Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,195)

Search Parameters:
Keywords = alternating stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1868 KiB  
Communication
Research on the Temperature Dependence of Deformation and Residual Stress via Image Relative Method
by Haiyan Li, Lei Zhang, Yudi Mao, Jinlun Zhang, Detian Wan and Yiwang Bao
Coatings 2025, 15(8), 913; https://doi.org/10.3390/coatings15080913 (registering DOI) - 5 Aug 2025
Abstract
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion [...] Read more.
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion coefficient between the coating and substrate, residual stresses were produced, which caused the bending deformation of the single-side coated specimens. Moreover, coating thickness significantly influences the deformation behavior of specimens. Within the elastic deformation regime, the single-side coated specimens would exhibit alternating bending and flattening deformations in response to the fluctuations of temperature. The higher ratio of the coating thickness to the substrate thickness is, the smaller bending curvature of specimens becomes, and the lower residual compressive stresses in the coating are. For the specimens undergoing elastic deformation, residual stresses can be effectively calculated through the Stoney’s formula. However, as the thickness of coating is close to that of substrate (the corresponding specimens would be regarded as the laminated composites), plastic deformation occurs. And the residual stresses in those specimens vary along the direction of the thickness and the length. In addition, the residual stress decreased with increasing temperature because of the stress relaxation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

23 pages, 676 KiB  
Review
Stunted Versus Normally Growing Fish: Adapted to Different Niches
by Bror Jonsson
Fishes 2025, 10(8), 376; https://doi.org/10.3390/fishes10080376 - 4 Aug 2025
Abstract
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, [...] Read more.
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, chiefly as a phenotypically plastic reaction. The main causes of stunted growth are negatively density-dependent food availability and keen intraspecific competition leading to environmental stress. Typically, their growth levels off early in life as energy consumptions approach energy costs of maintenance. Females typically attain maturity soon after the energy surplus from feeding starts to decrease. Males are often more variable in size at maturity owing to alternative mating strategies, and their size at maturity depends on both species-specific mating behaviours and environmental opportunities. In polyphenic/polymorphic populations, one phenotype may be stunted and the other phenotype non-stunted; stunted individuals do not perform the required ontogenetic niche shift needed to grow larger. The adult morphology of stunted fish is typically like the morphology of juveniles. Their secondary sexual characters are less pronounced, and they phenotypically retain adaptation to their early feeding niche, which is different from that of large-growing individuals. There are open questions regarding to what extent genetics and epigenetics regulate the life histories of stunted phenotypes. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 50
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

20 pages, 3151 KiB  
Article
Intermittent Hypoxia Induces Cognitive Dysfunction and Hippocampal Gene Expression Changes in a Mouse Model of Obstructive Sleep Apnea
by Kenta Miyo, Yuki Uchida, Ryota Nakano, Shotaro Kamijo, Masahiro Hosonuma, Yoshitaka Yamazaki, Hikaru Isobe, Fumihiro Ishikawa, Hiroshi Onimaru, Akira Yoshikawa, Shin-Ichi Sakakibara, Tatsunori Oguchi, Takuya Yokoe and Masahiko Izumizaki
Int. J. Mol. Sci. 2025, 26(15), 7495; https://doi.org/10.3390/ijms26157495 (registering DOI) - 3 Aug 2025
Viewed by 67
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by cycles of decreased blood oxygen saturation followed by reoxygenation due to transient apnea. Cognitive dysfunction is a complication of OSAS, but its mechanisms remain unclear. Eight-week-old C57BL/6J mice were exposed to intermittent hypoxia (IH) to [...] Read more.
Obstructive sleep apnea syndrome (OSAS) is characterized by cycles of decreased blood oxygen saturation followed by reoxygenation due to transient apnea. Cognitive dysfunction is a complication of OSAS, but its mechanisms remain unclear. Eight-week-old C57BL/6J mice were exposed to intermittent hypoxia (IH) to model OSAS, and cognitive function and hippocampal gene expression were analyzed. Three groups were maintained for 28 days: an IH group (oxygen alternating between 10 and 21% in 2 min cycles, 8 h/day), sustained hypoxia group (SH) (10% oxygen, 8 h/day), and control group (21% oxygen). Behavioral tests and RNA sequencing (RNA-seq) analysis were performed. While Y-maze test results showed no differences, the IH group demonstrated impaired memory and learning in passive avoidance tests compared to control and SH groups. RNA-seq revealed coordinated suppression of mitochondrial function genes and oxidative stress response pathways, specifically in the IH group. RT-qPCR showed decreased Lars2, Hmcn1, and Vstm2l expression in the IH group. Pathway analysis showed the suppression of the KEAP1-NFE2L2 antioxidant pathway in the IH group vs. the SH group. Our findings demonstrate that IH induces cognitive dysfunction through suppression of the KEAP1-NFE2L2 antioxidant pathway and downregulation of mitochondrial genes (Lars2, Vstm2l), leading to oxidative stress and mitochondrial dysfunction. These findings advance our understanding of the molecular basis underlying OSAS-related cognitive impairment. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Recent Trends in the Management of Varicocele
by Tamás Takács, Anett Szabó and Zsolt Kopa
J. Clin. Med. 2025, 14(15), 5445; https://doi.org/10.3390/jcm14155445 - 2 Aug 2025
Viewed by 380
Abstract
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the [...] Read more.
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the PubMed database, covering clinical studies, systematic reviews, meta-analyses, and current international guidelines from the past ten years. Emphasis was placed on studies investigating novel diagnostic modalities, therapeutic innovations, and prognostic markers. Emerging evidence supports the multifactorial pathophysiology of varicocele, involving oxidative stress, hypoxia, inflammatory pathways, and potential genetic predisposition. Biomarkers, including microRNAs, antisperm antibodies, and sperm DNA fragmentation, offer diagnostic and prognostic utility, though their routine clinical implementation requires further validation. Advances in imaging, such as shear wave elastography, may improve diagnostic accuracy. While microsurgical subinguinal varicocelectomy remains the gold standard, technological refinements and non-surgical alternatives are being explored. Indications for treatment have expanded to include selected cases of non-obstructive azoospermia, hypogonadism, and optimization for assisted reproduction, though high-level evidence is limited. Full article
Show Figures

Figure 1

12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 157
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Figure 1

22 pages, 9122 KiB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 (registering DOI) - 1 Aug 2025
Viewed by 169
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

17 pages, 3494 KiB  
Article
Characterization of Expulsion, Cell Viability, and Bacterial Attachment of Enhanced Sulfonated Hydrothermally Treated PEEK Surfaces for Implant Applications
by Kadie Nobles, Amol V. Janorkar, Michael D. Roach, Mary E. Marquart and Randall Scott Williamson
Appl. Sci. 2025, 15(15), 8541; https://doi.org/10.3390/app15158541 (registering DOI) - 31 Jul 2025
Viewed by 211
Abstract
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a [...] Read more.
Porosity and roughened surfaces of implant materials have been shown to lead to improved cellular attachment and enhanced osseointegration. These topography changes in the surface also aid in the mechanical interlocking of the material to the bone. Polyetheretherketone (PEEK) has emerged as a popular alternative to titanium-based implants due to its lack of stress-shielding effect, radiolucency, and high chemical resistance. However, PEEK is bioinert, thus requiring surface modifications to elicit appropriate cellular responses that lead to successful osteointegration of the material in vivo. Sulfonation is a process used to modify the surface of PEEK, which can be controlled by varying parameters such as soak time and soak temperature, thereby fabricating a porous surface on the material. This work aimed to ensure the repeatability of a previously optimized sulfonated and hydrothermally treated PEEK surface and subsequently observe the mechanical properties, bacterial attachment, and cellular response of pre-osteoblast MC3T3-E1 cells on the surface. This study found that while all PEEK surfaces had similar cell and Staphylococcus aureus attachment, the sulfonated and hydrothermally treated PEEK (peak mean load of 605 N, p ≤ 0.0001) and the sulfonated only PEEK (peak mean load of 495 N, p = 0.0240) had a higher level of performance in expulsion testing than smooth PEEK due to its mechanical interlocking ability. Imaging and contact angle analysis confirm that a surface with repeatable porosity can be achieved. Full article
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 167
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 281
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

41 pages, 3195 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 137
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

23 pages, 1084 KiB  
Review
Unraveling the Translational Relevance of β-Hydroxybutyrate as an Intermediate Metabolite and Signaling Molecule
by Dwifrista Vani Pali, Sujin Kim, Keren Esther Kristina Mantik, Ju-Bi Lee, Chan-Young So, Sohee Moon, Dong-Ho Park, Hyo-Bum Kwak and Ju-Hee Kang
Int. J. Mol. Sci. 2025, 26(15), 7362; https://doi.org/10.3390/ijms26157362 - 30 Jul 2025
Viewed by 406
Abstract
β-hydroxybutyrate (BHB) is the most abundant ketone body produced during ketosis, a process initiated by glucose depletion and the β-oxidation of fatty acids in hepatocytes. Traditionally recognized as an alternative energy substrate during fasting, caloric restriction, and starvation, BHB has gained attention for [...] Read more.
β-hydroxybutyrate (BHB) is the most abundant ketone body produced during ketosis, a process initiated by glucose depletion and the β-oxidation of fatty acids in hepatocytes. Traditionally recognized as an alternative energy substrate during fasting, caloric restriction, and starvation, BHB has gained attention for its diverse signaling roles in various physiological processes. This review explores the emerging therapeutic potential of BHB in the context of sarcopenia, metabolic disorders, and neurodegenerative diseases. BHB influences gene expression, lipid metabolism, and inflammation through its inhibition of Class I Histone deacetylases (HDACs) and activation of G-protein-coupled receptors (GPCRs), specifically HCAR2 and FFAR3. These actions lead to enhanced mitochondrial function, reduced oxidative stress, and regulation of inflammatory pathways, with implication for muscle maintenance, neuroprotection, and metabolic regulation. Moreover, BHB’s ability to modulate adipose tissue lipolysis and immune responses highlight its broader potential in managing chronic metabolic conditions and aging. While these findings show BHB as a promising therapeutic agent, further research is required to determine optimal dosing strategies, long-term effects, and its translational potential in clinical settings. Understanding BHB’s mechanisms will facilitate its development as a novel therapeutic strategy for multiple organ systems affected by aging and disease. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies in Skeletal Muscle Diseases)
Show Figures

Figure 1

17 pages, 2131 KiB  
Article
Investigating Neuroprotective Effects of Berberine on Mitochondrial Dysfunction and Autophagy Impairment in Parkinson’s Disease
by Hae-Rim Cha, Jin-Seok Kim, Jin-Hyeob Ryu and Hyun-Jeong Cho
Int. J. Mol. Sci. 2025, 26(15), 7342; https://doi.org/10.3390/ijms26157342 - 29 Jul 2025
Viewed by 597
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. In this study, we investigated the therapeutic potential and underlying mechanisms of berberine in both cellular and animal models of PD. In vitro, SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) exhibited decreased viability and increased oxidative stress, both of which were significantly alleviated by berberine treatment based on cell viability assays and DCFH-DA staining. Western blot analysis revealed that berberine modulated the AMPK–PGC-1α–SIRT1 signaling pathway and restored the expression of autophagy-related proteins LC3B and P62, suggesting that berberine could improve mitochondrial function and autophagy balance. In vivo studies using a 6-OHDA-induced PD mouse model further confirmed these effects, showing that berberine could improve motor function and lead to molecular changes consistent with in vitro studies. Additionally, safety evaluations indicated no significant hepatotoxicity based on AST and ALT levels. Body weight also remained stable throughout treatment. Collectively, our findings suggest that berberine can not only alleviate PD-related symptoms but also target key pathological mechanisms, supporting its potential as a therapeutic candidate for PD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 8240 KiB  
Article
Numerical Simulation of Fracture Sequence on Multiple Hydraulic Fracture Propagation in Tight Oil Reservoir
by Yu Tang, Jin Zhang, Heng Zheng, Bowei Shi and Ruiquan Liao
Processes 2025, 13(8), 2409; https://doi.org/10.3390/pr13082409 - 29 Jul 2025
Viewed by 307
Abstract
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress [...] Read more.
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress effects, a comprehensive comparison of sequencing strategies using fully coupled models capturing the intricate seepage–stress–damage interactions remains limited. This study employs a novel 2D fully coupled XFEM model to quantitatively evaluate three fracturing approaches: simultaneous, sequential, and alternating. Numerical results demonstrate that sequential and alternating strategies alleviate stress interference, increasing cumulative fracture length by 20.6% and 26.1%, respectively, versus conventional simultaneous fracturing. Based on the research findings, fracture width reductions are 30.44% (simultaneous), 18.78% (sequential), and 7.21% (alternating). As fracture width directly governs conductivity—the critical parameter determining hydrocarbon flow efficiency—the alternating strategy’s superior width preservation (92.79% retention) enables optimal conductivity design. These findings provide critical insights for designing fracture networks with targeted dimensions and conductivity in tight reservoirs and offer a practical basis to optimize fracture sequencing design. Full article
Show Figures

Figure 1

Back to TopTop