Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,200)

Search Parameters:
Keywords = alternating stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7351 KiB  
Article
Constructal Design and Numerical Simulation Applied to Geometric Evaluation of Stiffened Steel Plates Subjected to Elasto-Plastic Buckling Under Biaxial Compressive Loading
by Andrei Ferreira Lançanova, Raí Lima Vieira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Thiago da Silveira, João Paulo Silva Lima, Emanuel da Silva Diaz Estrada and Liércio André Isoldi
Metals 2025, 15(8), 879; https://doi.org/10.3390/met15080879 (registering DOI) - 6 Aug 2025
Abstract
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. [...] Read more.
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. To increase the ultimate buckling stress of plates, the implementation of longitudinal and transverse stiffeners is effective; however, this complexity makes analytical stress calculations challenging. As a result, numerical methods like the Finite Element Method (FEM) are attractive alternatives. In this study, the Constructal Design method and the Exhaustive Search technique were employed and associated with the FEM to optimize the geometric configuration of stiffened plates. A steel plate without stiffeners was considered, and 30% of its volume was redistributed into stiffeners, creating multiple configuration scenarios. The objective was to investigate how different arrangements and geometries of stiffeners affect the ultimate buckling stress under biaxial compressive loading. Among the configurations evaluated, the optimal design featured four longitudinal and two transverse stiffeners, with a height-to-thickness ratio of 4.80. This configuration significantly improved the performance, achieving an ultimate buckling stress 472% higher than the unstiffened reference plate. In contrast, the worst stiffened configuration led to a 57% reduction in performance, showing that not all stiffening strategies are beneficial. These results demonstrate that geometric optimization of stiffeners can significantly enhance the structural performance of steel plates under biaxial compression, even without increasing material usage. The approach also revealed that intermediate slenderness values lead to better stress distribution and delayed local buckling. Therefore, the methodology adopted in this work provides a practical and effective tool for the design of more efficient stiffened plates. Full article
Show Figures

Figure 1

17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

17 pages, 4939 KiB  
Article
Distinct Effects of PFOS and OBS on Neurotoxicity via PMK-1 Mediated Pathway in Caenorhabditis elegans
by Jiahong Jiang, Qi Liu, Boxiang Zhang, Lei Zhao and Dan Xu
Toxics 2025, 13(8), 662; https://doi.org/10.3390/toxics13080662 - 6 Aug 2025
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares [...] Read more.
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares the neurotoxic effects and mechanisms of OBS and PFOS in Caenorhabditis elegans. L4-stage worms were exposed to OBS (0.1–100 μM) or PFOS (100 μM) for 24 h. Neurobehavioral analysis showed that OBS exposure induced concentration-dependent neurobehavioral deficits, with 100 μM OBS significantly reducing pharyngeal pumping rate (29.8%), head swing frequency (23.4%), and body bending frequency (46.6%), surpassing the effects of PFOS. Both compounds decreased the fluorescence intensity of dopaminergic, glutamatergic, and γ-aminobutyric acid neurons and downregulated neurotransmitter-associated genes. They also increased ROS generation and inhibited antioxidant gene expression. Molecular docking revealed that OBS had a stronger binding affinity to p38 MAPK key protein (PMK-1) than PFOS. OBS and PFOS upregulated pmk-1 and skn-1, modulating oxidative stress and neuronal function. pmk-1 mutation differentially affected OBS-induced neurobehavioral changes and gene expression alterations. Our findings indicate that OBS exhibits stronger neurotoxicity than PFOS in Caenorhabditis elegans, mediated through the PMK-1 pathway. These results highlight the need for further investigation into the safety of OBS as a PFOS alternative. Full article
(This article belongs to the Special Issue Molecular Mechanisms of PFAS-Induced Toxicity and Carcinogenicity)
Show Figures

Figure 1

24 pages, 2539 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

9 pages, 1868 KiB  
Communication
Research on the Temperature Dependence of Deformation and Residual Stress via Image Relative Method
by Haiyan Li, Lei Zhang, Yudi Mao, Jinlun Zhang, Detian Wan and Yiwang Bao
Coatings 2025, 15(8), 913; https://doi.org/10.3390/coatings15080913 (registering DOI) - 5 Aug 2025
Abstract
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion [...] Read more.
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion coefficient between the coating and substrate, residual stresses were produced, which caused the bending deformation of the single-side coated specimens. Moreover, coating thickness significantly influences the deformation behavior of specimens. Within the elastic deformation regime, the single-side coated specimens would exhibit alternating bending and flattening deformations in response to the fluctuations of temperature. The higher ratio of the coating thickness to the substrate thickness is, the smaller bending curvature of specimens becomes, and the lower residual compressive stresses in the coating are. For the specimens undergoing elastic deformation, residual stresses can be effectively calculated through the Stoney’s formula. However, as the thickness of coating is close to that of substrate (the corresponding specimens would be regarded as the laminated composites), plastic deformation occurs. And the residual stresses in those specimens vary along the direction of the thickness and the length. In addition, the residual stress decreased with increasing temperature because of the stress relaxation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

23 pages, 676 KiB  
Review
Stunted Versus Normally Growing Fish: Adapted to Different Niches
by Bror Jonsson
Fishes 2025, 10(8), 376; https://doi.org/10.3390/fishes10080376 - 4 Aug 2025
Viewed by 31
Abstract
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, [...] Read more.
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, chiefly as a phenotypically plastic reaction. The main causes of stunted growth are negatively density-dependent food availability and keen intraspecific competition leading to environmental stress. Typically, their growth levels off early in life as energy consumptions approach energy costs of maintenance. Females typically attain maturity soon after the energy surplus from feeding starts to decrease. Males are often more variable in size at maturity owing to alternative mating strategies, and their size at maturity depends on both species-specific mating behaviours and environmental opportunities. In polyphenic/polymorphic populations, one phenotype may be stunted and the other phenotype non-stunted; stunted individuals do not perform the required ontogenetic niche shift needed to grow larger. The adult morphology of stunted fish is typically like the morphology of juveniles. Their secondary sexual characters are less pronounced, and they phenotypically retain adaptation to their early feeding niche, which is different from that of large-growing individuals. There are open questions regarding to what extent genetics and epigenetics regulate the life histories of stunted phenotypes. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Viewed by 78
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

20 pages, 3151 KiB  
Article
Intermittent Hypoxia Induces Cognitive Dysfunction and Hippocampal Gene Expression Changes in a Mouse Model of Obstructive Sleep Apnea
by Kenta Miyo, Yuki Uchida, Ryota Nakano, Shotaro Kamijo, Masahiro Hosonuma, Yoshitaka Yamazaki, Hikaru Isobe, Fumihiro Ishikawa, Hiroshi Onimaru, Akira Yoshikawa, Shin-Ichi Sakakibara, Tatsunori Oguchi, Takuya Yokoe and Masahiko Izumizaki
Int. J. Mol. Sci. 2025, 26(15), 7495; https://doi.org/10.3390/ijms26157495 - 3 Aug 2025
Viewed by 219
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by cycles of decreased blood oxygen saturation followed by reoxygenation due to transient apnea. Cognitive dysfunction is a complication of OSAS, but its mechanisms remain unclear. Eight-week-old C57BL/6J mice were exposed to intermittent hypoxia (IH) to [...] Read more.
Obstructive sleep apnea syndrome (OSAS) is characterized by cycles of decreased blood oxygen saturation followed by reoxygenation due to transient apnea. Cognitive dysfunction is a complication of OSAS, but its mechanisms remain unclear. Eight-week-old C57BL/6J mice were exposed to intermittent hypoxia (IH) to model OSAS, and cognitive function and hippocampal gene expression were analyzed. Three groups were maintained for 28 days: an IH group (oxygen alternating between 10 and 21% in 2 min cycles, 8 h/day), sustained hypoxia group (SH) (10% oxygen, 8 h/day), and control group (21% oxygen). Behavioral tests and RNA sequencing (RNA-seq) analysis were performed. While Y-maze test results showed no differences, the IH group demonstrated impaired memory and learning in passive avoidance tests compared to control and SH groups. RNA-seq revealed coordinated suppression of mitochondrial function genes and oxidative stress response pathways, specifically in the IH group. RT-qPCR showed decreased Lars2, Hmcn1, and Vstm2l expression in the IH group. Pathway analysis showed the suppression of the KEAP1-NFE2L2 antioxidant pathway in the IH group vs. the SH group. Our findings demonstrate that IH induces cognitive dysfunction through suppression of the KEAP1-NFE2L2 antioxidant pathway and downregulation of mitochondrial genes (Lars2, Vstm2l), leading to oxidative stress and mitochondrial dysfunction. These findings advance our understanding of the molecular basis underlying OSAS-related cognitive impairment. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Recent Trends in the Management of Varicocele
by Tamás Takács, Anett Szabó and Zsolt Kopa
J. Clin. Med. 2025, 14(15), 5445; https://doi.org/10.3390/jcm14155445 - 2 Aug 2025
Viewed by 477
Abstract
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the [...] Read more.
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the PubMed database, covering clinical studies, systematic reviews, meta-analyses, and current international guidelines from the past ten years. Emphasis was placed on studies investigating novel diagnostic modalities, therapeutic innovations, and prognostic markers. Emerging evidence supports the multifactorial pathophysiology of varicocele, involving oxidative stress, hypoxia, inflammatory pathways, and potential genetic predisposition. Biomarkers, including microRNAs, antisperm antibodies, and sperm DNA fragmentation, offer diagnostic and prognostic utility, though their routine clinical implementation requires further validation. Advances in imaging, such as shear wave elastography, may improve diagnostic accuracy. While microsurgical subinguinal varicocelectomy remains the gold standard, technological refinements and non-surgical alternatives are being explored. Indications for treatment have expanded to include selected cases of non-obstructive azoospermia, hypogonadism, and optimization for assisted reproduction, though high-level evidence is limited. Full article
Show Figures

Figure 1

12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 185
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Figure 1

22 pages, 9122 KiB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 (registering DOI) - 1 Aug 2025
Viewed by 185
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

17 pages, 3494 KiB  
Article
Characterization of Expulsion, Cell Viability, and Bacterial Attachment of Enhanced Sulfonated Hydrothermally Treated PEEK Surfaces for Implant Applications
by Kadie Nobles, Amol V. Janorkar, Michael D. Roach, Mary E. Marquart and Randall Scott Williamson
Appl. Sci. 2025, 15(15), 8541; https://doi.org/10.3390/app15158541 (registering DOI) - 31 Jul 2025
Viewed by 225
Abstract
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a [...] Read more.
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a popular alternative to titanium-based implants due to its lack of stress-shielding effect, radiolucency, and high chemical resistance. However, PEEK is bioinert, thus requiring surface modifications to elicit appropriate cellular responses that lead to successful osteointegration of the material in vivo. Sulfonation is a process used to modify the surface of PEEK, which can be controlled by varying parameters such as soak time and soak temperature, thereby fabricating a porous surface on the material. This work aimed to ensure the repeatability of a previously optimized sulfonated and hydrothermally treated PEEK surface and subsequently observe the mechanical properties, bacterial attachment, and cellular response of pre-osteoblast MC3T3-E1 cells on the surface. This study found that while all PEEK surfaces had similar cell and Staphylococcus aureus attachment, the sulfonated and hydrothermally treated PEEK (peak mean load of 605 N, p ≤ 0.0001) and the sulfonated only PEEK (peak mean load of 495 N, p = 0.0240) had a higher level of performance in expulsion testing than smooth PEEK due to its mechanical interlocking ability. Imaging and contact angle analysis confirm that a surface with repeatable porosity can be achieved. Full article
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 178
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

Back to TopTop