Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = air-cleaning system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1288 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 - 1 Aug 2025
Viewed by 326
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
Show Figures

Figure 1

31 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 114
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 503
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 316
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

24 pages, 13010 KiB  
Article
Dual-Vortex Aerosol Mixing Chamber for Micrometer Aerosols: Parametric CFD Analysis and Experimentally Validated Design Improvements
by Ziran Xu, Junjie Liu, Yue Liu, Jiazhen Lu and Xiao Xu
Processes 2025, 13(8), 2322; https://doi.org/10.3390/pr13082322 - 22 Jul 2025
Viewed by 323
Abstract
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol [...] Read more.
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol sample during evaluation, a portable mixing chamber, where the sample and clean air were dual-vortex turbulent mixed, was designed. By using computational fluid dynamics (CFD), particle motion within the mixing chamber was illustrated or explained. By adjusting critical structure parameters of chamber such as height and diameter, the flow field structure was optimized to improve particle mixing characteristics. Accordingly, a novel portable aerosol mixing chamber with length and inner diameter of 0.7 m and 60 mm was developed. Through a combination of simulations and experiments, the operating conditions, including working flow rate, ratio of carrier/dilution clean air, and mixture duration, were studied. Finally, by using the optimized parameters, a mixing chamber with high spatial uniformity where variation is less than 4% was obtained for aerosol particles ranging from 0.3 μm to 10 μm. Based on this chamber, a standardized testing platform was established to verify the sampling efficiency of aerosol samplers with high flow rate (28.3 L·min−1). The obtained results were consistent with the reference values in the sampler’s manual, confirming the reliability of the evaluation system. The testing platform developed in this study can provide test aerosol particles ranging from sub-micrometers to micrometers and has significant engineering applications, such as atmospheric pollution monitoring and occupational health assessment. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

25 pages, 2878 KiB  
Article
A Multi-Faceted Approach to Air Quality: Visibility Prediction and Public Health Risk Assessment Using Machine Learning and Dust Monitoring Data
by Lara Dronjak, Sofian Kanan, Tarig Ali, Reem Assim and Fatin Samara
Sustainability 2025, 17(14), 6581; https://doi.org/10.3390/su17146581 - 18 Jul 2025
Viewed by 468
Abstract
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert [...] Read more.
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert landscapes. This study presents the first health risk assessment of carcinogenic and non-carcinogenic risks associated with exposure to PM2.5 and PM10 bound heavy metals and polycyclic aromatic hydrocarbons (PAHs) based on air quality data collected during the years of 2016–2018 near Dubai International Airport and Abu Dhabi International Airport. The results reveal no significant carcinogenic risks for lead (Pb), cobalt (Co), nickel (Ni), and chromium (Cr). Additionally, AI-based regression analysis was applied to time-series dust monitoring data to enhance predictive capabilities in environmental monitoring systems. The estimated incremental lifetime cancer risk (ILCR) from PAH exposure exceeded the acceptable threshold (10−6) in several samples at both locations. The relationship between visibility and key environmental variables—PM1, PM2.5, PM10, total suspended particles (TSPs), wind speed, air pressure, and air temperature—was modeled using three machine learning algorithms: linear regression, support vector machine (SVM) with a radial basis function (RBF) kernel, and artificial neural networks (ANNs). Among these, SVM with an RBF kernel showed the highest accuracy in predicting visibility, effectively integrating meteorological data and particulate matter variables. These findings highlight the potential of machine learning models for environmental monitoring and the need for continued assessments of air quality and its health implications in the region. Full article
(This article belongs to the Special Issue Impact of AI on Business Sustainability and Efficiency)
Show Figures

Figure 1

25 pages, 1840 KiB  
Article
Airborne Measurements of Real-World Black Carbon Emissions from Ships
by Ward Van Roy, Jean-Baptiste Merveille, Kobe Scheldeman, Annelore Van Nieuwenhove and Ronny Schallier
Atmosphere 2025, 16(7), 840; https://doi.org/10.3390/atmos16070840 - 10 Jul 2025
Viewed by 392
Abstract
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter [...] Read more.
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter (PM2.5), particularly in sectors such as energy production, industry, and road transport. In contrast, the maritime shipping industry has made limited progress in reducing BC emissions from ships, mainly due to the absence of stringent BC emission regulations. While the International Maritime Organization (IMO) has established emission limits for pollutants such as SOx, NOx, and VOCs under MARPOL Annex VI, as of today, BC emissions from ships are still unregulated at the international level. Whereas it was anticipated that PM2.5 and BC emissions would be reduced with the adoption of the SOx regulations, especially within the sulfur emission control areas (SECA), this study reveals that BC emissions are only partially affected by the current MARPOL Annex VI regulations. Based on 886 real-world black carbon (BC) emission measurements from ships operating in the southern North Sea, the study demonstrates that SECA-compliant fuels do contribute to a notable decrease in BC emissions. However, it is important to note that the average BC emission factors (EFs) within the SECA remain comparable in magnitude to those reported for non-compliant fuels in earlier studies. Moreover, ships using exhaust gas cleaning systems (EGCSs) as a SECA-compliant measure were found to emit significantly higher levels of BC, raising concerns about the environmental sustainability of EGCSs as an emissions mitigation strategy. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
Show Figures

Figure 1

15 pages, 1464 KiB  
Article
Evaluation of Color Stability of UDMA-Based Dental Composite Resins After Exposure to Conventional Cigarette and Aerosol Tobacco Heating System
by Maria G. Mousdraka, Olga Gerasimidou, Alexandros K. Nikolaidis, Christos Gogos and Elisabeth A. Koulaouzidou
J. Compos. Sci. 2025, 9(7), 352; https://doi.org/10.3390/jcs9070352 - 8 Jul 2025
Viewed by 426
Abstract
This study evaluated the effects of conventional cigarette smoke compared to aerosol from a heat-non-burn tobacco product on the color stability of two UDMA-based dental composite resins, namely a monochromatic (Omnichroma) and a polychromatic (Vittra APS) resin. Twenty disc-shaped specimens were prepared, divided [...] Read more.
This study evaluated the effects of conventional cigarette smoke compared to aerosol from a heat-non-burn tobacco product on the color stability of two UDMA-based dental composite resins, namely a monochromatic (Omnichroma) and a polychromatic (Vittra APS) resin. Twenty disc-shaped specimens were prepared, divided into two groups of ten, and exposed to 105 cigarettes or 105 aerosol tobacco sticks via a custom-made smoking chamber. Puff duration was 2 s, with a 60 s interval between puffs in which smoke saturated the chamber for 30 s; then, clean air was introduced into the chamber for 30 s. Six puffs and six intervals were simulated. Color parameters were measured before and after exposure and following brushing of each specimen with 15 strokes. Color differences were determined based on the CIEDE2000 formula. Significant color change was found in all specimens exposed to cigarette and tobacco aerosol. The highest color-change mean value was obtained from composite resin exposed to cigarette smoke. Although both cigarette and thermal heating systems cause discoloration, the aerosol causes reduced composite resin discoloration, which compromises aesthetics and increases patient dissatisfaction, impacting the overall dental care. Color stability is the hallmark of success, as it is the main reason for replacing dental restorations. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Type-2 Fuzzy-Controlled Air-Cleaning Mobile Robot
by Chian-Song Chiu, Shu-Yen Yao and Carlo Santiago
Symmetry 2025, 17(7), 1088; https://doi.org/10.3390/sym17071088 - 8 Jul 2025
Viewed by 373
Abstract
This research presents the development of a type-2 fuzzy-controlled autonomous mobile robot specifically designed for monitoring and actively maintaining indoor air quality. The core of this system is the proposed type-2 fuzzy PID dual-mode controller used for stably patrolling rooms along the walls [...] Read more.
This research presents the development of a type-2 fuzzy-controlled autonomous mobile robot specifically designed for monitoring and actively maintaining indoor air quality. The core of this system is the proposed type-2 fuzzy PID dual-mode controller used for stably patrolling rooms along the walls of the environment. The design method ingeniously merges the fast error correction capability of PID control with the robust adaptability of type-2 fuzzy logic control, which utilizes interval type-2 fuzzy sets. Furthermore, the type-2 fuzzy rule table of the right wall-following controller can be extended from the first designed fuzzy left wall-following controller in a symmetrical design manner. As a result, this study eliminates the drawbacks of excessive oscillations arising from PID control and sluggish response to large initial errors in typical traditional fuzzy control. The following of the stable wall and obstacle is facilitated with ensured accuracy and easy implementation so that effective air quality monitoring and active PM2.5 filtering are achieved in a movable manner. Furthermore, the augmented reality (AR) interface overlays real-time PM2.5 data directly onto a user’s visual field, enhancing situational awareness and enabling an immediate and intuitive assessment of air quality. As this type of control is different from that used in traditional fixed sensor networks, both broader area coverage and efficient air filtering are achieved. Finally, the experimental results demonstrate the controller’s superior performance and its potential to significantly improve indoor air quality. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Control Systems and Robotics)
Show Figures

Figure 1

19 pages, 1360 KiB  
Article
Evaluating the Suitability of Ground-Mounted Photovoltaic System Selection and the Differences Between Expert Assessments and Firm Location Preferences: A Case Study of Tainan City
by Ping-Ching Chia, Kojiro Sho, Han-Yu Li, Tai-Shan Hu and Chia-Chen Chang
Energies 2025, 18(13), 3559; https://doi.org/10.3390/en18133559 - 6 Jul 2025
Viewed by 338
Abstract
Responding to the challenges of global climate change and domestic air pollution, Taiwan revised its energy policy in recent years, introducing an energy transition strategy focused on low-carbon and clean energy. However, if photovoltaic installations are not properly sited, they may have negative [...] Read more.
Responding to the challenges of global climate change and domestic air pollution, Taiwan revised its energy policy in recent years, introducing an energy transition strategy focused on low-carbon and clean energy. However, if photovoltaic installations are not properly sited, they may have negative impacts on the local environment. Previous research on renewable energy has primarily focused on policy evaluation, with limited attention given to case studies that examine the suitability of site selection for PV system installations. Thus, this study incorporates the Fuzzy Delphi Method (FDM) and the Analytic Hierarchy Process (AHP) to explore the criteria for evaluating site suitability for ground-mounted PV systems. This study considers existing sites with completed ground-mounted PV systems in Tainan City as case study subjects. The results indicate that the most important factor, as prioritized by experts, is the distance from Class I environmentally sensitive areas, followed by the duration of insolation, proximity to the electrical grid, and distance from residential areas. The evaluation model developed in this study provides a valuable reference for future site selection of ground-mounted PV systems. Establishing dedicated PV energy parks also may offer a viable solution to mitigate disputes related to the deployment of ground-mounted PV systems. Full article
Show Figures

Figure 1

25 pages, 11397 KiB  
Article
Impact of Airflow Disturbance from Human Motion on Contaminant Control in Cleanroom Environments: A CFD-Based Analysis
by Abiyeva Guldana, Sayat Niyetbay, Arman Zhanguzhinov, Gulbanu Kassabekova, Dilyara Jartayeva, Kulyash Alimova, Gulnaz Zhakapbayeva and Khalkhabay Bostandyk
Buildings 2025, 15(13), 2264; https://doi.org/10.3390/buildings15132264 - 27 Jun 2025
Viewed by 404
Abstract
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of [...] Read more.
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of evolving threats, such as COVID-19. This study focuses on enhancing the energy efficiency and performance of air conditioning and ventilation systems for cleanrooms, where air recirculation is not permissible. A novel energy-efficient direct-flow air treatment scheme is proposed, integrating a heat pump system with adjustable thermal output. A computational fluid dynamics CFD model of a clean operating room was developed to assess the impact of inlet air velocity on aerosol particle removal and airflow stabilization time. The model also considers the effect of personnel movement. The results supported optimized air distribution, reducing microbial contamination risks, with less than 10 CFU/m3, and improved thermal performance. The proposed system was evaluated for energy and cost efficiency compared to conventional setups. Findings can inform the design and operation of cleanroom ventilation in surgical environments and other high-tech applications. This research contributes to improving indoor air quality and reducing infection risks while enhancing sustainability in healthcare infrastructure. Full article
Show Figures

Figure 1

16 pages, 3867 KiB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Viewed by 393
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

57 pages, 3664 KiB  
Review
Advancing Municipal Solid Waste Management Through Gasification Technology
by Uzeru Haruna Kun and Ewelina Ksepko
Processes 2025, 13(7), 2000; https://doi.org/10.3390/pr13072000 - 24 Jun 2025
Cited by 1 | Viewed by 833
Abstract
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated [...] Read more.
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated that gasification is superior to incineration and pyrolysis, resulting in lower harmful emissions and improved energy efficiency, which aligns with sustainability goals. Key operational findings indicate that adjusting the temperature to 800–900 °C leads to the consumption of CO2 and the production of CO via the Boudouard reaction. Air gasification produces syngas yields of up to 76.99 wt% at 703 °C, while oxygen gasification demonstrates a carbon conversion efficiency of 80.2%. Steam and CO2 gasification prove to be effective for producing H2 and CO, respectively. Catalysts, especially nickel-based ones, are effective in reducing tar and enhancing syngas quality. Innovative approaches, such as co-gasification, plasma and solar-assisted gasification, chemical looping, and integration with carbon capture, artificial intelligence (AI), and the Internet of Things (IoT), show promise in improving process performance and reducing technical and economic hurdles. The review identifies research gaps in catalyst development, feedstock variability, and system integration, emphasizing the need for integrated research, policy, and investment to fully realize the potential of gasification in the clean energy transition and sustainable MSW management. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

30 pages, 1097 KiB  
Review
Electric Vehicle Charging Infrastructure: Impacts and Future Challenges of Photovoltaic Integration with Examples from a Tunisian Case
by Nouha Mansouri, Sihem Nasri, Aymen Mnassri, Abderezak Lashab, Juan C. Vasquez, Adnane Cherif and Hegazy Rezk
World Electr. Veh. J. 2025, 16(7), 349; https://doi.org/10.3390/wevj16070349 - 24 Jun 2025
Viewed by 1071
Abstract
The challenges of global warming and other environmental concerns have prompted governments worldwide to transition from fossil-fuel vehicles to low-emission electric vehicles (EVs). The energy crisis, coupled with environmental issues like air pollution and climate change, has been a driving force behind the [...] Read more.
The challenges of global warming and other environmental concerns have prompted governments worldwide to transition from fossil-fuel vehicles to low-emission electric vehicles (EVs). The energy crisis, coupled with environmental issues like air pollution and climate change, has been a driving force behind the development of EVs. In recent years, EVs have emerged as one of the most innovative and vital advancements in clean transportation. According to recent reports, EVs are gradually replacing traditional automobiles, offering benefits such as pollution reduction and the conservation of natural resources. This research focuses on analyzing and reviewing the impact of EV integration on electrical networks, with particular attention to photovoltaic (PV) energy as a sustainable charging solution. It examines both current and anticipated challenges, especially those related to power quality, harmonics, and voltage imbalance. A special emphasis is placed on Tunisia, a country with high solar energy potential and increasing interest in EV deployment. By exploring the technical and infrastructural readiness of Tunisia for PV-based EV charging systems, this paper aims to inform regional strategies and contribute to the broader goal of sustainable energy integration in developing countries as part of future work. Full article
Show Figures

Figure 1

26 pages, 4271 KiB  
Article
Machine Learning-Based Predictive Maintenance for Photovoltaic Systems
by Ali Al-Humairi, Enmar Khalis, Zuhair A. Al-Hemyari and Peter Jung
AI 2025, 6(7), 133; https://doi.org/10.3390/ai6070133 - 20 Jun 2025
Viewed by 1285
Abstract
The performance of photovoltaic systems is highly dependent on environmental conditions, with soiling due to dust accumulation often being referred to as a predominant energy degradation factor, especially in dry and semi-arid environments. This paper introduces an AI-based robotic cleaning system that can [...] Read more.
The performance of photovoltaic systems is highly dependent on environmental conditions, with soiling due to dust accumulation often being referred to as a predominant energy degradation factor, especially in dry and semi-arid environments. This paper introduces an AI-based robotic cleaning system that can independently forecast and schedule cleaning sessions from real-time sensor and environmental data. Methods: The system integrates sources of data like embedded sensors, weather stations, and DustIQ data to create an integrated dataset for predictive modeling. Machine learning models were employed to forecast soiling loss based on significant atmospheric parameters such as relative humidity, air pressure, ambient temperature, and wind speed. Dimensionality reduction through the principal component analysis and correlation-based feature selection enhanced the model performance as well as the interpretability. A comparative study of four conventional machine learning models, including logistic regression, k-nearest neighbors, decision tree, and support vector machine, was conducted to determine the most appropriate approach to classifying cleaning needs. Results: Performance, based on accuracy, precision, recall, and F1-score, demonstrated that logistic regression and SVM provided optimal classification performance with accuracy levels over 92%, and F1-scores over 0.90, demonstrating outstanding balance between recall and precision. The KNN and decision tree models, while slightly poorer in terms of accuracy (around 85–88%), had computational efficiency benefits, making them suitable for utilization in resource-constrained applications. Conclusions: The proposed system employs a dry-cleaning mechanism that requires no water, making it highly suitable for arid regions. It reduces unnecessary cleaning operations by approximately 30%, leading to decreased mechanical wear and lower maintenance costs. Additionally, by minimizing delays in necessary cleaning, the system can improve annual energy yield by 3–5% under high-soiling conditions. Overall, the intelligent cleaning schedule minimizes manual intervention, enhances sustainability, reduces operating costs, and improves system performance in challenging environments. Full article
Show Figures

Figure 1

Back to TopTop