Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (269)

Search Parameters:
Keywords = aircraft navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 742 KiB  
Article
Evaluating UAVs for Non-Directional Beacon Calibration: A Cost-Effective Alternative to Manned Flight Inspections
by Andrej Novák and Patrik Veľký
Drones 2025, 9(8), 571; https://doi.org/10.3390/drones9080571 - 13 Aug 2025
Viewed by 218
Abstract
The increasing demand for efficient aviation navigation system inspections has led to the use of Unmanned Aerial Vehicles (UAVs) as a flexible and cost-effective alternative to traditional manned aircraft. This study emphasizes the operational advantages of UAVs in transforming flight inspections, including Non-Directional [...] Read more.
The increasing demand for efficient aviation navigation system inspections has led to the use of Unmanned Aerial Vehicles (UAVs) as a flexible and cost-effective alternative to traditional manned aircraft. This study emphasizes the operational advantages of UAVs in transforming flight inspections, including Non-Directional Beacon (NDB) calibration. Following the successful performance evaluation of an NDB system in Banská Bystrica, Slovakia, using a manned aircraft, a UAV was deployed on the same flight path to validate its ability to replicate the procedure in terms of trajectory only, without performing any signal measurement. The UAV maintained accurate flight paths and continuous communication throughout the mission. A specialized rotatory system, operating at 868 MHz, enabled real-time tracking and ensured stable communication over long distances. The manned aircraft test revealed a maximum bearing deviation of 13.47° at 3.37 NM and a minimum received signal strength of −90 dBm, which approaches the ICAO threshold for en route navigation (±10°) but remains usable for diagnostic purposes. The UAV flight did not include signal capture but successfully completed the 40 NM profile with a circular error probable (CEP95) of 2.8 m and communication link uptime of 99.8%, confirming that the vehicle can meet procedural trajectory fidelity. These findings support the feasibility of UAV-based NDB inspections and provide the foundation for future test phases with onboard signal monitoring systems. Full article
Show Figures

Figure 1

14 pages, 845 KiB  
Article
Cross-Path Planning of UAV Cluster Low-Altitude Flight Based on Inertial Navigation Combined with GPS Localization
by Xiancheng Yang, Ming Zhang, Peihui Yan, Qu Wang, Dongpeng Xie and Yuntian Brian Bai
Electronics 2025, 14(14), 2877; https://doi.org/10.3390/electronics14142877 - 18 Jul 2025
Viewed by 238
Abstract
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology [...] Read more.
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology involves the following: (1) discretizing continuous 3D airspace into grid cells using occupancy grid mapping to construct an environmental model; (2) analyzing dynamic flight characteristics through attitude angle variations in a 3D Cartesian coordinate system; and (3) implementing collaborative state updates and global positioning through fused inertial–GPS navigation. By incorporating Cramér–Rao lower bound optimization, the system achieves effective cross-path planning for drone formations. Experimental results demonstrate a 98.35% mission success rate with inter-drone navigation time differences maintained below 0.5 s, confirming the method’s effectiveness in enabling synchronized swarm operations while maintaining safe distances during cooperative monitoring and low-altitude flight missions. This approach demonstrates significant advantages in coordinated cross-path planning for UAV clusters. Full article
Show Figures

Figure 1

16 pages, 23928 KiB  
Article
Impact Evaluation of DME Beacons on BeiDou B2a Signal Reception Performance
by Yicheng Li, Jinli Cui, Zhenyang Ma and Zhaobin Duan
Sensors 2025, 25(12), 3763; https://doi.org/10.3390/s25123763 - 16 Jun 2025
Viewed by 346
Abstract
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive [...] Read more.
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive interference evaluation model based on receiver signal processing principles to quantify the degradation of B2a signal reception performance under DME interference scenarios. Leveraging empirical data from the DME beacon network in the Chinese mainland, we systematically analyzed the interference effects through an effective carrier-to-noise ratio (C/N0), signal detection probability, carrier tracking accuracy, and demodulation bit error rate (BER). The results demonstrate that the effective C/N0 of the B2a signal degrades by up to 3.25 dB, the detection probability decreases by 33%, and the carrier tracking errors and BER increase by 2.57° and 5.1%, respectively, in worst-case interference scenarios. Furthermore, significant spatial correlation was observed between the interference hotspots and regions of high aircraft density. DME interference adversely affected the accuracy, availability, continuity, and integrity of the airborne BeiDou navigation system, thereby compromising civil aviation flight safety. These findings establish a scientific foundation for developing Minimum Operational Performance Standards for B2a signal receivers and for strategically optimizing DME beacon deployment throughout the Chinese mainland. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 11508 KiB  
Article
Adaptive Neural Network Robust Control of FOG with Output Constraints
by Shangbo Liu, Baowang Lian, Jiajun Ma, Xiaokun Ding and Haiyan Li
Biomimetics 2025, 10(6), 372; https://doi.org/10.3390/biomimetics10060372 - 5 Jun 2025
Viewed by 371
Abstract
In this work, an adaptive robust control method based on Radial Basis Function Neural Network (RBFNN) is proposed. Inspired by the local response characteristics of biological neurons, this method can reduce the influence of nonlinear errors and unknown perturbations in the extreme working [...] Read more.
In this work, an adaptive robust control method based on Radial Basis Function Neural Network (RBFNN) is proposed. Inspired by the local response characteristics of biological neurons, this method can reduce the influence of nonlinear errors and unknown perturbations in the extreme working conditions of the aircraft, such as high dynamics and strong vibration, so as to achieve high tracking accuracy. In this method, the dynamic model of the nonlinear error of the fiber optic gyroscope is proposed, and then the unknown external interference observer is designed for the system to realize the estimation of the unknown disturbances. The controller design method combines the design of the adaptive law outside the finite approximation domain of the achievable condition design of the sliding mode surface, and adjusts the controller parameters online according to the conditions satisfied by the real-time error state, breaking through the limitation of the finite approximation domain of the traditional neural network. In the finite approximation domain, an online adaptive controller is constructed by using the universal approximation ability of RBFNN, so as to enhance the robustness to nonlinear errors and external disturbances. By designing the output constraint mechanism, the dynamic stability of the system is further guaranteed under the constraints, and finally its effectiveness is verified by simulation analysis, which provides a new solution for high-precision inertial navigation. Full article
(This article belongs to the Special Issue Advanced Biologically Inspired Vision and Its Application)
Show Figures

Graphical abstract

22 pages, 270 KiB  
Article
Optimizing Aircraft Routes in Dynamic Conditions Utilizing Multi-Criteria Parameters
by Oleh Sydorenko, Nataliia Lysa, Liubomyr Sikora, Roman Martsyshyn and Yuliya Miyushkovych
Appl. Sci. 2025, 15(11), 6044; https://doi.org/10.3390/app15116044 - 27 May 2025
Viewed by 552
Abstract
The growth of air transportation volume and increasing requirements for efficiency require the improvement of algorithms for planning optimal aircraft flight routes. Traditional methods, such as the A*, B*, D* and Dijkstra algorithms, are widely used in navigation systems, but they have a [...] Read more.
The growth of air transportation volume and increasing requirements for efficiency require the improvement of algorithms for planning optimal aircraft flight routes. Traditional methods, such as the A*, B*, D* and Dijkstra algorithms, are widely used in navigation systems, but they have a number of limitations when applied in a dynamically changing environment, in particular due to the need to take into account weather conditions, air traffic, economic factors, and aircraft characteristics. This article provides a comprehensive analysis of existing approaches to optimizing airline routes, the advantages and disadvantages of each, and possible areas for their improvement. Particular attention is paid to multi-criteria parameters that affect routing efficiency, such as fuel consumption, safety aspects, forecasting accuracy, and adaptation to changing flight conditions. A methodological solution is proposed to improve route construction algorithms, which involves taking into account variable parameters in real time and integrating them into modern navigation systems. In addition, optimal flight paths were modeled using the improved algorithms, which allow for increasing the efficiency of decision-making in the field of air traffic control. The results of the study can be useful for airline companies, airspace authorities, and navigation software developers. Full article
(This article belongs to the Section Aerospace Science and Engineering)
13 pages, 6636 KiB  
Proceeding Paper
Estimation of the Effect of Single Source of RF Interference on an Airborne Global Navigation Satellite System Receiver: A Theoretical Study and Parametric Simulation
by Ahmad Esmaeilkhah and Rene Jr Landry
Eng. Proc. 2025, 88(1), 53; https://doi.org/10.3390/engproc2025088053 - 14 May 2025
Cited by 1 | Viewed by 250
Abstract
This paper addresses the critical issue of unwanted interference in airborne GNSS receivers, crucial for navigational safety. Previous studies often simplified the problem, but this work offers a comprehensive approach, considering factors like Earth’s reflective properties, 3D calculations, and distinct radiation patterns. It [...] Read more.
This paper addresses the critical issue of unwanted interference in airborne GNSS receivers, crucial for navigational safety. Previous studies often simplified the problem, but this work offers a comprehensive approach, considering factors like Earth’s reflective properties, 3D calculations, and distinct radiation patterns. It introduces Spatial Interference Distribution Expression Heat-map and Operation Efficacy Plot graphs to visualize interference distribution along flight paths. The results highlight the significance of physical configuration and distance from interference sources on receiver performance. The algorithm developed can assess interference effects on GNSS receivers and aid in selecting optimal flight paths for minimal interference. This research enhances understanding and management of unintentional interference in airborne navigation systems. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

31 pages, 7090 KiB  
Article
Analysis of the Integrated Signal Design for Near-Space Communication, Navigation, and TT&C Based on K/Ka Frequency Bands
by Lvyang Ye, Shaojun Cao, Zhifei Gu, Deng Pan, Binhu Chen, Xuqian Wu, Kun Shen and Yangdong Yan
Atmosphere 2025, 16(5), 586; https://doi.org/10.3390/atmos16050586 - 13 May 2025
Viewed by 925
Abstract
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, [...] Read more.
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, navigation, and telemetry, tracking, and command (TT&C), this paper proposes an overall integration of communication, navigation, and TT&C (ICNT) signals scheme based on the K/Ka frequency band. Firstly, the K/Ka frequency band is selected according to the ITU frequency division, high-speed communication requirements, advantages of space-based over-the-horizon relay, overcoming the blackout problem, and the development trend of high frequencies. Secondly, the influence of the physical characteristics of the NS on ICNT is analyzed through simulation. The results show that when the K/Ka signal is transmitted in the NS, the path loss changes significantly with the elevation angle. The bottom layer loss at an elevation angle of 90° is between 143.5 and 150.5 dB, and the top layer loss is between 157.5 and 164.4 dB; the maximum attenuation of the bottom layer and the top layer at an elevation angle of 0° is close to 180 dB and 187 dB, respectively. In terms of rainfall attenuation, when a 30 GHz signal passes through a 100 km rain area under moderate rain conditions, the horizontal and vertical polarization losses reach 225 dB and 185 dB, respectively, and the rainfall attenuation increases with the increase in frequency. For gas absorption, the loss of water vapor is higher than that of oxygen molecules; when a 30 GHz signal is transmitted for 100 km, the loss of water vapor is 17 dB, while that of oxygen is 2 dB. The loss of clouds and fog is relatively small, less than 1 dB. Increasing the frequency and the antenna elevation angle can reduce the atmospheric scintillation. In addition, factors such as the plasma sheath and multipath also affect the signal propagation. In terms of modulation technology, the constant envelope signal shows an advantage in spectral efficiency; the new integrated signal obtained by integrating communication, navigation, and TT&C signals into a single K/Ka frequency point has excellent characteristics in the simulation of power spectral density (PSD) and autocorrelation function (ACF), verifying the feasibility of the scheme. The proposed ICNT scheme is expected to provide an innovative solution example for the communication, navigation, and TT&C requirements of NS vehicles during the re-entry phase. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 5514 KiB  
Article
Crop-Free-Ridge Navigation Line Recognition Based on the Lightweight Structure Improvement of YOLOv8
by Runyi Lv, Jianping Hu, Tengfei Zhang, Xinxin Chen and Wei Liu
Agriculture 2025, 15(9), 942; https://doi.org/10.3390/agriculture15090942 - 26 Apr 2025
Cited by 3 | Viewed by 602
Abstract
This study is situated against the background of shortages in the agricultural labor force and shortages of cultivated land. In order to improve the intelligence level and operational efficiency of agricultural machinery and solve the problems of difficulties in recognizing navigation lines and [...] Read more.
This study is situated against the background of shortages in the agricultural labor force and shortages of cultivated land. In order to improve the intelligence level and operational efficiency of agricultural machinery and solve the problems of difficulties in recognizing navigation lines and a lack of real-time performance of transplanters in the crop-free ridge environment, we propose a crop-free-ridge navigation line recognition method based on an improved YOLOv8 segmentation algorithm. First, this method reduces the parameters and computational complexity of the model by replacing the YOLOv8 backbone network with MobileNetV4 and the feature extraction module C2f with ShuffleNetV2, thereby improving the real-time segmentation of crop-free ridges. Second, we use the least-squares method to fit the obtained point set to accurately obtain navigation lines. Finally, the method is applied to testing and analyzing the field experimental ridges. The results showed that the average precision of the improved neural network model using this method was 90.4%, with a Params of 1.8 M, a FLOPs of 8.8 G, and an FPS of 49.5. The results indicate that the model maintains high accuracy while significantly outperforming Mask-RCNN, YOLACT++, YOLOv8, and YOLO11 in terms of computational speed. The detection frame rate increased significantly, improving the real-time performance of detection. This method uses the least-squares method to fit the 55% ridge contour feature points under the picture, and the fitting navigation line shows no large deviation compared with the image ridge centerline; the result is better than that of the RANSAC fitting method. The research results indicate that this method significantly reduces the size of the model parameters and improves the recognition speed, providing a more efficient solution for the autonomous navigation of intelligent carrier aircraft. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

11 pages, 4122 KiB  
Proceeding Paper
UKSBAS Testbed Performance Assessment of Two Years of Operations
by Javier González Merino, Fernando Bravo Llano, Michael Pattinson, Madeleine Easom, Juan Ramón Campano Hernández, Ignacio Sanz Palomar, María Isabel Romero Llapa, Sangeetha Priya Ilamparithi, David Hill and George Newton
Eng. Proc. 2025, 88(1), 35; https://doi.org/10.3390/engproc2025088035 - 21 Apr 2025
Viewed by 367
Abstract
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. [...] Read more.
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. The development of operational SBAS systems is in transition due to the extension of L1 SBAS services to new regions and the improvements expected by the introduction of dual frequency multi-constellation (DFMC) services, which allow the use of more core constellations such as Galileo and the use of ionosphere-free L1/L5 signal combination. The UKSBAS Testbed is a demonstration and feasibility project in the framework of ESA’s Navigation Innovation Support Programme (NAVISP), which is sponsored by the UK’s HMG with the participation of the Department for Transport and the UK Space Agency. UKSBAS Testbed’s main objective is to deliver a new L1 SBAS signal in space (SIS) from May 2022 in the UK region using Viasat’s Inmarsat-3F5 geostationary (GEO) satellite and Goonhilly Earth Station as signal uplink over PRN 158, as well as L1 SBAS and DFMC SBAS services through the Internet. SBAS messages are generated by GMV’s magicSBAS software and fed with data from the Ordnance Survey’s station network. This paper provides an assessment of the performance achieved by the UKSBAS Testbed during the last two years of operations at the SIS and user level, including a number of experimentation campaigns performed in the aviation and maritime domains, comprising ground tests at airports, flight tests on aircraft and sea trials on a vessel. This assessment includes, among others, service availability (e.g., APV-I, LPV-200), protection levels (PL), and position errors (PE) statistics over the service area and in a network of receivers. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

13 pages, 3402 KiB  
Article
Aerial Fire Fighting Operational Statistics (2024): Very Large/Large Air Tankers
by Lance Sherry and Mandar Chaudhari
Fire 2025, 8(4), 160; https://doi.org/10.3390/fire8040160 - 21 Apr 2025
Cited by 1 | Viewed by 2892
Abstract
Wildfires, a natural part of the wildland life cycle, are experiencing a decades-long trend of increased frequency, duration, and magnitude, resulting in increased risk of fatalities and property damage. Fire suppression methods are adapting accordingly, including the increased use of aerial firefighting. Aerial [...] Read more.
Wildfires, a natural part of the wildland life cycle, are experiencing a decades-long trend of increased frequency, duration, and magnitude, resulting in increased risk of fatalities and property damage. Fire suppression methods are adapting accordingly, including the increased use of aerial firefighting. Aerial firefighting, conducted in coordination with ground crews, provides real-time reconnaissance of a wildfire and performs strategic drops of retardant to contain and/or suppress the fire. These flight operations require airport and air traffic control infrastructure. The purpose of this report is to provide statistics on the U.S. aerial firefighting fleet, flight operations, and airport utilization and equipment in 2024. This information, which is not readily available, may be of use to airport planners, air navigation service providers, and policy makers. Thirty-four (34) Very Large/Large Air Tankers (VLAT/LATs) were under contract with the United States Forest Service (USFS) Multiple Award Task Order Contracts (MATOCs) in 2024. The aircraft, ranging in age from 27 to 57 years, performed 11,219 retardant drop and reposition flights. Flights operated on 88% of the days with an average of 35 flights per day and a maximum of 200 flights per day. The number of flights per aircraft across the fleet was not uniform (average 288 flights, max 465 flights). Consistent with firefighting practices, the flights operated under Visual Flight Rules (VFR), mostly in the afternoons, with an average retardant drop flight duration of 34 min. Two hundred and seven (207) airports supported at least one departure, with 14 airports supporting 50% of the departures. Eighty-six (86%) percent of the airports were towered and 84% had precision approach procedures. All but two military airports were public airports that are part of the National Plan for Integrated Airport System (NPIAS) and eligible for Airport Improvement Plan (AIP) funding. Runway length and weight bearing are limitations at several airports. Furthermore, operations are no longer limited to airports west of the Rockies, with increased operations in the mid-west and east coast. Full article
Show Figures

Figure 1

17 pages, 2027 KiB  
Article
Unidirectional Orbit Determination for Extended Users Based on Navigation Ka-Band Inter-Satellite Links
by Yong Shangguan, Hua Zhang, Yong Yu, Wenjin Wang, Bin Liu, Haihan Li and Rong Ma
Sensors 2025, 25(8), 2566; https://doi.org/10.3390/s25082566 - 18 Apr 2025
Viewed by 413
Abstract
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS [...] Read more.
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS orbit determination is hindered by a limited number of receivable satellites, weak signal strength and suboptimal geometric configurations, thereby failing to meet the demands for the continuous, high-precision orbit measurement of overseas high-orbit satellites. Satellite navigation systems, characterized by global coverage and Ka-band inter-satellite links, offer measurement and communication services to extended users, such as satellites, aircraft, space stations and other spacecraft. With the widespread adoption of navigation satellite systems, particularly in scenarios where ground tracking, telemetry and command (TT&C) stations are out of sight, there is a growing demand among users for Ka-band inter-satellite links for high-precision ranging and orbit determination. This paper introduces an innovative unidirectional orbit-determination technology for extended users, leveraging the navigation Ka-band inter-satellite link. When extended users are constrained by weight and power consumption limitations, preventing the incorporation of high-precision atomic clocks, they utilize their extensive capture capability to conduct distance measurements between navigation satellites. This process involves constructing clock error models, calculating clock error parameters and compensating for these errors, thereby achieving high-precision time–frequency synchronization and bidirectional communication. The technology has enhanced the time and frequency accuracies by three and two orders of magnitude, respectively. Following the establishment of bidirectional communication, unidirectional ranging values are collected daily for one hour. Utilizing these bidirectional ranging values, a mechanical model and state-transfer matrix are established, resulting in orbit-determination calculations with an accuracy of less than 100 m. This approach addresses the challenge of high-precision time–frequency synchronization and orbit determination for users without atomic clocks, utilizing minimal inter-satellite link time slot resources. For the first time in China, extended users can access the navigation inter-satellite link with a minimal allocation of time slot resources, achieving orbit determination at the 100 m level. This advancement significantly enhances the robustness of extended users and provides substantial technical support for various extended users to employ the Ka inter-satellite link for emergency communication and orbit determination. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

40 pages, 10528 KiB  
Article
FMCW Radar-Aided Navigation for Unmanned Aircraft Approach and Landing in AAM Scenarios: System Requirements and Processing Pipeline
by Paolo Veneruso, Luca Manica, Enrico Miccio, Roberto Opromolla, Carlo Tiana, Giacomo Gentile and Giancarmine Fasano
Sensors 2025, 25(8), 2429; https://doi.org/10.3390/s25082429 - 11 Apr 2025
Viewed by 1205
Abstract
This paper focuses on the use of Frequency-Modulated Continuous Wave radars as an aiding source to provide precision navigation during approach and landing operations in Advanced Air Mobility scenarios. Specifically, the radar system requirements are delineated through an analysis of operational constraints defined [...] Read more.
This paper focuses on the use of Frequency-Modulated Continuous Wave radars as an aiding source to provide precision navigation during approach and landing operations in Advanced Air Mobility scenarios. Specifically, the radar system requirements are delineated through an analysis of operational constraints defined by regulatory guidelines, including approach trajectories and vertiport infrastructure to ensure compatibility with Urban Air Mobility scenarios. A preliminary radar design is proposed which is integrated within a multi-sensor navigation architecture including a GNSS receiver, an inertial measurement unit, and two cameras. The radar is designed to detect high-reflectivity targets placed in the landing area and uses a matching algorithm to associate these detections with their known positions, enabling reliable corrections to the aircraft navigation state. Radar measurements are tightly integrated into an Extended Kalman Filter alongside data from other sensors, refining the vehicle navigation state estimate and ensuring seamless transitions between long-range and short-range sensing modalities. A high-fidelity simulation environment validates the proposed multi-sensor architecture under different visibility conditions and accordingly disactivating the radar to validate its contribution. The results demonstrate significant improvements in navigation performance when the radar is integrated within the multi-sensor architecture thanks to its important role in providing accurate estimates at high ranges from the landing pattern and during low-visibility operations. The reported statistics of the multi-sensor architecture performance are compared with the assumed required navigation performance in the scenarios of interest, demonstrating the radar contribution and showing the effects of designed radar angular resolution on the multi-sensor architecture. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

10 pages, 4034 KiB  
Proceeding Paper
Flight Test Results of Separation Assurance Methods for Joint Manned and Unmanned Aircraft Operations Using GNSS Measurement-Based ADS-L
by Benjamin Lochow, Anne-Sophie Polz, Vanessa Kempen and Maarten Uijt de Haag
Eng. Proc. 2025, 88(1), 32; https://doi.org/10.3390/engproc2025088032 - 8 Apr 2025
Viewed by 273
Abstract
This paper discusses a precise relative navigation and separation assurance system based on the exchange of Global Navigation Satellite (GNSS) measurements via new message types for Automatic Dependent Surveillance–Light (ADS-L). A measurement-based ADS-L implementation, which transmits raw measurements from the GNSS receiver rather [...] Read more.
This paper discusses a precise relative navigation and separation assurance system based on the exchange of Global Navigation Satellite (GNSS) measurements via new message types for Automatic Dependent Surveillance–Light (ADS-L). A measurement-based ADS-L implementation, which transmits raw measurements from the GNSS receiver rather than aircraft state vectors and performance parameters, is utilized to improve surveillance performance and add integrity to the surveillance solution. Furthermore, recent flight tests with one manned aircraft and two UASs are discussed, and the benefits of using GNSS measurement-based ADS-L data for separation assurance as opposed to traditional methods are reviewed. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

10 pages, 1920 KiB  
Proceeding Paper
Radar-Altimeter Inertial Vertical Loop—Multisensor Estimation of Vertical Parameters for Autonomous Vertical Landing
by Tomas Vaispacher, Radek Baranek, Pavol Malinak, Vibhor Bageshwar and Daniel Bertrand
Eng. Proc. 2025, 88(1), 28; https://doi.org/10.3390/engproc2025088028 - 31 Mar 2025
Viewed by 2340
Abstract
The design, key functionalities, and performance requirements placed on modern aircraft navigation systems must adhere to the needs imposed by the progressively growing UAS/UAM and eVTOL segments, especially for terminal area operations in urban areas. This paper describes the design, implementation, and real-time [...] Read more.
The design, key functionalities, and performance requirements placed on modern aircraft navigation systems must adhere to the needs imposed by the progressively growing UAS/UAM and eVTOL segments, especially for terminal area operations in urban areas. This paper describes the design, implementation, and real-time validation of Honeywell’s Kalman filter-based radar-altimeter inertial vertical loop (RIVL) prototype. Inspired by the legacy of barometric altimeter-based technology, the RIVL prototype aims to provide high accuracy and integrity estimates of vertical parameters (altitude/height above ground and vertical velocity). The results from simulation tests, flight tests, and crane tests demonstrate that the vertical parameters estimated by the prototype satisfy vertical performance requirements across different terrains and scenarios. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

31 pages, 8313 KiB  
Article
Reliability Analysis of Hybrid Laser INS Under Multi-Mode Failure Conditions
by Bo Zhang, Changhua Hu, Xinhe Wang, Jianqing Wang, Jianxun Zhang, Qing Dong, Xuan Liu and Feng Zhang
Appl. Sci. 2025, 15(7), 3724; https://doi.org/10.3390/app15073724 - 28 Mar 2025
Viewed by 2504
Abstract
The hybrid laser inertial navigation system (INS) is increasingly vital for high precision under high-dynamic, long-duration conditions, especially in complex aircraft environments. Key components like the base, platform, and inner/outer frames significantly impact system accuracy and stability through thseir static and dynamic characteristics. [...] Read more.
The hybrid laser inertial navigation system (INS) is increasingly vital for high precision under high-dynamic, long-duration conditions, especially in complex aircraft environments. Key components like the base, platform, and inner/outer frames significantly impact system accuracy and stability through thseir static and dynamic characteristics. This study focuses on minimizing deviations in the INS body coordinate system caused by elastic deformation under high overload by developing a mechanical simulation model of a rotational modulation structure and a structural model of the outer frame assembly. A reliability analysis model is established, considering both functional and structural strength failures. To address uncertainties from manufacturing, technical conditions, material selection, and assembly errors, a global sensitivity analysis based on Bayesian inference evaluates parameter contributions to functional failure probability, using a sample size of N1 = 5 × 105. Additionally, uncertainty analysis via Sobol sequence sampling (N2 = 10,000) examines the impact of mean design parameter variations on failure probability for ZL107 and SiCp/Al aluminum matrix composite frames. Experimental verification concludes the study. The results indicate that the SiCp/Al composite material demonstrates superior mechanical performance compared to traditional materials such as the ZL107 aluminum alloy. The uncertainties in the inner frame thickness, inner frame material strength, and outer frame thickness have the most significant impact on the probability of functional failure in the hybrid INS, with sensitivity indices of δ6P{F} = 0.01657, δ2P{F} = 0.00873, and δ4P{F} = 0.00818, respectively. The mechanical properties of the outer frame structure made from SiCp/Al are significantly enhanced, with failure probabilities across three failure modes markedly lower than those of the ZL107 frame, indicating high reliability. In an impact test conducted on the product, the laser gyroscope worked normally, the hybrid laser system function was normal, and the platform angular velocity change corresponding to each impact direction was less than 12 ″/s. The maximum angle change of the inner and outer frames was 0.107°, indicating that the system structure can withstand large overloads and multiple levels of mechanical environments and has good environmental adaptability and reliability. This analytical approach provides a valuable method for reliability evaluation and design of new hybrid INS structures. More importantly, it provides insights into the influence of design parameter uncertainties on navigation accuracy, offering critical support for the advancement of inertial technology. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

Back to TopTop