foods 2021, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Stanek-Wandzel, N.; Krzyszowska, A.; Zarębska, M.; Gębura, K.; Wasilewski, T.; Hordyjewicz-Baran, Z.; Tomaka, M. Evaluation of Cellulase, Pectinase, and Hemicellulase Effectiveness in Extraction of Phenolic Compounds from Grape Pomace. Int. J. Mol. Sci. 2024, 25, 13538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.G.; Lu, Y.; Wang, W.N.; Liu, Z.Y.; Liu, J.W.; Chen, X.Q. A novel enzyme-assisted approach for efficient extraction of Z-ligustilide from Angelica sinensis plants. Sci. Rep. 2017, 7, 9783. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef]
- Khalil, I.A.; Troeger, C.; Blacker, B.F.; Rao, P.C.; Brown, A.; Atherly, D.E.; Brewer, T.G.; Engmann, C.M.; Houpt, E.R.; Kang, G.; et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 2018, 18, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.L.; Zhou, J.Y.; Liang, S.J.; Wang, X.Q. Impaired intestinal stem cell activity in ETEC infection: Enterotoxins, cyclic nucleotides, and Wnt signaling. Arch. Toxicol. 2022, 96, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, H.; Wang, X. Advancements in understanding bacterial enteritis pathogenesis through organoids. Mol. Biol. Rep. 2024, 51, 512. [Google Scholar] [CrossRef]
- Pattison, A.M.; Blomain, E.S.; Merlino, D.J.; Wang, F.; Crissey, M.A.; Kraft, C.L.; Rappaport, J.A.; Snook, A.E.; Lynch, J.P.; Waldman, S.A. Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins. Infect. Immun. 2016, 84, 3083–3091. [Google Scholar] [CrossRef]
- Gao, J.; Yin, J.; Xu, K.; Li, T.; Yin, Y. What is the impact of diet on nutritional diarrhea associated with gut microbiota in weaning piglets: A System Review. BioMed Res. Int. 2019, 2019, 6916189. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, C.; Li, K.; Wang, J.; Wang, H.; Zhong, R.; Chen, L.; Ma, Q.; Zhang, H. Baicalin alleviates intestinal inflammation and microbial disturbances by regulating Th17/Treg balance and enhancing Lactobacillus colonization in piglets. J. Anim. Sci. Biotechnol. 2024, 15, 172. [Google Scholar] [CrossRef]
- Yang, W.; Chunhong, X.; Zhongyuan, W.; Yulan, L.; Yinsheng, Q.; Xianzhong, C.; Guoqing, Z. Synthesis, characterization of a baicalin-strontium(II) complex and its BSA-binding activity. ChemistrySelect 2019, 4, 13079–13088. [Google Scholar]
- Ye, C.; Chen, Y.; Yu, R.; Zhao, M.; Yin, R.; Qiu, Y.; Fu, S.; Liu, Y.; Wu, Z. Baicalin-aluminum complex on the regulation of IPEC-1 infected with enterotoxigenic Escherichia coli. Heliyon 2024, 10, e33038. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Buuck, S.; Eisenstein, T.; Cote, A.; McCormic, Z.D.; Kremer-Caldwell, S.; Kissler, B.; Forstner, M.; Sorenson, A.; Wise, M.E.; et al. Salmonella outbreaks associated with not Ready-to-Eat breaded, stuffed chicken products-United States, 1998–2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Ozma, M.A.; Khodadadi, E.; Pakdel, F.; Kamounah, F.S.; Yousefi, M.; Yousefi, B.; Asgharzadeh, M.; Ganbarov, K.; Kafil, H.S. Baicalin, a natural antimicrobial and anti-biofilm agent. J. Herb. Med. 2021, 27, 100432. [Google Scholar] [CrossRef]
- Farhadi, K.; Rajabi, E.; Varpaei, H.A.; Iranzadasl, M.; Khodaparast, S.; Salehi, M. Thymol and carvacrol against Klebsiella: Anti-bacterial, anti-biofilm, and synergistic activities—A systematic review. Front. Pharmacol. 2024, 15, 1487083. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Yun, H.; Ashikur Rahman, M.; Jung, S.J.; Jie-Won Ha, A.; Anamul Hasan Chowdhury, M.; Shaila, S.; Akter, S.; Park, S.H.; Ha, S.D. Prophylactic efficacy of baicalin and carvacrol against Salmonella Typhimurium biofilm on food and food contact surfaces. Food Res. Int. 2024, 187, 114458. [Google Scholar] [CrossRef]
- Cui, X.D.; Zhang, J.K.; Sun, Y.W.; Yan, F.B.; Zhao, J.F.; He, D.D.; Pan, Y.S.; Yuan, L.; Zhai, Y.J.; Hu, G.Z. Synergistic antibacterial activity of baicalin and EDTA in combination with colistin against colistin-resistant Salmonella. Poult. Sci. 2023, 102, 102346. [Google Scholar] [CrossRef]
- Xu, B.; Wu, X.; Gong, Y.; Cao, J. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: Implications for immunotherapy of Clostridioides difficile infection. Gut Microbes 2021, 13, 1968258. [Google Scholar] [CrossRef]
- Zhang, Y.; Saint Fleur, A.; Feng, H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes 2022, 14, 2052698. [Google Scholar] [CrossRef]
- Ray, M.J.; Strnad, L.C.; Tucker, K.J.; Furuno, J.P.; Lofgren, E.T.; McCracken, C.M.; Park, H.; Gerber, J.S.; McGregor, J.C. Influence of antibiotic exposure intensity on the risk of clostridioides difficile Infection. Clin. Infect. Dis. 2024, 79, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Camli, D.N.; Iscil, H.A.O.; Acuner, S.E. MuGger toxins: Exploring the selective binding mechanism of clostridial glucosyltransferase toxin B and Host GTPases. Proteins 2025, 93, 934–944. [Google Scholar] [CrossRef]
- Castro-Cordova, P.; Lopez-Garcia, O.K.; Orozco, J.; Montes-Bravo, N.; Gil, F.; Pizarro-Guajardo, M.; Paredes-Sabja, D. Clostridioides difficile major toxins remodel the intestinal epithelia, affecting spore adherence/internalization into intestinal tissue and their association with gut vitronectin. bioRxiv 2025. [Google Scholar] [CrossRef]
- Law, S.K.K.; Tan, H.S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiol. Res. 2022, 260, 127032. [Google Scholar] [CrossRef]
- Shunfen, Z.; Huiyuan, L.; Ruqing, Z.; Shanlong, T.; Hui, H.; Xueying, C.; Liang, C.; Hongfu, Z. Baicalin promotes appetite by regulating gut microbiome and immunity? J. Funct. Foods 2020, 105, 05557. [Google Scholar]
- Pellissery, A.J.; Vinayamohan, P.G.; Venkitanarayanan, K. In vitro antivirulence activity of baicalin against Clostridioides difficile. J. Med. Microbio. 2020, 69, 631–639. [Google Scholar] [CrossRef]
- Pellissery, A.J.; Vinayamohan, P.G.; Kuttappan, D.A.; Mishra, N.; Fragomeni, B.O.; Maas, K.; Mooyottu, S.; Venkitanarayanan, K. Protective effect of baicalin against Clostridioides difficile infection in mice. Antibiotics 2021, 10, 926. [Google Scholar] [CrossRef]
- Xue, Z.J.; Gong, Y.N.; He, L.H.; Sun, L.; You, Y.H.; Fan, D.J.; Zhang, M.J.; Yan, X.M.; Zhang, J.Z. Amino acid deletions at positions 893 and 894 of cytotoxin-associated gene A protein affect Helicobacter pylori gastric epithelial cell interactions. World J. Gastroenterol. 2024, 30, 4449–4460. [Google Scholar] [CrossRef]
- Scholz, K.J.; Höhne, A.; Wittmer, A.; Häcker, G.; Hellwig, E.; Cieplik, F.; Waidner, B.; Al-Ahmad, A. Co-culture of Helicobacter pylori with oral microorganisms in human saliva. Clin. Oral. Investig. 2025, 29, 79. [Google Scholar] [CrossRef] [PubMed]
- Gall, A.; Gaudet, R.G.; Gray-Owen, S.D.; Salama, N.R. TIFA signaling in gastric epithelial Cells initiates the cag type 4 secretion system-dependent innate immune response to Helicobacter pylori Infection. mBio 2017, 8, e01168-17. [Google Scholar] [CrossRef]
- Backert, S.; Selbach, M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008, 10, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Mimuro, H.; Kiga, K.; Fukumatsu, M.; Ishijima, N.; Morikawa, H.; Nagai, S.; Koyasu, S.; Gilman, R.H.; Kersulyte, D.; et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 2009, 5, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, B.; Wang, S.; Jiang, X.; Ping, Y.; Xia, J.; Yu, F.; Li, Y.; Zhang, M.; Ding, Y. Intestinal metaplasia key molecules and UPP1 activation via Helicobacter pylori/NF-kB: Drivers of malignant progression in gastric cancer. Cancer Cell Int. 2024, 24, 399. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Abalkhail, A.; Anajirih, N.; Alkhamisi, F.; Aldamegh, M.; Alramzi, A.; AlShaqi, R.; Alotaibi, N.; Aljuaid, A.; Alzahrani, H.; et al. Helicobacter pylori: Routes of infection, antimicrobial resistance, and alternative therapies as a means to develop infection control. Diseases 2024, 12, 311. [Google Scholar] [CrossRef]
- Fiorani, M.; Tohumcu, E.; Del Vecchio, L.E.; Porcari, S.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Influence of helicobacter pylori on human gastric and gut microbiota. Antibiotics 2023, 12, 765. [Google Scholar] [CrossRef]
- Dmitrieva, A.; Kozlova, O.; Atuchin, V.; Milentieva, I.; Vesnina, A.; Ivanova, S.; Asyakina, L.; Prosekov, A. Study of the effect of baicalin from Scutellaria baicalensis on the gastrointestinal tract normoflora and Helicobacter pylori. Int. J. Mol. Sci. 2023, 24, 11906. [Google Scholar] [CrossRef]
- Chen, M.E.; Su, C.H.; Yang, J.S.; Lu, C.C.; Hou, Y.C.; Wu, J.B.; Hsu, Y.M. Baicalin, baicalein, and Lactobacillus Rhamnosus JB3 alleviated Helicobacter pylori Infections in vitro and in vivo. J. Food Sci. 2018, 83, 3118–3125. [Google Scholar] [CrossRef]
- Singhi, P.; Bansal, A.; Geeta, P.; Singhi, S. Predictors of long term neurological outcome in bacterial meningitis. Indian. J. Pediatr. 2007, 74, 369–374. [Google Scholar] [CrossRef]
- Doran, K.S.; Fulde, M.; Gratz, N.; Kim, B.J.; Nau, R.; Prasadarao, N.; Schubert-Unkmeir, A.; Tuomanen, E.I.; Valentin-Weigand, P. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol. 2016, 131, 185–209. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Wang, F.; Zhang, H.; Tan, C.; Chen, H.; Wang, X. Blood-Brain barrier integrity damage in bacterial meningitis: The underlying link, mechanisms, and therapeutic targets. Int. J. Mol. Sci. 2023, 24, 2852. [Google Scholar] [CrossRef]
- Wall, E.C.; Chan, J.M.; Gil, E.; Heyderman, R.S. Acute bacterial meningitis. Curr. Opin. Neurol. 2021, 34, 386–395. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Xu, T.; Yin, Y.; Huang, R.; Wang, Y.; Zhang, J.; Huang, D.; Li, W. Chronic dexamethasone treatment results in hippocampal neurons injury due to activate NLRP1 inflammasome in vitro. Int. Immunopharmacol. 2017, 49, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Ko, W.K.; Kim, S.J.; Han, G.H.; Lee, D.; Sheen, S.H.; Sohn, S. Lobeglitazone exerts anti-inflammatory effect in lipopolysaccharide-induced bone-marrow derived macrophages. Biomedicines 2021, 9, 1432. [Google Scholar] [CrossRef]
- An, H.J.; Lee, J.Y.; Park, W. Baicalin modulates inflammatory response of macrophages activated by LPS via calcium-CHOP pathway. Cells 2022, 11, 3076. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J.; Zhou, F.W.; Luo, Z.Q.; Li, X.Z.; Yan, H.M.; Wang, M.J.; Huang, F.R.; Yue, S.J. Multiple therapeutic effects of adjunctive baicalin therapy in experimental bacterial meningitis. Inflammation 2010, 33, 180–188. [Google Scholar] [CrossRef]
- McAllister, D.A.; Liu, L.; Shi, T.; Chu, Y.; Reed, C.; Burrows, J.; Adeloye, D.; Rudan, I.; Black, R.E.; Campbell, H.; et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: A systematic analysis. Lancet Glob. Health 2019, 7, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, T.; Li, D.; Wu, Y.; Zhang, X.; Pang, C.; Zhang, J.; Ying, B.; Wang, T.; Wen, F. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int. J. Chron. Obs. Pulmon Dis. 2016, 11, 2369–2376. [Google Scholar]
- Zhang, H.; Liu, B.; Jiang, S.; Wu, J.F.; Qi, C.H.; Mohammadtursun, N.; Li, Q.; Li, L.; Zhang, H.; Sun, J.; et al. Baicalin ameliorates cigarette smoke-induced airway inflammation in rats by modulating HDAC2/NF-κB/PAI-1 signalling. Pulm. Pharmacol. Ther. 2021, 70, 102061. [Google Scholar] [CrossRef]
- Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 2011, 55, 2655–2661. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Y.X.; He, M.Y.; Xie, Y.H.; Su, W.; Long, D.; Zhao, R.; Wang, J.; Dai, C.; Li, H.; et al. Gut-Lung Dysbiosis Accompanied by Diabetes Mellitus Leads to Pulmonary Fibrotic Change through the NF-κB Signaling Pathway. Am. J. Pathol. 2021, 191, 838–856. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Wang, Y.; He, W.; Wang, L.; Zheng, Y.; Wu, J.; Zhang, Y.; Jiang, X. Antimycobacterial and Anti-inflammatory Mechanisms of Baicalin via Induced Autophagy in Macrophages Infected with Mycobacterium tuberculosis. Front. Microbiol. 2017, 8, 2142. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, J.; Li, Y.; Liu, F.; Ning, B.; Zheng, Y.; Jiang, X. Inhibition of the PERK/TXNIP/NLRP3 Axis by Baicalin Reduces NLRP3 Inflammasome-Mediated Pyroptosis in Macrophages Infected with Mycobacterium tuberculosis. Mediat. Inflamm. 2021, 8, 1805147. [Google Scholar] [CrossRef]
- Gerber-Tichet, E.; Blanchet, F.P.; Majzoub, K.; Kremer, E.J. Toll-like receptor 4-a multifunctional virus recognition receptor. Trends Microbiol. 2025, 33, 34–47. [Google Scholar] [CrossRef]
- Swain, T.; Deaver, C.M.; Lewandowski, A.; Myers, M.J. Lipopolysaccharide (LPS) induced inflammatory changes to differentially expressed miRNAs of the host inflammatory response. Vet. Immunol. Immunopathol. 2021, 237, 110267. [Google Scholar] [CrossRef]
- Song, L.; Shi, X.; Kovacs, L.; Han, W.; John, J.; Barman, S.A.; Dong, Z.; Lucas, R.; Fulton, D.J.R.; Verin, A.D.; et al. Calpain Promotes LPS-induced Lung Endothelial Barrier Dysfunction via Cleavage of Talin. Am. J. Respir. Cell Mol. Biol. 2023, 69, 678–688. [Google Scholar] [CrossRef]
- Huang, K.L.; Chen, C.S.; Hsu, C.W.; Li, M.H.; Chang, H.; Tsai, S.H.; Chu, S.J. Therapeutic effects of baicalin on lipopolysaccharide-induced acute lung injury in rats. Am. J. Chin. Med. 2008, 36, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Pan, L.; Wang, Y.; Xu, Q.Z. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-κB pathway in CX3CL1-knockout mice. Int. J. Mol. Med. 2016, 37, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.Y.; Sun, Y.; Zhao, Z.F.; Shi, Y.Q.; Ma, X.Y.; Tao, L.; Liu, M.W. Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression. Innate Immun. 2021, 27, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Hu, L.; Li, W. Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 1421–1433. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Wang, J.; Cheng, Q.; Shang, Y.; Wang, G. Baicalin relieves Mycoplasma pneumoniae infection-induced lung injury through regulating microRNA-221 to inhibit the TLR4/NF-κB signaling pathway. Mol. Med. Rep. 2021, 24, 571. [Google Scholar] [CrossRef]
- Sokołowska, E.M.; Wityk, P.; Szypenbejl, J.; Petrosjan, R.; Raczak-Gutknecht, J.; Waszczuk-Jankowska, M.; Dudzik, D.; Markuszewski, M.; Siemiński, M. Clinical image of sepsis-associated encephalopathy midst E. coli urosepsis: Emergency department database study. Heliyon 2024, 10, e29530. [Google Scholar] [CrossRef] [PubMed]
- Kalın, G.; Alp, E.; Chouaikhi, A.; Roger, C. Antimicrobial Multidrug Resistance: Clinical Implications for Infection Management in Critically Ill Patients. Microorganisms 2023, 11, 2575. [Google Scholar] [CrossRef]
- Jiang, C.; Jie, J.; Wang, J.; Deng, X.; Qiu, J.; Liu, H. Sesamol hinders the proliferation of intracellular bacteria by promoting fatty acid metabolism and decreasing excessive inflammation. Int. Immunopharmacol. 2025, 146, 113966. [Google Scholar] [CrossRef]
- Fallon, E.A.; Biron-Girard, B.M.; Chung, C.S.; Lomas-Neira, J.; Heffernan, D.S.; Monaghan, S.F.; Ayala, A. A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. J. Leukoc. Biol. 2018, 2, 1151–1164. [Google Scholar] [CrossRef]
- Shi, T.; Li, T.; Jiang, X.; Jiang, X.; Zhang, Q.; Wang, Y.; Zhang, Y.; Wang, L.; Qin, X.; Zhang, W.; et al. Baicalin protects mice from infection with methicillin-resistant Staphylococcus aureus via alleviating inflammatory response. J. Leukoc. Biol. 2020, 108, 1829–1839. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Sheng, Y.; Zou, Y.; Bo, L.; Wang, F.; Lou, J.; Fan, X.; Bao, R.; Wu, Y.; et al. Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis. PLoS ONE. 2012, 7, e35523. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Han, J.; Luo, J.; Bi, G.; Liu, T.; Kong, J.; Chen, Y. Combination effects of baicalin with linezolid against Staphylococcus aureus biofilm-related infections: In vivo animal model. New Microbiol. 2023, 46, 258–263. [Google Scholar]
- Chen, K.; Liu, X.; Song, L.; Wang, Y.; Zhang, J.; Song, Y.; Zhuang, H.; Shen, J.; Yang, J.; Peng, C.; et al. The Antibacterial Activities and Effects of Baicalin on Ampicillin Resistance of MRSA and Stenotrophomonas maltophilia. Foodborne Pathog. Dis. 2025, 22, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, B.; Luo, Z.Q.; Qiu, J.; Zhou, X.; Li, G.; Zhang, B.; Deng, X.; Yang, Z.; Wang, J. The combination of osthole with baicalin protects mice from Staphylococcus aureus pneumonia. World J. Microbiol. Biotechnol. 2017, 33, 11. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, Y.; Wang, B.; Liang, S.; Yang, Y.; Gui, S.; Zhang, K.; Qu, S.; Li, L. Mechanism of synergistic action of colistin with resveratrol and baicalin against mcr-1-positive Escherichia coli. Biomed. Pharmacother. 2024, 180, 117487. [Google Scholar] [CrossRef]
- Hao, D.; Li, Y.; Shi, J.; Jiang, J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol. Med. 2021, 27, 53. [Google Scholar] [CrossRef]
- Feng, P.; Yang, Y.; Liu, N.; Wang, S. Baicalin regulates TLR4/IκBα/NFκB signaling pathway to alleviate inflammation in Doxorubicin related cardiotoxicity. Biochem. Biophys. Res. Commun. 2022, 637, 1–8. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Zhang, Y.; Zhao, P.; Zhang, X. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J. Ethnopharmacol. 2017, 208, 199–206. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Wen, J.; Ji, W.; Zeng, Q.; Deng, K.; Li, M.; Kuang, S.; Zhang, W.; Chan, M.; et al. Baicalin mitigates alcoholic-associated liver disease via SOCS1-driven reprogramming of macrophages. Chin. Med. 2025, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, T.; Fang, Q.; Zhang, X.; Yuan, J.; Li, M.; Ge, H. Bone-protective and anti-tumor effect of baicalin in osteotropic breast cancer via induction of apoptosis. Breast Cancer Res. Treat. 2020, 184, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Zuo, D.; Lin, L.; Liu, Y.; Wang, C.; Xu, J.; Sun, F.; Li, L.; Li, Z.; Wu, Y. Baicalin Attenuates Ketamine-Induced Neurotoxicity in the Developing Rats: Involvement of PI3K/Akt and CREB/BDNF/Bcl-2 Pathways. Neurotox. Res. 2016, 30, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ma, W.; Xiao, Y.; Wu, B.; Li, X.; Liu, F.; Qiu, J.; Zhang, G. High doses of baicalin induces kidney injury and fibrosis through regulating TGF-β/Smad signaling pathway. Toxicol. Appl. Pharmacol. 2017, 333, 1–9. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N.; Tian, J.; Xin, G.; Liu, L.; Sun, X.; Li, B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J. Control. Release 2022, 341, 285–299. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef]
- Wu, H.; Long, X.; Yuan, F.; Chen, L.; Pan, S.; Liu, Y.; Stowell, Y.; Li, X. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm. Sin. B 2014, 4, 217–226. [Google Scholar] [CrossRef]
- Meher, M.K.; Unnikrishnan, B.S.; Tripathi, D.K.; Packirisamy, G.; Poluri, K.M. Baicalin functionalized PEI-heparin carbon dots as cancer theranostic agent. Int. J. Biol. Macromol. 2023, 253, 126846. [Google Scholar] [CrossRef]
- Farouk, H.; Nasr, M.; Elbaset, M.A.; Shabana, M.E.; Ahmed-Farid, O.A.H.; Ahmed, R.F. Baicalin nanoemulsion mitigates cisplatin-induced hepatotoxicity by alleviating oxidative stress, inflammation, and restoring cellular integrity. Toxicol. Appl. Pharmacol. 2025, 495, 117231. [Google Scholar] [CrossRef]
- Chang, C.; Zheng, Y.; Lu, C.; Ma, Y.; Wu, L.; Zhang, Y.; Lin, L.; Guo, L.; Chen, X.Z.; Chen, L.W.; et al. Synergistic treatment of respiratory syncytial virus induced pneumonia by multifunctional Baicalin-Resveratrol self-assembled nanomedicine. Chem. Eng. J. 2025, 519, 165054. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, W.; Yang, Y.; Yao, F.; Ming, K.; Liu, J. Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication. Poult. Sci. 2018, 97, 3816–3825. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, Q.; Yang, M.; Shi, Y.; Shi, J.; Zeng, X. Scutellaria baicalensis Extract-phospholipid Complex: Preparation and Initial Pharmacodynamics Research in Rats. Curr. Pharm. Biotechnol. 2022, 23, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, J.; Yan, S.; Lei, J.; Meng, L.; Tian, C.; Wu, Y. Carboxymethyl chitosan-modified folate-targeted carbon nanotubes-baicalin complexes for cancer progression and metastasis. Int. J. Biol. Macromol. 2024, 282, 136896. [Google Scholar] [CrossRef] [PubMed]
Plant | Tissue | Content | References |
---|---|---|---|
Scutellariabaicalensis | Root | 26.05 ± 3.9 mg/g fresh weight; 84.21 mg/g dry weight | [4,26] |
Stem | 0.02 mg/g fresh weight; 0.84 mg/g dry weight | [4,26] | |
Leaf | 0.24 ± 0.1 mg/g fresh weight; 1.49 mg/g dry weight | [4,26] | |
Flower | 3.86 mg/g dry weight | [26] | |
S. lateriflora | Root | 1.48 ± 0.4 mg/g fresh weight; 14.91 mg/g dry weight | [4,28] |
Stem | 0.27 ± 0.1 mg/g fresh weight 4.7 mg/g dry weight | [4,28] | |
Leaf | 11.66 ± 2.9 mg/g fresh weight; 33.58 mg/g dry weight | [4,28] | |
S. arenicola | Root | 0.03 mg/g fresh weight | [4] |
Stem | 0.01 mg/g fresh weight | ||
Leaf | 0.04 mg/g fresh weight | ||
S. integrifolia | Root | 0.02 mg/g fresh weight | [4] |
Stem | 0.01 mg/g fresh weight | ||
Leaf | 0.01 mg/g fresh weight | ||
Siegesbeckia pubescens Makino (Different regions in China) | Not clearly distinguished | Hebei sample 1: 0.14 mg/g; Hebei sample 2: 0.006 mg/g; Shenyang sample: 0.099 mg/g; Anhui sample: 0.082 mg/g | [29] |
V. teucrium | Not clearly distinguished | 0.347 mg/g dry weight | [30] |
V. jacquinii | Not clearly distinguished | 0.009 mg/g dry weight | [30] |
V. urticifolia | Not clearly distinguished | 0.779 mg/g dry weight | [30] |
O. indicum | Seed | Seed extract: 68.7 ± 1.1 mg/g; orange-red crystals: 68.2 ± 0.4 mg/g; yellow precipitate: 16.2 ± 0.4 mg/g | [31] |
Young fruit | 1.9 mg/g | ||
Flower | 0.4 mg/g | ||
S. wrightii | Root | 122.14 ± 1.42 mg/g dry weigh | [32] |
Stem | 0.92 ± 0.02 mg/g dry weight | ||
Leaf | 0.51 ± 0.07 mg/g dry weight | ||
S. tomentosa | Root | 17.30 ± 0.22 mg/g dry weight | [32] |
Stem | 10.63 ± 0.26 mg/g dry weight | ||
Leaf | 1.05 ± 0.03 mg/g dry weight | ||
S. racemosa | Root | 11.11 ± 0.24 mg/g dry weight | [32] |
Stem | 10.59 ± 0.11 mg/g dry weight | ||
Leaf | 15.21 ± 0.11 mg/g dry weight | ||
S. baicalensis (different sampling sites, abbreviations defined in text) | Root (CLY) | ~160 mg/g | [33] |
Root (CDY) | ~100 mg/g | ||
Root (LHY) | ~140 mg/g | ||
Root (LHZ) | ~150 mg/g | ||
Root (WDZ) | ~180 mg/g | ||
S. baicalensis (different light treatments) | Root (white light treatment for 2 weeks) | 100.42 ± 0.32 mg/g dry weight | [34] |
Stem (red light treatment for 4 weeks) | 0.17 ± 0.05 mg/g dry weight | ||
Leaf (red light treatment for 4 weeks) | 0.80 mg/g dry weight |
Pathological Injury Model | Research Model | Administration Route | Dose/Treatment | Toxicity Indicators | Safety Evaluation | References |
---|---|---|---|---|---|---|
Chronic Obstructive Pulmonary Disease | C57BL/6 mice | Gavage | Baicalin 50, 100 mg/kg, once daily for 7 days | Body weight change; Pulmonary histopathology | No weight loss or obvious histopathological damage; no signs of abnormal liver or kidney function | [131] |
MLE-12 cells | In vitro | Baicalin 20 μmol/L, treated for 24 h | Cell viability; Cell morphology | No inhibition of cell viability, normal morphology; no cytotoxicity | ||
Doxorubicin-induced Cardiotoxicity | SD rats | Gavage | Baicalin 100 mg/kg/d for 6 weeks | Body weight change; Cardiac function: EF, FS; myocardial/inflammatory markers: NT-proBNP, BNP, cTnT, CK-MB, CRP, etc.; Histopathology: Myocardial morphology | No weight loss or cardiac/histopathological damage in rats; myocardial markers/inflammatory factors similar to controls, no obvious cardiotoxicity or inflammation at this dose | [132] |
H9C2 cardiomyocytes | In vitro | Baicalin 50 μM, treated for 24 h | Cell viability: Expression levels of signaling pathway proteins TLR4, IκBα, and p-p65/T-p65 | No inhibition of cardiomyocyte viability; no activation of the TLR4/NF-κB pathway | ||
Allergic Asthma | Mice (OVA + LPS-induced allergic asthma) | Gavage | Baicalin 10, 25, and 65 mg/kg/day for 15 days (days 22–36 after sensitization) | Pulmonary organ coefficient; Histopathology; Body weight change and behavioral status | Dose-dependently reduced elevated lung coefficient, serum IgE, and BALF IL-17A/IL-6 induced by OVA + LPS; increased IL-10; alleviated lung/airway pathology; regulated Th17/Treg via STAT3/FOXP3; no toxicity in mice | [133] |
Alcoholic Liver Disease | Zebrafish larvae (alcohol-induced alcoholic liver disease model) | Water exposure | Baicalin 6.25, 12.5, 25 μM for 48 h (after 32 h of 350 mM ethanol treatment) | Survival rate; Hatching rate; Heart rate; Body length; Morphological changes (pericardial edema, yolk residue, swim bladder absence, etc.) | No significant survival decrease (72–96 h post-fertilization [hpf]), normal hatching (48–72 hpf ~100%); heart rate/body length similar to normal controls; no malformations at ≤25 μM baicalin | [134] |
Human hepatocyte line LO2 (alcohol-induced injury model) | In vitro | Baicalin 6.25, 12.5, 25 μM, pretreated for 1 h followed by 100 mM ethanol treatment for 8 h | Cell viability; Lipid accumulation (Nile red staining); Fatty acid synthase (FASN) expression | No reduction in cell viability; improved liver health status as indicated by reduced lipid accumulation; 25 μM inhibited FASN without cytotoxicity | ||
Mouse macrophage cell line RAW264.7 | In vitro | Baicalin 6.25, 12.5, 25 μM, treated for 24 h | Cell morphology; Inflammatory factor secretion (IL-6, TNF-α, etc.) | Normal cell morphology, no apoptosis/necrosis; reduced IL-6/TNF-α, no abnormal proliferation from excessive immunosuppression | ||
Anti-bone Metastatic Breast Cancer | Human breast cancer cell lines (MDA-MB-231, MCF-7) | In vitro | Baicalin 1, 10, 100 nM, treated for 48 h | Cancer cell viability; Normal cell toxicity | Selectively inhibited breast cancer cell viability (100 nM most effective); no toxicity to human mesenchymal stem cells (hMSCs), slightly enhanced viability; no nonspecific death of other normal cells | [135] |
Mouse monocyte-macrophage cell line (RAW 264.7, induced into osteoclasts) | In vitro | Baicalin 1, 10, 100 nM, cotreated with RANKL for 5 days | Osteoclast survival rate; Number of tartrate-resistant acid phosphatase (TRAP)-positive cells | Dose-dependently reduced TRAP+ osteoclasts, toxic only to osteoclasts (low to undifferentiated RAW 264.7), no abnormal apoptosis/inflammation | ||
Human bone marrow mesenchymal stem cells (hMSCs, induced into osteoblasts) | In vitro | Baicalin 1, 10, 100 nM, treated for 7 days | Osteoblast differentiation markers (ALP, OCN, and RUNX2 mRNA); Cell morphology | Low doses (1–10 nM) upregulated osteogenic genes and promoted differentiation; high dose (100 nM) slightly inhibited alkaline phosphatase (ALP), no abnormal morphology; no osteoblast necrosis/dysfunction | ||
Mouse preosteoblasts (mMSCs) | In vitro | Baicalin 10, 100 nM, treated for 7 days | Osteogenic marker mRNA expression; Cell viability | No significant inhibition of osteoblast viability; 100 nM slightly downregulated OCN/ALP mRNA, no effect on survival; no morphology change or apoptosis | ||
Ketamine-induced Developmental Neurotoxicity | Neonatal rats (PND7, ketamine-induced neurotoxicity) | Intraperitoneal injection | Administered 30 min before ketamine injection (baicalin 25, 50, 100 mg/kg), once every 90 min, 5 times in total | Neuron morphology; Cell apoptosis; Caspase-3 activity and mRNA expression; PI3K/Akt pathway-related protein expression (p-Akt, p-GSK-3β) | 100 mg/kg baicalin alleviated ketamine-induced neuronal damage, increased Nissl-positive neuron number; dose-dependently reduced TUNEL-positive cell number (100 mg/kg group decreased ~50%); inhibited caspase-3 activity/mRNA; activated PI3K/Akt, reversed p-Akt/p-GSK-3β downregulation, no excessive proliferation | [136] |
Primary rat cortical neuron-glia mixed culture (ketamine-induced injury) | In vitro | Baicalin 20, 50, 100 μM, pretreated for 30 min followed by 2 mM ketamine for 24 h | Cell viability; Cell morphology; Cleaved caspase-3 expression level | 100 μM baicalin increased cell viability (20 μM had no effect); mitigated neuronal damage, increased nodes, slight glial damage; reduced cleaved caspase-3, effect blocked by PI3K inhibitor LY294002 (specific action) | ||
Normal neonatal rats (PND7) | Intraperitoneal injection | Baicalin 100 mg/kg, administration schedule the same as the toxicity model group | Neuron morphology and apoptosis indicators; Basal activity of the PI3K/Akt pathway | No abnormal neuron morphology (Nissl/TUNEL same as normal) after single administration; no interference with PI3K/Akt, no excessive survival from overactivation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Ning, C.; Kang, M.; Wang, X.; Yu, Z.; Hao, X.; Guo, H. Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections. Molecules 2025, 30, 3464. https://doi.org/10.3390/molecules30173464
Meng X, Ning C, Kang M, Wang X, Yu Z, Hao X, Guo H. Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections. Molecules. 2025; 30(17):3464. https://doi.org/10.3390/molecules30173464
Chicago/Turabian StyleMeng, Xin, Chao Ning, Mengna Kang, Xiuwen Wang, Zhiyun Yu, Xueyu Hao, and Haiyong Guo. 2025. "Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections" Molecules 30, no. 17: 3464. https://doi.org/10.3390/molecules30173464
APA StyleMeng, X., Ning, C., Kang, M., Wang, X., Yu, Z., Hao, X., & Guo, H. (2025). Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections. Molecules, 30(17), 3464. https://doi.org/10.3390/molecules30173464