Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Experimental Sites
2.2. Treatments and Experimental Design
2.3. Data Collection and Measurements
2.3.1. Soil Sampling and Analysis
2.3.2. Yield Data and Nutrient Uptake Efficiency
2.4. Data Analysis
3. Results
3.1. Effect of Zn and P on Biomass and Grain Yield of Wheat
3.2. Effect of Zn and P Application on Grain Nutrient Concentration
3.3. Nutrient Use Efficiency of Wheat
3.4. Pearson Correlation Analysis: Yield, Nutrient Concentration, and Nutrient Use Efficiency of Wheat
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.-J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Reynolds, M.P., Braun, H.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. ISBN 978-3-030-90672-6. [Google Scholar]
- FAOSTAT Data: Production. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 October 2024).
- Victor Roch, G.; Maharajan, T.; Ceasar, S.A.; Ignacimuthu, S. The Role of PHT1 Family Transporters in the Acquisition and Redistribution of Phosphorus in Plants. Crit. Rev. Plant Sci. 2019, 38, 171–198. [Google Scholar] [CrossRef]
- Gadisa, N. Soil Nutrient Status and Farmers’ Perception on Soil Fertility in Ethiopia: Review. J. Biol. Agric. Healthc. 2021, 11, 24–31. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I.; Van Beek, C. Phosphorus Response and Fertilizer Recommendations for Wheat Grown on Nitisols in the Central Ethiopian Highlands. Commun. Soil Sci. Plant Anal. 2015, 46, 2411–2424. [Google Scholar] [CrossRef]
- Hailu, H.; Mamo, T.; Keskinen, R.; Karltun, E.; Gebrekidan, H.; Bekele, T. Soil Fertility Status and Wheat Nutrient Content in Vertisol Cropping Systems of Central Highlands of Ethiopia. Agric. Food Secur. 2015, 4, 19. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Mersha, S.; Habtu, S. Nitrogen and Sulphur Fertilizers Effects on Yield, Nitrogen Uptake and Nitrogen Use Efficiency of Upland Rice Variety on Irrigated Fulvisols of the Afar Region, Ethiopia. J. Soil Sci. Environ. Manag. 2013, 4, 62–70. [Google Scholar] [CrossRef]
- Hui, X.; Wang, X.; Luo, L.; Wang, S.; Guo, Z.; Shi, M.; Wang, R.; Lyons, G.; Chen, Y.; Cakmak, I.; et al. Wheat Grain Zinc Concentration as Affected by Soil Nitrogen and Phosphorus Availability and Root Mycorrhizal Colonization. Eur. J. Agron. 2022, 134, 126469. [Google Scholar] [CrossRef]
- Duga, R. Effect of Nitrogen, Phosphorus and Sulfur Nutrients on Growth and Yield Attributes of Bread Wheat. J. Ecol. Nat. Res. 2021, 5, 355–365. [Google Scholar] [CrossRef]
- Gebreslassie, H.B.; Demoz, H.A. A Review on: Effect of Phosphorus Fertilizer on Crop Production in Ethiopia. J. Biol. Agric. Healthc. 2016, 6, 117–120. [Google Scholar]
- Wessells, K.R.; Brown, K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef]
- Abera, Y.; Kebede, M. Assessment on the Status of Some Micronutrients in Vertisols of the Central Highlands of Ethiopia. Int. Res. J. Agric. Sci. Soil Sci. 2013, 3, 169–173. [Google Scholar]
- Abera, Y.; Kassa, S. Status of Soil Micronutrients in Ethiopian Soils: A Review. J. Environ. Earth Sci. 2017, 7, 85–90. [Google Scholar]
- Belay, A.; Gashu, D.; Joy, E.J.M.; Lark, R.M.; Chagumaira, C.; Likoswe, B.H.; Zerfu, D.; Ander, E.L.; Young, S.D.; Bailey, E.H.; et al. Zinc Deficiency Is Highly Prevalent and Spatially Dependent over Short Distances in Ethiopia. Sci. Rep. 2021, 11, 6510. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in SoilS and Crop Nutrition, 2nd ed.; International Zinc Association; International Fertilizer Industry Association: Brussels, Belgium; Paris, France, 2008. [Google Scholar]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.A.; Aydin, N.; Wang, Y.; Arisoy, Z.; Erdem, H.; Yazici, A.; Gokmen, O.; et al. Biofortification and Localization of Zinc in Wheat Grain. J. Agric. Food Chem. 2010, 58, 9092–9102. [Google Scholar] [CrossRef]
- Moreno-Lora, A.; Delgado, A. Factors Determining Zn Availability and Uptake by Plants in Soils Developed under Mediterranean Climate. Geoderma 2020, 376, 114509. [Google Scholar] [CrossRef]
- Recena, R.; García-López, A.M.; Delgado, A. Zinc Uptake by Plants as Affected by Fertilization with Zn Sulfate, Phosphorus Availability, and Soil Properties. Agronomy 2021, 11, 390. [Google Scholar] [CrossRef]
- Simtow, F. An Assessment of National Fertiliser Policies, Regulations and Standards for Ethiopia; African Fertilizer and Agribusiness Partnership: Newark, NJ, USA, 2015; pp. 1–35. [Google Scholar]
- Elias, E.; Okoth, P.F.; Smaling, E.M.A. Explaining Bread Wheat (Triticum Aestivum) Yield Differences by Soil Properties and Fertilizer Rates in the Highlands of Ethiopia. Geoderma 2019, 339, 126–133. [Google Scholar] [CrossRef]
- Terfa, A.E.; Mellisse, B.T.; Kebede, M.M.; Elias, E.; Yadessa, G.B. Effect of Blended Fertilizer Application on Bread Wheat Yield and Profitability on Andosols of Southwestern Highlands of Ethiopian. Commun. Soil Sci. Plant Anal. 2022, 54, 73–82. [Google Scholar] [CrossRef]
- Khattak, S.G.; Dominy, P.J.; Ahmad, W. Effect of Zn as Soil Addition and Foliar Application on Yield and Protein Content of Wheat in Alkaline Soil. J. Natl. Sci. Found. Sri Lanka 2015, 43, 303–312. [Google Scholar] [CrossRef]
- Abay, K.A.; Abay, M.H.; Amare, M.; Berhane, G.; Aynekulu, E. Mismatch between Soil Nutrient Deficiencies and Fertilizer Applications: Implications for Yield Responses in Ethiopia. Agric. Econ. 2022, 53, 215–230. [Google Scholar] [CrossRef]
- Mousavi, S.R. Zinc in Crop Production and Interaction with Phosphorus. Aust. J. Basic App. Sci. 2011, 5, 1503–1509. [Google Scholar]
- Singh, K.; Verma, G.; Manchanda, J.S. Soil and Foliar Zinc Application for Enhancing Grain Zinc Content of Aromatic Rice Genotypes Grown on Zinc Deficient and Sufficient Soil. J. Soil Water Conserv. 2020, 19, 223–227. [Google Scholar] [CrossRef]
- Weldu, Y.; Haile, M.; Habtegeriel, K. Effect of Zinc and Phosphorus Fertilizers Application on Yield and Yield Components of Faba Bean (Vicia Faba L.) Grown in Calcaric Cambisol of Semi-Arid Northern Ethiopia. J. Soil Sci. Environ. Manag. 2012, 3, 320–326. [Google Scholar] [CrossRef]
- Yohannes, D.; Kiros, H.; Yirga, W. Inoculation, Phosphorous and Zinc Fertilization Effects on Nodulation, Yield and Nutrient Uptake of Faba Bean (Vicia Faba L.) Grown on Calcaric Cambisol of Semiarid Ethiopia. J. Soil Sci. Environ. Manag. 2015, 6, 9–15. [Google Scholar] [CrossRef]
- Trivedi, V.K.; Raza, M.B.; Dimree, S.; Verma, A.K.; Pawar, A.B.; Upadhyay, D.P. Effect of Balanced Use of Nutrients on Yield Attributes, Yield and Protein Content of Wheat (Triticum Aestivum). Indian J. Agri. Sci. 2021, 90, 2369–2372. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Kumar, S.; Kumar, S.; Sharma, J. Impact of Application Methods and Doses of Micronutrients on Wheat’ Grain Yield, Nutrient Content and Their Uptake. Int. J. Plant Soil Sci. 2023, 35, 177–188. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Claessens, A.; Lefebvre, L.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L. Plant-Based Diagnostic Tools for Evaluating Wheat Nitrogen Status. Crop. Sci. 2010, 50, 2580–2590. [Google Scholar] [CrossRef]
- Saleem Kubar, M.; Feng, M.; Sayed, S.; Hussain Shar, A.; Ali Rind, N.; Ullah, H.; Ali Kalhoro, S.; Xie, Y.; Yang, C.; Yang, W.; et al. Agronomical Traits Associated with Yield and Yield Components of Winter Wheat as Affected by Nitrogen Managements. Saudi J. Biol. Sci. 2021, 28, 4852–4858. [Google Scholar] [CrossRef]
- Watson, M.E. Interlaboratory Comparison in the Determination of Nutrient Concentrations of Plant Tissue. Commun. Soil Sci. Plant Anal. 1981, 12, 601–617. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; FAO fertilizer and plant nutrition bulletin; FAO: Rome, Italy, 2008; ISBN 978-92-5-105981-4. [Google Scholar]
- Esteves, E.; Locatelli, G.; Bou, N.A.; Ferrarezi, R.S. Sap Analysis: A Powerful Tool for Monitoring Plant Nutrition. Horticulture 2021, 7, 426. [Google Scholar] [CrossRef]
- Tarekegn, T.; Shiferaw, L.; Sirak, T.; Shimelis, F.; Maarten, W.; Vince, U. Hydrogeological Mapping for Climate Resilient WASH in Ethiopia—LOT 1; Target Sites Ofla woreda, Tigray; ACACIAWATER: Gouda, The Netherlands, 2022; pp. 1–59. [Google Scholar]
- Gebreyohannes, T.; Smedt, F.D.; Hagos, M.; Gebresilassie, S.; Amare, K.; Kabeto, K.; Hussein, A.; Nyssen, J.; Bauer, H.; Moeyersons, J.; et al. Large-Scale Geological Mapping of the Geba Basin, Northern Ethiopia. In Proceedings of the Tigray Livelihood Paper No 9; VLIR—Mekelle University IUC Program: Mekelle, Ethiopia, 2010; pp. 1–46. [Google Scholar]
- Andrea, S.; Paola, M.; Francesco, D.; Claudio, F.; Bekele, A. Erosion-Tectonics Feedbacks in Shaping the Landscape: An Example from the Mekele Outlier (Tigray, Ethiopia). J. Afr. Earth Sci. 2017, 129, 870–886. [Google Scholar] [CrossRef]
- Gebremeskel, Y.; Gebrehiwot, W.; Gebresamuel, G. CASCAPE Experiences in Integrated Soil Fertility and Nutrient Management in Southern; Mekelle University: Mekelle, Ethiopia, 2020; pp. 1–46. [Google Scholar]
- Nyssen, J.; Naudts, J.; De Geyndt, K.; Haile, M.; Poesen, J.; Moeyersons, J.; Deckers, J. Soils and Land Use in the Tigray Highlands (Northern Ethiopia). Land Degrad. Dev. 2008, 19, 257–274. [Google Scholar] [CrossRef]
- Keram, K.S.; Sharma, B.L.; Kewat, M.L.; Sharma, G.D. Effect of Zinc Fertilization on Growth, Yield and Quality of Wheat Grown Under Agro-Climatic Condition of Kymore Plateau of Madhya Pradesh, India. Bioscan 2014, 9, 1479–1483. [Google Scholar]
- Arshad, M.; Adnan, M.; Ahmed, S.; Khan, A.K.; Ali, I.; Ali, M.; Ali, A.; Khan, A.; Kamal, M.A.; Gul, F.; et al. Integrated Effect of Phosphorus and Zinc on Wheat Crop. Am. Eurasian J. Agric. Environ. Sci. 2016, 16, 455–459. [Google Scholar] [CrossRef]
- Ute, G.; Shiferaw, B.; Addis, A. Optimization of Fertilizer Recommendation for Bread Wheat Production at Adiyo District of Kaffa Zone, Southwestern Ethiopia. Afr. J. Agric. Res. 2021, 17, 1380–1385. [Google Scholar] [CrossRef]
- Shewangizaw, B.; Kassie, K.; Assefa, S.; Feyisa, T. On Farm Verification of Soil Test-Based Phosphorus Fertilizer Recommendations for Bread Wheat (Triticum Aestivum L.) on the Vertisols of Central Highlands of Ethiopia. Cogent Food Agric. 2020, 6, 1807811. [Google Scholar] [CrossRef]
- ATA Soil Fertility Status and Fertilizer Recommendation Atlas for Tigray Regional State, Ethiopia 2014. Available online: https://data.ata.gov.et/dataset/4aaf6bc8-cec3-49f9-9071-2cb162a715f3/resource/80b268d3-20b9-4e43-b977-da0d62526bee/download/tigray-national-regional-state-soil-fertility-status-and-fertilizer-recommendation-atlas.pdf (accessed on 13 December 2024).
- Brhane, H.; Berhe, D. Potassium and Micronutrient Fertilization for Enhancement of Tef Yield in Vertisols of Hawzen and Enderta Districts, Tigray Region, Ethiopia. Int. J. Plant Soil Sci. 2023, 35, 89–96. [Google Scholar] [CrossRef]
- Haile, W.; Mamo, T. The Effect of Potassium on the Yields of Potato and Wheat Grown on the Acidic Soils of Chencha and Hagere Selam in Southern Ethiopia. e-ifc 2013, 35, 3–8. [Google Scholar]
- Selassie, G.Y.; Molla, E.; Muhabie, D.; Manaye, F.; Dessie, D. Response of Crops to Fertilizer Application in Volcanic Soils. Heliyon 2020, 6, e05629. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of Thechromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, and Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 595–625. ISBN 9780891180722. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Departmenet of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Chapman, H.D. Cation-Exchange Capacity! In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Agronomy Monographs; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; Volume 1, pp. 891–901. ISBN 978-0-89118-374-7. [Google Scholar]
- Jones, J. Laboratory Guide for Conducting Soil Tests and Plant Analysis, 1st ed.CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-429-13211-7. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Amer. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Tadesse, K.; Abdulkadir, B.; Admasu, W.; Habte, D.; Admasu, A.; Tadesse, A.; Debebe, A. Soil Test-Based Phosphorus Fertilizer Recommendation for Malting Barley Production on Nitisols. Open Agric. 2022, 7, 171–180. [Google Scholar] [CrossRef]
- Gurjer, K.; Sharma, S.; Yadav, K. Establishment of Critical Limit of Zinc for Wheat Crop. Pharma. Innov. J. 2022, 11, 1457–1461. [Google Scholar]
- Minitab. Getting Started with Minitab Statistical Software, Minitab 2021, Version 21. Minitab: State College, PA, USA; pp. 4–63. Available online: www.minitab.com (accessed on 13 December 2024).
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of Phosphorus Compounds in Plant Tissues: From Colourimetry to Advanced Instrumental Analytical Chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Elango, D.; Kanatti, A.; Wang, W.; Devi, A.R.; Ramachandran, M.; Jabeen, A. Analytical Methods for Iron and Zinc Quantification in Plant Samples. Commun. Soil Sci. Plant Anal. 2021, 52, 1069–1075. [Google Scholar] [CrossRef]
- Reich, M.; De Kok, L.J. Physiological Basis of Plant Nutrient Use Efficiency—Concepts, Opportunities and Challenges for Its Improvement. In Nutrient Use Efficiency in Plants Concepts and Approaches; Hawkesford, M.J., Kopriva, S., De Kok, L.J., Eds.; Plant Ecophysiology; Springer International Publishing: Cham, Switzerland, 2014; Volume 10, ISBN 978-3-319-10634-2. [Google Scholar]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency: Measurement, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Potash Institute (IPI); International Plant Nutrition Institute (IPNI); International Water Management Institute (IWMI); International Fertilizer Industry Association (IFA): Paris, France, 2015; pp. 8–38. ISBN 979-10-92366-02-0. [Google Scholar]
- Godebo, T.; Laekemariam, F.; Loha, G. Nutrient Uptake, Use Efficiency and Productivity of Bread Wheat (Triticum Aestivum L.) as Affected by Nitrogen and Potassium Fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ. Syst. Res. 2021, 10, 12. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A Test of Goodness of Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Moraga-Díaz, R.; Leiva-Araos, A.; García, J. A Robust Statistical Methodology for Measuring Enterprise Agility. Appl. Sci. 2023, 13, 8445. [Google Scholar] [CrossRef]
- Levene, H. Robust Tests for Equality of Variances. In Contributions to Probability and Statistics; Essays in Honor of Harold Hotelling; Stanford University Press: Stanford, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef]
- Goedhart, P.W.; Thissen, T.N.M. Biometris GenStat Procedure Library Manual, 17th ed.; Wageningen UR: Wageningen, The Netherlands, 2014; pp. 1–190. [Google Scholar]
- Noonari, S.; Kalhoro, S.A.; Ali, A.; Mahar, A.; Raza, S.; Ahmed, M.; Shah, S.F.A.; Baloch, S.U. Effect of Different Levels of Phosphorus and Method of Application on the Growth and Yield of Wheat. Nat. Sci. 2016, 8, 305–314. [Google Scholar] [CrossRef]
- Ghafoor, A.M.R. Effect of Phosphorus Fertilizer Application on Some Yield Components of Wheat and Phosphorus Use Efficiency in Calcareous Soil. J. Dyn. Agric. Res. 2016, 3, 46–52. [Google Scholar]
- Liu, L.; Miao, Q.; Wang, H.; Xue, Y.; Qi, S.; Zhang, J.; Li, J.; Meng, Q.; Cui, Z. Optimizing Phosphorus Application for Winter Wheat Production in the Coastal Saline Area. Agronomy 2022, 12, 2966. [Google Scholar] [CrossRef]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, D.; Liu, Y.; Chen, X.; Zou, C. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum Aestivum L.). J. Agric. Food Chem. 2017, 65, 1473–1482. [Google Scholar] [CrossRef]
- Menna, A.; Semoka, J.; Amuri, N.; Mamo, T. Wheat Response to Applied Nitrogen, Sulfur, and Phosphorous in Three Representative Areas of the Central Highlands of Ethiopia -I. Int. J. Plant Soil Sci. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Haileselassie, B.; Bedadi, B.; Kidanu, S.; Mamo, T. Effect of Zinc Containing Fertilizers on Yield and Grain Quality of Tef [(Eragrostis Tef (Zucc.) Trotter] in Some Soils of Tigray Region, Ethiopia. Ethiop. J. Agric. Sci. 2018, 28, 23–35. [Google Scholar]
- Khan, F.U.; Khan, A.A.; Qu, Y.; Zhang, Q.; Adnan, M.; Fahad, S.; Gul, F.; Ismail, M.; Saud, S.; Hassan, S.; et al. Enhancing Wheat Production and Quality in Alkaline Soil: A Study on the Effectiveness of Foliar and Soil Applied Zinc. PeerJ 2023, 11, e16179. [Google Scholar] [CrossRef]
- Firdous, S.; Agarwal, B.; Chhabra, V. Zinc-Fertilization Effects on Wheat Yield and Yield Components. J. Pharmacogn. Phytochem. 2018, 7, 3497–3499. [Google Scholar]
- Sánchez-Rodríguez, A.R.; Rey, M.-D.; Nechate-Drif, H.; Castillejo, M.Á.; Jorrín-Novo, J.V.; Torrent, J.; Del Campillo, M.C.; Sacristán, D. Combining P and Zn Fertilization to Enhance Yield and Grain Quality in Maize Grown on Mediterranean Soils. Sci. Rep. 2021, 11, 7427. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, D.; Kumar, R.; Sachan, R.; Kumar, K.; Singh, A.; Tiwari, A.; Singh, K.K. Response of Different Level of Phosphorus, Zinc and Rhizobium Inoculation on Growth Yield Attributes and Yield of Chickpea (Cicer Aretinum L.). Int. J. Environ. Clim. Change 2022, 12, 1954–1964. [Google Scholar] [CrossRef]
- Ayyar, S.; Appavoo, S.; N, M. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize ( Zea Mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Aboyeji, C.M.; Dunsin, O.; Adekiya, A.O.; Suleiman, K.O.; Chinedum, C.; Okunlola, F.O.; Joseph, A.; Ejue, S.W.; Adesola, O.O.; Olofintoye, T.A.J.; et al. Synergistic and Antagonistic Effects of Soil Applied P and Zn Fertilizers on the Performance, Minerals and Heavy Metal Composition of Groundnut. Open Agric. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient Interactions in Crop Plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Dargie, S.; Girma, T.; Chibsa, T.; Kassa, S.; Boke, S.; Abera, A.; Haileselassie, B.; Addisie, S.; Amsalu, S.; Haileselassie, M.; et al. Balanced Fertilization Increases Wheat Yield Response on Different Soils and Agroecological Zones in Ethiopia. Exp. Agric. 2022, 58, e23. [Google Scholar] [CrossRef]
- Soumya, S.; Verma, B.C.; Debarati, B.; Somnath, R. Management of Phosphorus-Zinc Antagonism to Improve Nutrient Use Efficiency. Food Sci. Rep. 2022, 3, 39–42. [Google Scholar]
- Ova, E.A.; Kutman, U.B.; Ozturk, L.; Cakmak, I. High Phosphorus Supply Reduced Zinc Concentration of Wheat in Native Soil but Not in Autoclaved Soil or Nutrient Solution. Plant Soil 2015, 393, 147–162. [Google Scholar] [CrossRef]
- Mohammed, S.B.; Dzidzienyo, D.K.; Yahaya, A.; Umar, M.L.; Ishiyaku, M.F.; Tongoona, P.B.; Gracen, V. High Soil Phosphorus Application Significantly Increased Grain Yield, Phosphorus Content but Not Zinc Content of Cowpea Grains. Agronomy 2021, 11, 802. [Google Scholar] [CrossRef]
- Wang, M.; Kong, F.; Liu, R.; Fan, Q.; Zhang, X. Zinc in Wheat Grain, Processing, and Food. Front. Nutr. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Y.; Zhang, W.; Chen, X.; Zou, C. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and Thereby Reduce Zinc Deficiency in Humans. Nutrients 2017, 9, 465. [Google Scholar] [CrossRef]
- Kumar, D.; Patel, K.C.; Ramani, V.P.; Shukla, A.K.; Behera, S.K.; Patel, R.A. Influence of Different Rates and Frequencies of Zn Application to Maize–Wheat Cropping on Crop Productivity and Zn Use Efficiency. Sustainability 2022, 14, 15091. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, X.; Zhang, M.; Wei, P.; Chai, R.; Wang, Y.; Zhang, C.; Siddique, K.H.M. Improving Wheat Yield and Phosphorus Use Efficiency through the Optimization of Phosphorus Fertilizer Types Based on Soil P Pool Characteristics in Calcareous and Non-Calcareous Soil. Agronomy 2023, 13, 928. [Google Scholar] [CrossRef]
- Zhu, Y.; Smith, S.E.; Smith, F.A. Zinc (Zn)-Phosphorus (P) Interactions in Two Cultivars of Spring Wheat (Triticum Aestivum L.) Differing in P Uptake Efficiency. Ann. Bot. 2001, 88, 941–945. [Google Scholar] [CrossRef]
- Shabnam, R.; Iqbal, M.T. Phosphorus Use Efficiency by Wheat Plants That Grown in an Acidic Soil. Braz. J. Sci. Technol. 2016, 3, 18. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Wang, X.; Liu, D.; Zou, C.; Chen, X. Quantitative Evaluation of the Grain Zinc in Cereal Crops Caused by Phosphorus Fertilization. A Meta-Analysis. Agron. Sustain. Dev. 2021, 41, 6. [Google Scholar] [CrossRef]
- Yu, B.-G.; Chen, X.-X.; Cao, W.-Q.; Liu, Y.-M.; Zou, C.-Q. Responses in Zinc Uptake of Different Mycorrhizal and Non-Mycorrhizal Crops to Varied Levels of Phosphorus and Zinc Applications. Front. Plant Sci. 2020, 11, 606472. [Google Scholar] [CrossRef]
- Jayara, A.S.; Kumar, R.; Pandey, P.; Singh, S.; Shukla, A.; Singh, A.P.; Pandey, S.; Meena, R.L.; Reddy, K.I. Boosting Nutrient Use Efficiency Through Fertilizer Use Management. Appl. Ecol. Environ. Res. 2023, 21, 2931–2952. [Google Scholar] [CrossRef]
- Amanullah; Inamullah; Alwahibi, M.S.; Elshikh, M.S.; Alkahtani, J.; Muhammad, A.; Khalid, S.; Imran; Ahmad, M.; Khan, N.; et al. Phosphorus and Zinc Fertilization Improve Zinc Biofortification in Grains and Straw of Coarse vs. Fine Rice Genotypes. Agronomy 2020, 10, 1155. [Google Scholar] [CrossRef]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and Strategies for Enhancing Zinc Availability in Plants for Sustainable Agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
Parameters * | Research Sites | ||
---|---|---|---|
Seret | Adigolo | Mekelle | |
Sand (%) | 25.4 | 22.21 | 34.50 |
Silt (%) | 30.2 | 32.29 | 27.15 |
Clay (%) | 44.4 | 45.50 | 38.35 |
Textural class | C | C | CL |
pH (H2O) | 7.84 | 7.25 | 7.92 |
SOC (%) | 0.95 | 1.03 | 0.71 |
SOM (%) | 1.64 | 1.78 | 1.22 |
TN (%) | 0.18 | 0.19 | 0.17 |
Av P (mg kg−1) | 6.55 | 6.91 | 5.46 |
Zn (mg kg−1) | 0.73 | 0.98 | 0.65 |
CEC (cmol(+) kg−1) | 45.5 | 42.25 | 38.56 |
Exch K (cmol(+) kg−1) | 1.22 | 1.21 | 1.20 |
Exch Ca (cmol(+) kg−1) | 28.3 | 25.16 | 33.25 |
Exch Mg (cmol(+) kg−1) | 10.1 | 8.72 | 12.42 |
Site/Treatments | Biomass Yield (t ha−1) | Grain Yield (t ha−1) |
---|---|---|
Site | ||
Adigolo | 12.95 a | 4.46 a |
Mekelle | 9.54 c | 3.81 c |
Seret | 11.36 b | 4.32 b |
LSD (0.05) | 0.101 | 0.03 |
Zinc | ||
Zn 0 kg ha−1 | 9.95 c | 3.67 c |
Zn 5 kg ha−1 | 12.19 a | 4.53 a |
Zn 10 kg ha−1 | 11.71 b | 4.38 b |
LSD (0.05) | 0.101 | 0.03 |
Phosphorus | ||
P 0 kg ha−1 | 8.76 d | 3.11 d |
P 10 kg ha−1 | 10.47 c | 3.87 c |
P 20 kg ha−1 | 13.68 a | 5.30 a |
P 30 kg ha−1 | 12.22 b | 4.50 b |
LSD (0.05) | 0.117 | 0.034 |
Treatment | Grain Yield (t ha−1) | Biomass (t ha−1) | |||||
---|---|---|---|---|---|---|---|
Zn (kg ha−1) | P (kg ha−1) | Seret | Adigolo | Mekelle | Seret | Adigolo | Mekelle |
0 | 0 | 2.57 j | 2.83 k | 2.18 k | 6.72 k | 8.47 k | 5.83 k |
0 | 10 | 3.37 i | 3.67 i | 3.05 i | 8.59 j | 10.90 i | 7.82 i |
0 | 20 | 4.88 d | 4.99 d | 4.35 d | 13.39 c | 15.04 c | 10.13 e |
0 | 30 | 4.16 g | 4.36 f | 3.61 g | 10.64 g | 12.71 f | 9.15 g |
5 | 0 | 3.39 i | 3.29 j | 2.66 j | 9.11 i | 9.93 j | 6.90 j |
5 | 10 | 4.43 f | 4.61 e | 3.85 f | 9.76 h | 12.15 g | 10.76 d |
5 | 20 | 5.81 a | 6.05 a | 5.36 a | 15.38 a | 17.10 a | 12.69 a |
5 | 30 | 5.17 c | 5.19 c | 4.59 c | 14.45 b | 16.54 b | 11.47 c |
10 | 0 | 3.84 h | 3.91 h | 3.32 h | 11.95 e | 11.52 h | 8.43 h |
10 | 10 | 4.05 g | 4.11 g | 3.67 g | 11.46 f | 13.15 e | 9.61 f |
10 | 20 | 5.37 b | 5.79 b | 5.06 b | 12.55 d | 14.38 d | 12.45 b |
10 | 30 | 4.73 e | 4.69 e | 4.01 e | 12.35 d | 13.47 e | 9.19 g |
LSD (0.05) | 0.115 | 0.121 | 0.071 | 0.46 | 0.335 | 0.239 |
Treatment | Grain Zn (mg kg−1) | Grain P (g kg−1) | |||||
---|---|---|---|---|---|---|---|
Zn (kg ha−1) | P (kg ha−1) | Adigolo | Seret | Mekelle | Adigolo | Seret | Mekelle |
0 | 0 | 19.57 k | 17.55 l | 16.77 k | 2.95 k | 2.23 k | 2.18 l |
5 | 0 | 40.75 e | 35.68 f | 33.93 e | 3.20 j | 3.24 i | 2.94 j |
10 | 0 | 49.91 b | 43.78 b | 43.45 b | 3.64 i | 3.06 j | 2.54 k |
0 | 10 | 28.43 i | 26.58 j | 25.39 i | 4.13 g | 3.24 i | 3.51 g |
5 | 10 | 43.85 d | 38.83 d | 35.81 d | 3.98 h | 3.56 g | 3.47 h |
10 | 10 | 55.48 a | 48.14 a | 47.13 a | 3.72 i | 3.4 h | 3.2 i |
0 | 20 | 31.17 h | 29.26 i | 27.69 h | 4.65 d | 3.95 f | 4.35 c |
5 | 20 | 37.88 f | 33.51 g | 32.41 f | 4.5 e | 4.65 c | 3.86 e |
10 | 20 | 47.85 c | 41.61 c | 40.28 c | 4.3 f | 4.11 e | 3.69 f |
0 | 30 | 26.42 j | 24.27 k | 23.02 j | 5.18 b | 4.27 d | 5.05 a |
5 | 30 | 34.99 g | 31.20 h | 30.94 g | 5.70 a | 5.35 a | 4.81 b |
10 | 30 | 41.56 e | 37.16 e | 34.3 e | 5.09 c | 4.95 b | 4.17 d |
LSD (0.05) | 1.865 | 0.928 | 1.339 | 0.102 | 0.198 | 0.046 |
Treatment | P Use Efficiency (kg Wheat Yield P Applied in kg−1) | Treatment | Zn Use Efficiency (kg Wheat Yield Zn Applied in kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
P (kg ha−1) | Zn (kg ha−1) | Seret | Adigolo | Mekelle | Zn (kg ha−1) | P (kg ha−1) | Seret | Adigolo | Mekelle |
10 | 0 | 187.6 f | 243.8 g | 198.9 e | 5 | 0 | 478.4 e | 292.2 f | 213.3 f |
10 | 5 | 303.7 cd | 375.7 c | 492.6 a | 5 | 10 | 607.4 c | 737.9 c | 985.1 c |
10 | 10 | 474.1 a | 458.2 a | 377.3 b | 5 | 20 | 1731.7 a | 1727.6 a | 1370.7 a |
20 | 0 | 334.1 c | 328.9 d | 214.6 d | 5 | 30 | 1546.3 b | 1614.5 b | 1126.9 b |
20 | 5 | 432.9 b | 431.9 b | 342.7 c | 10 | 0 | 523.5 de | 305.5 f | 259.4 f |
20 | 10 | 291.6 d | 295.7 e | 330.6 c | 10 | 10 | 474.1 e | 468.0 e | 377.3 e |
30 | 0 | 130.8 g | 141.5 i | 110.4 f | 10 | 20 | 583.2 cd | 591.4 d | 661.1 d |
30 | 5 | 257.7 e | 273.7 f | 187.8 e | 10 | 30 | 563.6 cd | 500.0 e | 336.4 e |
30 | 10 | 187.9 f | 166.7 h | 112.1 f | |||||
LSD (0.05) | 30.05 | 26.12 | 19.56 | LSD (0.05) | 127.16 | 68.54 | 58.17 |
Yield t/ha | Biomass t/ha | Zn mg/kg | P g/kg | Uptake Zn | Uptake P | |
---|---|---|---|---|---|---|
Yield t/ha | 1 | |||||
Biomass t/ha | 0.9015 ** | 1 | ||||
Zn mg/kg | 0.344 ** | 0.379 ** | 1 | |||
P g/kg | 0.688 ** | 0.702 ** | 0.029 ns | 1 | ||
Uptake Zn | 0.786 ** | 0.748 ** | 0.833 ** | 0.376 ** | 1 | |
Uptake P | 0.911 ** | 0.879 ** | 0.166 ns | 0.91 ** | 0.613 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebhatleab, M.; Gebresamuel, G.; Girmay, G.; Tsehaye, Y.; Haile, M. Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia. Crops 2025, 5, 32. https://doi.org/10.3390/crops5030032
Sebhatleab M, Gebresamuel G, Girmay G, Tsehaye Y, Haile M. Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia. Crops. 2025; 5(3):32. https://doi.org/10.3390/crops5030032
Chicago/Turabian StyleSebhatleab, Mulugeta, Girmay Gebresamuel, Gebreyohannes Girmay, Yemane Tsehaye, and Mitiku Haile. 2025. "Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia" Crops 5, no. 3: 32. https://doi.org/10.3390/crops5030032
APA StyleSebhatleab, M., Gebresamuel, G., Girmay, G., Tsehaye, Y., & Haile, M. (2025). Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Use Efficiency of Wheat (Triticum aestivum L.) in Tigray Highlands of Northern Ethiopia. Crops, 5(3), 32. https://doi.org/10.3390/crops5030032