Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = agroclimatic conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 211
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 290
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 354
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Variable-Rate Nitrogen Application in Wheat Based on UAV-Derived Fertilizer Maps and Precision Agriculture Technologies
by Alexandros Tsitouras, Christos Noulas, Vasilios Liakos, Stamatis Stamatiadis, Miltiadis Tziouvalekas, Ruijun Qin and Eleftherios Evangelou
Agronomy 2025, 15(7), 1714; https://doi.org/10.3390/agronomy15071714 - 16 Jul 2025
Viewed by 1176
Abstract
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct [...] Read more.
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct agro-climatic zones of Thessaly, central Greece. A real-time VR-N application algorithm was used to calculate N rates based on easily obtainable near-real-time data from unmanned aerial vehicle (UAV) imagery, tailored to the crop’s actual needs. VR-N implementation was carried out using conventional fertilizer spreaders equipped to read prescription maps. Results showed that VR-N reduced N input by up to 49.6% compared to the conventional uniform-rate N (UR-N) application, with no significant impact on wheat yield or grain quality. In one of the fields, the improved gain of VR-N when compared to UR-N was 7.2%, corresponding to an economic gain of EUR 163.8 ha−1, while in the second field—where growing conditions were less favorable—no considerable VR-N economic gain was observed. Environmental benefits were also notable. The carbon footprint (CF) of the wheat crop was reduced by 6.4% to 22.0%, and residual soil nitrate (NO3) levels at harvest were 13.6% to 36.1% lower in VR-N zones compared to UR-N zones. These findings suggest a decreased risk of NO3 leaching and ground water contamination. Overall, the study supports the viability of VR-N as a practical and scalable approach to improve N use efficiency (NUE) and reduce the environmental impact of wheat cultivation which could be readily adopted by farmers. Full article
Show Figures

Figure 1

23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 379
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

35 pages, 1054 KiB  
Article
Digital Transformation and Precision Farming as Catalysts of Rural Development
by Andrey Ronzhin, Aleksandra Figurek, Vladimir Surovtsev and Khapsat Dibirova
Land 2025, 14(7), 1464; https://doi.org/10.3390/land14071464 - 14 Jul 2025
Viewed by 591
Abstract
The European Union’s developing rural development plan places digital and precision agriculture at the centre of agricultural modernisation and economic development. This article examines how agricultural practices in rural EU regions are being influenced by smart technology, such as drones, IoT sensors, satellite-based [...] Read more.
The European Union’s developing rural development plan places digital and precision agriculture at the centre of agricultural modernisation and economic development. This article examines how agricultural practices in rural EU regions are being influenced by smart technology, such as drones, IoT sensors, satellite-based research, and AI-driven platforms, through an analysis of recent data from sources across the European Union. This study applies a mixed-methods approach, combining quantitative analysis of strategic policy documents and EU databases, to evaluate the ways in which precision agriculture reduces input consumption, increases productivity, reduces labour shortages and rural area depopulation, and improves sustainability. By investing in infrastructure, developing communities for data exchange, and organising training for farmers, European policies such as the Strategic Plans of the Common Agricultural Policy (CAP), the SmartAgriHubs initiative, and the AgData program actively encourage the transition to digital agriculture. Cyprus is analysed as a case study to show how targeted investments and initiatives supported by the EU can help smaller countries, with limited natural resources, to realise the benefits of digital transformation in agriculture. A special focus is placed on how solutions adapted to agro-climatic and socioeconomic conditions can contribute to strengthening the competitiveness of the agricultural sector, attracting young people to get involved in this field and opening up new economic opportunities. The results of previous research indicate that digital agriculture not only improves productivity but also proves to be a strategic mechanism for attracting and retaining young people in rural areas. Thus, this work additionally contributes to the broader goal of the European Union—the development of smart, inclusive, and sustainable rural areas, in which digital technologies are not only seen as tools for efficiency but also as key means for integrated and long-term rural development. Full article
Show Figures

Figure 1

22 pages, 12863 KiB  
Article
The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts
by João Antonio Lorençone, Pedro Antonio Lorençone, Lucas Eduardo de Oliveira Aparecido, Guilherme Botega Torsoni, Glauco de Souza Rolim and Fernando Giovannetti Macedo
AgriEngineering 2025, 7(6), 198; https://doi.org/10.3390/agriengineering7060198 - 19 Jun 2025
Viewed by 754
Abstract
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton ( [...] Read more.
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton (Gossypium hirsutum L.) across Brazil under current and future climate conditions using data from the World-Clim and MapBiomas platforms. Four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) were assessed over multiple time periods. Results showed that rising temperatures and reduced rainfall will likely reduce cotton suitability in traditional producing regions such as Bahia. However, areas with potential for cotton cultivation, especially in Mato Grosso, which currently accounts for 90% of national production, remain extensive, with agroclimatic conditions indicating a theoretical expansion potential of up to 40 times the current cultivated area. This projection must be interpreted with caution, as it does not account for economic, logistical, or social constraints. Notably, Brazilian cotton is cultivated with minimal irrigation, low fertilizer input, and high adoption of no-till systems, making it one of the least carbon-intensive globally. Full article
Show Figures

Graphical abstract

16 pages, 3188 KiB  
Article
Sex Expression and Seed Yield Stability in Thai Hemp (Cannabis sativa L.): Seasonal Effects on Dioecious Cultivars for Optimized Seed Production
by Pheeraphan Thongplew, Jakkrapong Kangsopa, Sutheera Hermhuk, Krittiya Tongkoom, Prakash Bhuyar and Nednapa Insalud
Int. J. Plant Biol. 2025, 16(2), 67; https://doi.org/10.3390/ijpb16020067 - 13 Jun 2025
Viewed by 1020
Abstract
This study investigates the environmental regulation of sex expression and seed yield stability in four Thai dioecious hemp (Cannabis sativa L.) cultivars (RPF1, RPF2, RPF3, and RPF4) under different seasonal conditions to optimize seed production. The experiment was conducted across two planting [...] Read more.
This study investigates the environmental regulation of sex expression and seed yield stability in four Thai dioecious hemp (Cannabis sativa L.) cultivars (RPF1, RPF2, RPF3, and RPF4) under different seasonal conditions to optimize seed production. The experiment was conducted across two planting periods (in-season and off-season) to evaluate the effects of varying day lengths and temperatures on growth, reproductive development, and yield. The results showed that shorter day lengths and lower temperatures during the off-season led to an increased proportion of female plants across all cultivars, except RPF3, which exhibited a stable female-to-male ratio. RPF4 had the highest increase in female plants (16%), followed by RPF1 and RPF2 (10%). Seed yield was significantly influenced by seasonal changes, with RPF3 and RPF4 consistently outperforming the other cultivars. In the in-season, RPF3 and RPF4 produced the highest seed yields, reaching 83.4 g/plant and 81.6 g/plant, respectively. During the off-season, both cultivars experienced a decline in seed yield (by 24–26%), primarily due to a reduction in seed production in secondary inflorescences. However, RPF3 compensated for this loss with a 31% increase in seed production at main inflorescences, ensuring yield stability. RPF4 maintained its high yield potential by increasing the proportion of female plants, offsetting the decline in seed yield per plant. Additionally, cumulative growing degree days (CGDD) at harvest were comparable between seasons, with values of 2434 °Cd (in-season) and 2502 °Cd (off-season), indicating that temperature accumulation remained within an optimal range for seed maturation. The study highlights the importance of cultivar selection based on yield component stability and adaptability to seasonal variations. These findings provide valuable insights for improving hemp seed production strategies in Thailand’s diverse agro-climatic conditions. Full article
Show Figures

Figure 1

34 pages, 2908 KiB  
Article
Geographical and Soil-Based Assessment of Yield and Fiber Quality in Two Flax Varieties in Central–Eastern Poland Using the Flax Value Chain Approach
by Piotr Barbaś, Barbara Sawicka, Dominika Skiba and Piotr Pszczółkowski
Land 2025, 14(6), 1178; https://doi.org/10.3390/land14061178 - 29 May 2025
Viewed by 576
Abstract
Flax cultivation is influenced by geographical conditions and soil properties, affecting yield and fiber quality. This study examines the performance of two fiber flax varieties, Artemida and Hermes, in 2021–2023 in central–eastern Poland’s agroclimatic and soil conditions using a value chain approach. Field [...] Read more.
Flax cultivation is influenced by geographical conditions and soil properties, affecting yield and fiber quality. This study examines the performance of two fiber flax varieties, Artemida and Hermes, in 2021–2023 in central–eastern Poland’s agroclimatic and soil conditions using a value chain approach. Field trials were conducted in soils of varying fertility under a continental climate, employing a randomized block design with four replications. Flax straw underwent dew-retting, and long fibers were extracted through laboratory scutching. Results showed significant differences between the varieties. Artemida achieved higher straw yields, particularly in moderately fertile soils, while Hermes produced a higher proportion of long fibers and adapted better to less-fertile soils. Hermes fibers were thinner and more delicate, whereas Artemida fibers were coarser and stronger. The average straw yield of the Artemida variety was higher by 1.5 t ha−1 than that of the Hermes variety. The yield and quality of fiber were determined by soil fertility and climate, and the genotype–environment interaction was of the greatest importance. These findings provide valuable insights for farmers and stakeholders in selecting suitable flax varieties for different soil and climatic conditions in central–eastern Poland. The value chain approach also supports optimizing cultivation practices and improving the economic sustainability of flax production. Full article
Show Figures

Figure 1

34 pages, 6650 KiB  
Article
Salinity of Irrigated and Non-Irrigated Chernozems and Kastanozems: A Case Study of Causes and Consequences in the Pavlodar Region, Kazakhstan
by Dauren Rakhmanov, Bořivoj Šarapatka, Marek Bednář, Jan Černohorský and Kamilla Alibekova
Soil Syst. 2025, 9(2), 57; https://doi.org/10.3390/soilsystems9020057 - 28 May 2025
Viewed by 503
Abstract
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic [...] Read more.
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic Chernozems, Haplic Kastanozems). The focus was on understanding the effects of irrigation and natural factors on soil salinization. Statistical analysis, including descriptive statistics and significance testing, was employed to evaluate differences between soil types, locations, and management practices. The research revealed secondary salinization (EC > 2 dS/m, ESP > 15%) in the topsoil of irrigated Haplic Kastanozems soils in the central Aksu district. This degradation was markedly higher than in non-irrigated plots or irrigated Haplic Chernozems in the northern Irtysh district, highlighting the high vulnerability of Haplic Kastanozems soils under current irrigation management given Aksu’s climatic conditions, which are characterized by high evaporative demand (driven by summer temperatures) and specific precipitation patterns that contribute to soil moisture deficits without irrigation. While ESP indicated sodicity, SAR values remained low. Natural factors, including potentially saline parent materials and likely shallow groundwater dynamics influenced by irrigation, appear to contribute to the observed patterns. The findings underscore the need for implementing optimized irrigation and drainage management, particularly in the Aksu district, potentially including water-saving techniques (e.g., drip irrigation) and selection of salt/sodicity-tolerant crops. A comprehensive approach integrating improved water management, agronomic practices, and potentially soil amendments is crucial for mitigating soil degradation and ensuring sustainable agriculture in the Pavlodar region. Further investigation including groundwater monitoring is recommended. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

20 pages, 1962 KiB  
Article
Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios
by Stanisław Rolbiecki, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Roman Rolbiecki and Tymoteusz Bolewski
Sustainability 2025, 17(11), 4766; https://doi.org/10.3390/su17114766 - 22 May 2025
Viewed by 586
Abstract
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a [...] Read more.
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a forecast period (2030–2100), based on two climate change scenarios: RCP 4.5 and RCP 8.5. Grapevine water requirements were estimated using a crop coefficient tailored to Poland’s agroclimatic conditions, combined with meteorological data on air temperature and precipitation. Monthly crop coefficient values were calculated as the ratio of grapevine potential evapotranspiration, estimated using the Penman–Monteith method, to reference evapotranspiration, calculated using the Treder approach for the period 1981–2010. Precipitation deficits were assessed for normal, medium dry, and very dry years using the Ostromęcki method. Irrigation water demand was estimated for light, medium, and heavy soils using the Pittenger method. The results indicate a significant increase in both water demand and precipitation deficits in the forecast period, regardless of the scenario. In very dry years, irrigation will be necessary for all soil types. In medium dry years, water deficits will primarily affect vineyards on light soils. These findings underscore the urgent need for improvements in irrigation planning, especially in areas with low soil water. They offer practical insights for estimating future water storage needs and implementing precision irrigation adapted to changing climate conditions. Adopting such adaptive strategies is essential for sustaining vineyard productivity and improving water use efficiency. This study also supports the integration of climate projections into regional planning and calls for investment in innovative, water-saving technologies to strengthen the long-term resilience of Poland’s wine industry. Full article
Show Figures

Figure 1

15 pages, 1282 KiB  
Article
Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia
by Mulugeta Sebhatleab, Girmay Gebresamuel, Gebreyohannes Girmay, Yemane Tsehaye and Mitiku Haile
Crops 2025, 5(3), 32; https://doi.org/10.3390/crops5030032 - 20 May 2025
Viewed by 454
Abstract
Wheat is a vital staple crop addressing significant nutritional needs. However, it faces micronutrient deficiencies in Ethiopia, prompting the use of balanced nutrient fertilizers to obtain better yields, nutrient concentration, and nutritional quality. This study investigated the effect of different P and Zn [...] Read more.
Wheat is a vital staple crop addressing significant nutritional needs. However, it faces micronutrient deficiencies in Ethiopia, prompting the use of balanced nutrient fertilizers to obtain better yields, nutrient concentration, and nutritional quality. This study investigated the effect of different P and Zn fertilizer combinations on wheat yield and nutrient use efficiency across three locations in Tigray, Ethiopia. A randomized complete block design (RCBD) was used with four P levels (0, 10, 20, and 30 kg P ha⁻1), and three Zn levels (0, 5, and 10 kg Zn ha⁻1) in three replications. A balanced application of P and Zn fertilizers significantly increased wheat grain and biomass yields, while applying higher rates of both nutrients (i.e., 30 kg P ha⁻1 and 10 kg Zn ha⁻1) reduced yields. The combined application of 20 kg P ha⁻1 and 5 kg Zn ha⁻1 achieved the best yield, which also improved Zn use efficiency. Increasing Zn application (from 5 to 10 kg Zn ha⁻1) while reducing P (from 20 to 10 kg P ha⁻1) enhanced Zn concentration in wheat grain. These findings highlight the importance of carefully managing P and Zn fertilization to optimize grain yield and Zn bioavailability, contributing to improved food security in diverse agro-climatic conditions. Full article
Show Figures

Figure 1

16 pages, 1667 KiB  
Article
Determinants of Farmers’ Strategies for Adaptation to Climate Change in Agricultural Production in Afghanistan
by Senthilnathan Samiappan, Meraj Sarwary, Saravanakumar Venkatachalam, Ezatullah Shinwari, Kokilavani Sembanan, Jeyalakshmi Poornalingam, Kiruthika Natarajan, Nirmaladevi Muthusamy, Indumathi Veeramuthu Murugiah, Satheeshkumar Natesan, Anitha Thiyagarajan and Subasri Kathiravan
World 2025, 6(2), 59; https://doi.org/10.3390/world6020059 - 6 May 2025
Cited by 1 | Viewed by 1615
Abstract
Climate variability and extremes adversely affect the agricultural production system, food security, livestock sector, and water resources. With the cumulative effects of climate variability, there is a need to anticipate and develop appropriate adaptation strategies to cope with changing climatic conditions. It is [...] Read more.
Climate variability and extremes adversely affect the agricultural production system, food security, livestock sector, and water resources. With the cumulative effects of climate variability, there is a need to anticipate and develop appropriate adaptation strategies to cope with changing climatic conditions. It is necessary to study the adaptation strategies that are to be followed for climate change to examine the ability of vulnerable communities and people, frequently affected by drought and other climate-related risks, to adapt to climate change impacts. Hence, the present study examined the determinants of various climate change adaptation strategies followed by farmers as a measure to face climate variability, which will be ultimately beneficial and enlightening to policymakers to gain knowledge about the measures to be taken to mitigate the impact of climate change. The study was undertaken using data collected from 105 farm households with an organized pre-tested interview schedule in the central agro-climatic zone of Afghanistan. The multivariate probit econometric model was used to analyze the factors responsible for major adaptation strategies to mitigate the impact of climate change. The key findings of the model indicated that the probability of educated farmers migrating to the non-agricultural sector for employment has increased by 1.3 percent, and those who have more land area have adopted a reduction in irrigation by 5.2 percent as an adaptive mechanism. The study also found that having access to technical guidance from extension officials increased the likelihood of farmers changing their cropping pattern by 18.6 percent and of diversifying their farms by 19.2 percent. On the other hand, expert guidance reduced the likelihood of drilling new bore wells by 20.5 percentage points and decreased the probability of selling livestock by 10.8 percentage points. The results of the study provide policy insights to improve the ability of farmers to modify their practices through improvement in extension services, irrigation infrastructure facilities, watershed development, and climate-resilient agricultural systems. Full article
Show Figures

Figure 1

19 pages, 1621 KiB  
Article
Validation of QTLs for Resistance to Pre-Harvest Sprouting in a Panel of European Wheat Cultivars
by Bruno Rajković, Ana Lovrić, Marko Maričević, Dario Novoselović and Hrvoje Šarčević
Plants 2025, 14(9), 1342; https://doi.org/10.3390/plants14091342 - 29 Apr 2025
Viewed by 605
Abstract
Pre-harvest sprouting (PHS) of wheat poses a major challenge to global food security due to its negative impact on grain yield and quality. In the present study, we conducted the validation of previously published markers or functional markers associated with PHS resistance in [...] Read more.
Pre-harvest sprouting (PHS) of wheat poses a major challenge to global food security due to its negative impact on grain yield and quality. In the present study, we conducted the validation of previously published markers or functional markers associated with PHS resistance in a panel of 200 wheat cultivars adapted to Southeastern European conditions. In field experiments conducted in four environments in Croatia, the germination index (GI) was assessed, and significant genetic, environmental, and genotype–environment interactions were detected. The broad-sense heritability for GI was high (0.86), confirming the predominant role of genetic factors in determining PHS resistance. Twenty-two polymorphic SNP markers were analyzed for their effects on GI, of which nine markers from chromosomes 3A, 3B, 4A, 5A, and 7B showed significant genotypic effects across environments, especially TaMKK3-A and wsnp_Ex_rep_c66324_64493429. In addition, nine marker combinations were identified, which showed significant differences in GI between allele combinations. Overall, this study elucidates the genetic basis of PHS resistance in wheat cultivars adapted to the agro-climatic conditions of Southeast Europe and provides insights for marker-assisted breeding strategies to improve PHS resistance. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

32 pages, 3198 KiB  
Article
Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens
by Maria Magdalena Poenaru, Liviu Florin Manta, Claudia Gherțescu and Alina Georgiana Manta
Horticulturae 2025, 11(5), 449; https://doi.org/10.3390/horticulturae11050449 - 22 Apr 2025
Cited by 1 | Viewed by 2109
Abstract
This study conducts a bibliometric and content analysis based on publications indexed in the Web of Science Core Collection, aiming to map the evolution and key themes in horticultural research in the context of technological innovation and sustainability. The results reveal a strong [...] Read more.
This study conducts a bibliometric and content analysis based on publications indexed in the Web of Science Core Collection, aiming to map the evolution and key themes in horticultural research in the context of technological innovation and sustainability. The results reveal a strong orientation toward digitalization and automation, particularly through the integration of artificial intelligence, mechatronic systems, and sensor-based monitoring in crop management. In the field of biotechnology, keywords such as gene expression, genetic diversity, and micropropagation reflect a sustained research interest in improving crop resilience and disease resistance through genetic and in vitro propagation techniques. Furthermore, concepts such as environmental control, soilless culture, energy efficiency, and co-generation highlight the focus on optimizing growing conditions and integrating renewable energy sources into protected horticultural systems. The geographical distribution of studies highlights increased academic output in countries like India and regions of sub-Saharan Africa, reflecting a global interest in transferring advanced technologies to vulnerable areas. Moreover, collaboration networks are dominated by leading institutions such as Wageningen University, which act as hubs for knowledge diffusion. The findings suggest that future research should prioritize the development of durable, energy-efficient horticultural technologies adapted to various agro-climatic zones. It is recommended that policymakers and stakeholders support interdisciplinary research initiatives, promote knowledge transfer mechanisms, and ensure equitable access to innovation for smallholder farmers and emerging economies. Full article
Show Figures

Figure 1

Back to TopTop