Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = aeronautic component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7447 KB  
Article
Effect of the Incorporation of 0.1 wt.% TiC on the Microstructure and Tensile Properties of AlSi7Mg0.3 Samples Produced by Investment Casting
by Ane Jimenez, Anna Wójcik, Wojciech Maziarz, Mikel Merchán and Maider García de Cortázar
Metals 2026, 16(1), 34; https://doi.org/10.3390/met16010034 - 27 Dec 2025
Viewed by 203
Abstract
Investment casting of aluminum alloys is widely used in the aeronautical and automotive sectors for manufacturing complex components. However, conventional alloys lack sufficient mechanical strength and high-temperature resistance, prompting the need for enhanced materials. This study investigated the addition of submicron TiC particles, [...] Read more.
Investment casting of aluminum alloys is widely used in the aeronautical and automotive sectors for manufacturing complex components. However, conventional alloys lack sufficient mechanical strength and high-temperature resistance, prompting the need for enhanced materials. This study investigated the addition of submicron TiC particles, introduced via stir casting process, to an AlSi7Mg0.3 alloy for investment casting. Chemical analysis confirmed the incorporation of up to 0.1 wt.% TiC, but no significant improvement in tensile properties was observed. High Resolution Scanning Electron Microscopy (HRSEM) and Transmission Electron Microscopy (TEM) revealed a complex microstructure with few TiC particles and needle-shaped intermetallic phases containing titanium, iron, silicon, or aluminum. The high mold temperature (700 °C) and slow solidification rate likely caused partial TiC dissolution and intermetallic precipitation, which may have offset strengthening mechanisms like the Hall–Petch effect. Notably, the partial dissolution of TiC particles in investment casting has not been previously reported in similar alloys. These findings highlight the challenges of using particle-reinforced alloys in this process and emphasize the need for further research into process–microstructure relationships. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Metal Matrix Composites)
Show Figures

Figure 1

31 pages, 6651 KB  
Article
Integrated Approach to Design and Additive Manufacturing of Solar Unmanned Aerial Vehicles
by Ioana Nistor and Sebastian-Marian Zaharia
Appl. Sci. 2025, 15(24), 12964; https://doi.org/10.3390/app152412964 - 9 Dec 2025
Viewed by 429
Abstract
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps [...] Read more.
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps necessary for the development of an aeronautical product. The conceptual design was the initial phase in which the needs were defined, and the basic vision of the UAV model was outlined, exploring multiple possible solutions to identify the concept capable of meeting the mission requirements (search and rescue and surveillance). The preliminary design stage included aerodynamic analysis of the aircraft and preliminary sizing of the propulsion system and solar cells. The preliminary design stage included aerodynamic analysis of the UAV model, resulting in a lift coefficient of 1.05 and a drag coefficient of 0.08 at an angle of attack of 15°. A major advantage of the design is the integration of the electrical circuit, where solar input reduced battery consumption from 92.5 W to just 40.4 W in standard operational conditions, thereby more than doubling the UAV’s autonomy (from 48 min to approximately 110 min). The detailed design stage consisted of the final design of the solar UAV model for additive manufacturing, after which the final electrical architecture of the energy system was established. The model was subsequently validated by a finite element analysis, which confirmed the strength of the wing structure by achieving a safety factor of 6.6. The use of additive manufacturing allowed the rapid and accurate production of the structural components of the UAV model, ensuring that their subsequent physical assembly would be straightforward. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

22 pages, 9034 KB  
Article
Laser Beam Welding of IN625 Alloy with Equiaxed Grains: Influence of Process Parameters
by Giuliano Angella, Fabio Bergamini, Francesco Cognini, Alessandra Fava, Paolo Ferro, Alessandra Palombi, Maria Richetta and Alessandra Varone
Metals 2025, 15(12), 1296; https://doi.org/10.3390/met15121296 - 25 Nov 2025
Viewed by 471
Abstract
Ni-based superalloys, known for their excellent mechanical strength and corrosion resistance at high temperature, are widely used in aeronautic, aerospace, and energy industries. Since both the materials and manufacturing processes required to produce high-performance components made of these alloys are expensive, the welding [...] Read more.
Ni-based superalloys, known for their excellent mechanical strength and corrosion resistance at high temperature, are widely used in aeronautic, aerospace, and energy industries. Since both the materials and manufacturing processes required to produce high-performance components made of these alloys are expensive, the welding repair of damaged components plays a crucial role in industrial applications. High energy density welding techniques, such as laser beam welding (LBW) and electron beam welding (EBW), are the most promising to achieve high-quality welds. Nevertheless, welding processes significantly affect the microstructure and mechanical properties of both the melted zone (MZ) and the heat-affected zone (HAZ). This may result in alloying element segregation, precipitation of undesired secondary phases, and the presence of residual stresses that can lead to crack formation. Therefore, a comprehensive investigation of the effects of process parameters on weld seam properties is essential to maintain high performance standards. In this work, LBW was employed to join 2.5 mm thick plates of equiaxed IN625 superalloy. The seams were produced by varying three parameters: the two characteristic parameters of LBW, i.e., laser power (P = 1700, 2000, 2300 W) and welding speed (v = 15, 20, 25 mm/s), alongside power modulation (Γ = Pmin/Pmax = 0.6, 0.8, 1). The scope of this work is to evaluate the effect of the combined variation of all these welding parameters on the final characteristics of welded seams. The resulting microstructures were characterized by using digital radiography, Light Microscopy (LM), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). Vickers microhardness measurements were performed across the weld seams to evaluate the mechanical properties in the MZ and HAZ. The optimal set of welding parameters, producing defect-free seams without cracks and pores, was identified as P = 2000 W, v = 25 mm/s, and Γ = 0.6. Full article
(This article belongs to the Special Issue Weldability and Reparability of Nickel-Base Alloys)
Show Figures

Graphical abstract

25 pages, 1684 KB  
Review
Advanced Fiber Optic Sensing Technology in Aerospace: Packaging, Bonding, and Calibration Review
by Zhen Ma, Xiyuan Chen, Bingbo Cui and Xinzhong Wang
Aerospace 2025, 12(9), 827; https://doi.org/10.3390/aerospace12090827 - 15 Sep 2025
Viewed by 2951
Abstract
With the continuous development of science and technology, aircraft structural health monitoring (SHM) has become increasingly important in the aviation field. As a key component of SHM, wing deformation monitoring is of great significance for ensuring flight safety and reducing maintenance costs. The [...] Read more.
With the continuous development of science and technology, aircraft structural health monitoring (SHM) has become increasingly important in the aviation field. As a key component of SHM, wing deformation monitoring is of great significance for ensuring flight safety and reducing maintenance costs. The traditional strain gauge measurement method can no longer meet the needs of modern aeronautical engineering. Fiber Bragg grating (FBG) sensors have been widely used in the engineering field due to their unique advantages, and have shown great potential in aircraft wing deformation monitoring. In the context of SHM in the aircraft field, this article provides an overview of four aspects: classification and principles of fiber optic sensors, packaging forms of FBG sensors, bonding technology, and calibration technology. The packaging forms includes tube-packaged, embedded package and surface-attached package. It then discuss the bonding technology of FBG sensors, and the principle and influencing factors of fiber optic bonding technology are analyzed. Finally, it conducts in-depth research on the calibration technology of FBG sensors. Through comprehensive analysis of these four aspects, the suggestions for optical fiber sensing technology in aircraft wing deformation measurement are summarized and put forward. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 5175 KB  
Article
Buckling Characteristics of Bio-Inspired Helicoidal Laminated Composite Spherical Shells Under External Normal and Torsional Loads Subjected to Elastic Support
by Mohammad Javad Bayat, Amin Kalhori, Masoud Babaei and Kamran Asemi
Buildings 2025, 15(17), 3165; https://doi.org/10.3390/buildings15173165 - 3 Sep 2025
Cited by 4 | Viewed by 3791
Abstract
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is [...] Read more.
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is essential. The present paper investigates the buckling responses of bio-inspired helicoidal laminated composite spherical shells under normal and torsional loading, including the effects of a Winkler elastic medium. The pre-buckling equilibrium equations are derived using linear three-dimensional (3D) elasticity theory and the principle of virtual work, solved via the classical finite element method (FEM). The buckling load is computed using a nonlinear Green strain formulation and a generalized geometric stiffness approach. The shell material employed in this study is a T300/5208 graphite/epoxy carbon fiber-reinforced polymer (CFRP) composite. Multiple helicoidal stacking sequences—linear, Fibonacci, recursive, exponential, and semicircular—are analyzed and benchmarked against traditional unidirectional, cross-ply, and quasi-isotropic layups. Parametric studies assess the effects of the normal/torsional loads, lamination schemes, ply counts, polar angles, shell thickness, elastic support, and boundary constraints on the buckling performance. The results indicate that quasi-isotropic (QI) laminate configurations exhibit superior buckling resistance compared to all the other layup arrangements, whereas unidirectional (UD) and cross-ply (CP) laminates show the least structural efficiency under normal- and torsional-loading conditions, respectively. Furthermore, this study underscores the efficacy of bio-inspired helicoidal stacking sequences in improving the mechanical performance of thin-walled composite spherical shells, exhibiting significant advantages over conventional laminate configurations. These benefits make helicoidal architectures particularly well-suited for weight-critical, high-performance applications in aerospace, marine, and biomedical engineering, where structural efficiency, damage tolerance, and reliability are paramount. Full article
(This article belongs to the Special Issue Computational Mechanics Analysis of Composite Structures)
Show Figures

Figure 1

22 pages, 10765 KB  
Article
Generative Design, Simulation, and 3D Printing of the Quadcopter Drone Frame
by Victor Andries and Sebastian-Marian Zaharia
Appl. Sci. 2025, 15(17), 9647; https://doi.org/10.3390/app15179647 - 2 Sep 2025
Cited by 4 | Viewed by 4161
Abstract
The frame of a quadcopter drone is the most important component, as it supports all other systems and plays a vital structural role, supporting the stresses that appear during flight. The objective was to reduce the weight of the frame (18% reduction compared [...] Read more.
The frame of a quadcopter drone is the most important component, as it supports all other systems and plays a vital structural role, supporting the stresses that appear during flight. The objective was to reduce the weight of the frame (18% reduction compared to the original version manufactured from carbon fibre), while maintaining structural integrity, by using an integrated strategy that includes optimizing the frame shape according to the components used, the stresses it must withstand, and considerations related to design for additive manufacturing. The optimization of the quadcopter drone frame was achieved using generative design and additive technologies (3D printing) and represents a cutting-edge approach in aerospace engineering, which allows for overcoming the limitations of traditional manufacturing methods. This study successfully completed all stages of the aeronautical product development cycle, from preliminary design, generative design, structural analysis, and 3D printing to assembly and functionality testing. The integration of generative design and 3D printing into the aeronautical product development cycle represents a complex and feasible challenge, with advantages in terms of efficiency, performance, and innovation capacity that fully justify the effort. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

29 pages, 10522 KB  
Article
Numerical Simulation of Hot Air Anti-Icing Characteristics for Intake Components of Aeronautical Engine
by Shuliang Jing, Yaping Hu and Weijian Chen
Aerospace 2025, 12(9), 753; https://doi.org/10.3390/aerospace12090753 - 22 Aug 2025
Cited by 1 | Viewed by 787
Abstract
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual [...] Read more.
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual engine operating parameters. The simulation integrated multi-physics modules, including air-supercooled water droplet two-phase flow around components, water film flow and heat transfer on anti-icing surfaces, solid heat conduction within structural components, hot air flow dynamics in anti-icing cavities, and their coupled heat transfer interactions. Simulation results indicate that water droplet impingement primarily localizes at the leading edge roots and pressure surfaces of struts, as well as the leading edges and pressure surfaces of guide vanes. The peak water droplet collection coefficient reaches 4.2 at the guide vane leading edge. Except for the outlet end wall of the axial flow casing, all anti-icing surfaces of intake components maintain temperatures above the freezing point, demonstrating effective anti-icing performance. The anti-icing characteristics of the intake components are governed by two critical factors: cumulative heat loss along the hot air flow path and heat load consumption for heating and evaporating impinging water droplets. The former induces a 53.9 °C temperature disparity between the first and last struts in the heating sequence. For zero-stage guide vanes, the latter factor exerts a more pronounced influence. Notable temperature reductions occur on the trailing edges of three struts downstream of the hot air flow and at the roots of zero-stage guide vanes. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Graphical abstract

20 pages, 5785 KB  
Article
Retrofitting of a High-Performance Aerospace Component via Topology Optimization and Additive Manufacturing
by Jorge Crespo-Sánchez, Claudia Solek, Sergio Fuentes del Toro, Ana M. Camacho and Alvaro Rodríguez-Prieto
Machines 2025, 13(8), 700; https://doi.org/10.3390/machines13080700 - 8 Aug 2025
Cited by 2 | Viewed by 1063
Abstract
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the [...] Read more.
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the proposed method first determines the optimal geometry using an artificially stiff material, and only then evaluates real materials for structural and manufacturing feasibility. This design-first, material-second strategy enables broader material screening and maximizes weight reduction without compromising performance. The proposed workflow is applied to the design of a turbofan air intake—an aeronautical component operating under supersonic conditions—addressing both structural integrity and manufacturing feasibility. Three materials from distinct classes are assessed: two metallic alloys (aluminum alloy 6061 and titanium alloy, Ti6Al4V) and a high-performance polymer (polyetheretherketone, PEEK). This last option is preliminarily discarded after being analyzed for this specific application. Finite element (FE) simulations are used to evaluate the mechanical behavior of the optimized geometries, including bird-strike conditions. Among the evaluated manufacturing techniques, Selective Laser Melting (SLM) is identified as the most suitable for the metallic materials selected, providing an effective balance between performance, manufacturability, and aerospace compliance. This study illustrates the potential of TO–AM synergy as a sustainable and efficient design approach for next-generation aerospace components. Simulation results demonstrate a weight reduction of up to 71% while preserving critical functional regions and maintaining structural integrity in Al 6061 and Ti6Al4V cases, under the diverse loading conditions typical of real flight scenarios, while PEEK remains an attractive option for uses where mechanical demands are less stringent. Full article
Show Figures

Figure 1

16 pages, 3807 KB  
Article
Optimization of Machining Efficiency of Aluminum Honeycomb Structures by Hybrid Milling Assisted by Longitudinal Ultrasonic Vibrations
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Mohammed Abbadi, Jamal-Eddine Salhi and Mohammed Barboucha
Processes 2025, 13(8), 2348; https://doi.org/10.3390/pr13082348 - 23 Jul 2025
Viewed by 1002
Abstract
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative [...] Read more.
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative manufacturing method using longitudinal ultrasonic vibration-assisted cutting, combined with a CDZ10 hybrid cutting tool, was developed to optimize the efficiency of traditional machining processes. To this end, a 3D numerical model was developed using the finite element method and Abaqus/Explicit 2017 software to simulate the complex interactions among the cutting tool and the thin walls of the structures. This model was validated by experimental tests, allowing the study of the influence of milling conditions such as feed rate, cutting angle, and vibration amplitude. The numerical results revealed that the hybrid technology significantly reduces the cutting force components, with a decrease ranging from 10% to 42%. In addition, it improves cutting quality by reducing plastic deformation and cell wall tearing, which prevents the formation of chips clumps on the tool edges, thus avoiding early wear of the tool. These outcomes offer new insights into optimizing industrial processes, particularly in fields with stringent precision and performance demands, like the aerospace sector. Full article
Show Figures

Figure 1

17 pages, 2351 KB  
Article
Modeling of Nomex Honeycomb Structure Milling Assisted by Longitudinal–Torsional Vibrations with a CZ10 Combined Tool: Optimization of Tool Wear and Surface Integrity
by Tarik Zarrouk, Jamal-Eddine Salhi, Mohammed Nouari and Mohammed Barboucha
Appl. Mech. 2025, 6(3), 47; https://doi.org/10.3390/applmech6030047 - 30 Jun 2025
Cited by 1 | Viewed by 1222
Abstract
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this [...] Read more.
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this reason, an innovative machining technology based on longitudinal–torsional ultrasonic vibration assistance has been integrated into a CZ10 combined cutting tool, with the aim of optimizing the efficiency of conventional machining processes. To this end, a three-dimensional numerical model based on the finite element method, developed using Abaqus/Explicit 2017 software, was used to simulate the complex interactions between the cutting tool and the thin walls of the structures to be machined. This study aimed to validate the numerical model through experimental tests, quantifying the surface condition, cutting force and tool wear, while evaluating the impact of key machining parameters, such as feed rate and wall thickness, on process performance. The obtained results reveal a substantial reduction in cutting forces, varying from 20 to 40%, as well as a notable improvement in surface finish and a significant extension of tool life. These conclusions open up new perspectives for the optimization of industrial processes, particularly in high-demand sectors such as aeronautics. Full article
Show Figures

Figure 1

22 pages, 4058 KB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Cited by 4 | Viewed by 1071
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

27 pages, 7929 KB  
Article
Development of a Test Bench for Fault Diagnosis in the Caution and Warning Panels of the UH-60 Helicopter
by Cristian Sáenz-Hernández, Rubén Cuadros, Jorge Rodríguez, Edwin Rativa, Mario Linares-Vásquez, Yezid Donoso and Cristian Lozano
Eng 2025, 6(5), 101; https://doi.org/10.3390/eng6050101 - 17 May 2025
Viewed by 1755
Abstract
This article presents the development and implementation of an automated digital test bench for fault diagnosis in the caution and warning panels of the UH-60 helicopter, using practices based on NASA’s systems engineering process. The research addresses the critical need to improve efficiency [...] Read more.
This article presents the development and implementation of an automated digital test bench for fault diagnosis in the caution and warning panels of the UH-60 helicopter, using practices based on NASA’s systems engineering process. The research addresses the critical need to improve efficiency and accuracy in aeronautical maintenance by automating processes traditionally relying on manual techniques. Throughout the study, advanced software engineering methodologies were implemented to develop a system that significantly reduces diagnostic times and enhances the accuracy and reliability of results by integrating digital signal processing. The article highlights the economic benefits, demonstrating a substantial reduction in repair costs, and emphasizes the system’s flexibility to adapt to other aeronautical components, establishing a solid foundation for future technological innovations in aircraft maintenance. The novelty of this paper lies in integrating real-time simulation with a closed-loop diagnostic system designed primarily for the UH-60 avionics panels. This approach has not previously been applied to this series of aircraft or aeronautical components, allowing for adaptive and automated fault detection and significant improvement in diagnostic accuracy and speed in unscheduled aeronautical maintenance environments. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 7223 KB  
Article
Experimental and Numerical Study of the Plasma Arc Melting of Titanium Alloys: Application to the Removal of High Density Inclusions (HDIs)
by Jean-Pierre Bellot, Widad Ayadh, Jean-Sébastien Kroll-Rabotin, Raphaël Marin, Jérôme Delfosse, Amandine Cardon, Alessia Biagi and Stéphane Hans
Materials 2025, 18(9), 2051; https://doi.org/10.3390/ma18092051 - 30 Apr 2025
Cited by 2 | Viewed by 1275
Abstract
Titanium alloys are increasingly used in aeronautical applications, a sector that requires highly controlled materials. In particular, inclusion cleanliness is a necessary and mandatory condition for safe use in aeronautical components. During the production and processing of titanium alloys, inclusions are likely to [...] Read more.
Titanium alloys are increasingly used in aeronautical applications, a sector that requires highly controlled materials. In particular, inclusion cleanliness is a necessary and mandatory condition for safe use in aeronautical components. During the production and processing of titanium alloys, inclusions are likely to appear, in particular high-density inclusions (HDIs) originate from refractory metals such as molybdenum or tungsten carbide. Plasma Arc Melting–Cold Hearth Remelting (PAMCHR) is one of the most effective recycling and refining process for titanium alloys. Firstly, this work reports the thermal modeling of the melting of raw materials in the melting crucible and a complete 3D numerical simulation of the thermo-hydrodynamic behavior of the metal flow in the PAMCHR furnace, based on the software Ansys-Fluent CFD V21.1. Simulation results are presented for a 100 kg/h melting test performed in a pilot furnace with a comparison between the measured and calculated pool profiles and residence time distributions that show satisfactory agreements. Additionally, a Lagrangian calculation of particle trajectories in the liquid metal pool is also performed and insemination of HDIs in the pilot furnace has been tested. Both numerical and experimental tests demonstrate the inclusion removal in the melting crucible. Full article
(This article belongs to the Special Issue Advances in Modelling and Simulation of Materials in Applied Sciences)
Show Figures

Figure 1

30 pages, 8843 KB  
Article
An AIoT Architecture for Structural Testing: Application to a Real Aerospace Component (Embraer E2 Model Aircraft Flag Track)
by Pablo Venegas, Unai Virto, Isidro Calvo and Oscar Barambones
Appl. Sci. 2025, 15(9), 4625; https://doi.org/10.3390/app15094625 - 22 Apr 2025
Viewed by 1744
Abstract
The AIoT paradigm, which combines AI with IoT, offers great advantages in manufacturing processes. However, its use in aeronautical testing is still incipient, since this kind of test must ensure strict safety requirements. This study presents one AIoT architecture aimed at structurally testing [...] Read more.
The AIoT paradigm, which combines AI with IoT, offers great advantages in manufacturing processes. However, its use in aeronautical testing is still incipient, since this kind of test must ensure strict safety requirements. This study presents one AIoT architecture aimed at structurally testing aeronautical applications that ease the integration of AI techniques to interpret the data obtained by wireless IoT devices. In addition, the authors propose implementation guidelines for developers. The presented approach was experimentally validated in the rigorous and standardized certification test of a real aerospace component, namely a flag track component of the Embraer E2 model aircraft. Recorded magnitudes with IoT devices were compared with the data obtained using conventional technologies in terms of the quality of information and compliance with the requirements of aeronautical regulations. In order to illustrate the integration of different AI techniques in the AIoT architecture, ARIMA and LSTM algorithms were used to analyze the data captured with three sensors. The obtained results proved that the AIoT architecture is valid in structural testing applications, achieving a reduction in cabling and deployment time as well as improving flexibility and scalability. The presented approach paves the way to introduce AI-based algorithms for analyzing, either in run-time and off-line, the structural testing results obtained by means of IoT devices. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

28 pages, 6411 KB  
Article
A Numerical Study of Aerodynamic Drag Reduction and Heat Transfer Enhancement Using an Inclined Partition for Electronic Component Cooling
by Youssef Admi, Abdelilah Makaoui, Mohammed Amine Moussaoui and Ahmed Mezrhab
Processes 2025, 13(4), 1137; https://doi.org/10.3390/pr13041137 - 10 Apr 2025
Viewed by 975
Abstract
This study presents a numerical investigation of fluid flow around a heated rectangular cylinder controlled by an inclined partition, aiming to suppress vortex shedding, reduce aerodynamic drag, and enhance thermal exchange. The double multiple relaxation time lattice Boltzmann method (DMRT-LBM) is employed to [...] Read more.
This study presents a numerical investigation of fluid flow around a heated rectangular cylinder controlled by an inclined partition, aiming to suppress vortex shedding, reduce aerodynamic drag, and enhance thermal exchange. The double multiple relaxation time lattice Boltzmann method (DMRT-LBM) is employed to investigate the influence of Reynolds number variations and partition positions on the aerodynamic and thermal characteristics of the system. The results reveal the presence of three distinct thermal regimes depending on the Reynolds number. Increasing the Reynolds number intensifies thermal vortex shedding, thereby improving heat exchange efficiency. Moreover, a higher Reynolds number leads to a greater reduction in the drag coefficient, reaching 125.41% for Re=250. Additionally, improvements in thermal performance were quantified, with Nusselt number enhancements of 29.47% for Re=100, 55.55% for Re=150, 74.78% for Re=200, and 82.87% for Re=250. The influence of partition positioning g on the aerodynamic performance was also examined at Re=150, revealing that increasing the spacing g generally leads to a rise in the drag coefficient, thereby reducing the percentage of drag reduction. However, the optimal configuration was identified at g=2d, where the maximum drag coefficient reduction reached 130.97%. In contrast, the impact of g on the thermal performance was examined for Re=100, 150, and 200, revealing a significant heat transfer improvements on the top and bottom faces: reaching up to 99.47% on the top face for Re=200 at g=3d. Nevertheless, for all Reynolds numbers and partition placements, a decrease in heat transfer was observed on the front face due to the partition shielding it from the incoming flow. These findings underscore the effectiveness of an inclined partition in enhancing both the thermal and aerodynamic performance of a rectangular component. This approach holds strong potential for various industrial applications, particularly in aeronautics, where similar control surfaces are used to minimize drag, as well as in heat exchangers and electronic cooling systems where optimizing heat dissipation is crucial for performance and energy efficiency. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

Back to TopTop