Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = aerodynamic propulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6663 KiB  
Patent Summary
Modernization of the DISA 55D41 Wind Tunnel for Micro-Scale Probe Testing
by Emilia Georgiana Prisăcariu, Iulian Vlăducă, Oana Maria Dumitrescu, Sergiu Strătilă and Raluca Andreea Roșu
Inventions 2025, 10(4), 66; https://doi.org/10.3390/inventions10040066 - 1 Aug 2025
Viewed by 115
Abstract
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 [...] Read more.
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 power unit, the upgraded system features a redesigned modular test section with optical-grade quartz windows. This enhancement enables compatibility with advanced flow diagnostics and visualization methods, including PTV, DIC, and schlieren imaging. The modernized facility maintains the precision and flow stability that made the original design widely respected, while expanding its functionality to meet the demands of contemporary experimental research. Its architecture supports the aerodynamic characterization of micro-scale static pressure probes used in aerospace, propulsion, and micro gas turbine applications. Special attention is given to assessing the influence of probe tip geometry (e.g., conical, ogive), port positioning, and stem interference on measurement accuracy. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 242
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 263
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 5175 KiB  
Article
Bioinspired Swimming Robots with 3D Biomimetic Shark Denticle Structures for Controlled Marangoni Propulsion
by Kang Yang, Chengming Wang, Lei Jiang, Ruochen Fang and Zhichao Dong
Biomimetics 2025, 10(8), 479; https://doi.org/10.3390/biomimetics10080479 - 22 Jul 2025
Viewed by 280
Abstract
Shark skin exhibits a well-defined multilayered architecture, consisting of three-dimensional denticles and an underlying dermal layer, which contributes to its passive drag reduction. However, the active drag reduction mechanisms of this interface remain largely unexplored. In this study, the Marangoni effect potentially arising [...] Read more.
Shark skin exhibits a well-defined multilayered architecture, consisting of three-dimensional denticles and an underlying dermal layer, which contributes to its passive drag reduction. However, the active drag reduction mechanisms of this interface remain largely unexplored. In this study, the Marangoni effect potentially arising from the active secretion of mucus on shark skin is investigated. A 3D-printed swimming robot with a porous substrate and a biomimetic shark denticle structure is developed. By introducing surfactants into the porous substrate and adjusting denticle arrangements, on-demand propulsion and controlled swimming trajectories are achieved. A superhydrophobic surface is fabricated on the swimming robot, which reduces water resistance and enhances propulsion. Moreover, denticles with a 30° attack angle demonstrate optimal propulsion performance in both Marangoni-driven hydrodynamics and aerodynamics. This study suggests that the secretion of mucus on shark skin may facilitate active drag reduction via the Marangoni effect, offering novel insights into the biomimetic structural design of autonomous swimming robots. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 301
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 202
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

68 pages, 10407 KiB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 1324
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

25 pages, 1264 KiB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 345
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

21 pages, 1539 KiB  
Article
Design of a Short-To-Medium-Range Baseline Aircraft with an Entry into Service in 2035 for the HOPE Project
by Barlas Türkyilmaz, Michael Lüdemann, Moritz Georg Kolb and Alexandros Lessis
Aerospace 2025, 12(7), 585; https://doi.org/10.3390/aerospace12070585 - 28 Jun 2025
Viewed by 381
Abstract
When assessing new technologies at the overall aircraft level, it is crucial to establish an appropriate benchmark to evaluate the resulting performance of the final concept aircraft. This publication defines a short-to medium-range baseline aircraft for entry into service in 2035, which serves [...] Read more.
When assessing new technologies at the overall aircraft level, it is crucial to establish an appropriate benchmark to evaluate the resulting performance of the final concept aircraft. This publication defines a short-to medium-range baseline aircraft for entry into service in 2035, which serves as a benchmark for the HOPE project. This aircraft is sized using the Bauhaus Luftfahrt Aircraft Design Environment (BLADE), and its engine model is derived using the in-house tool Aircraft Propulsion System Simulation (APSS). The top-level aircraft requirements and technology assumptions for the entire project timeline are also defined and used for the baseline aircraft. Compared to a state-of-the-art aircraft (entry into service in 2015), the baseline aircraft consumes 21.4% less block fuel during the design mission and 20.9% less block fuel during the typical mission, since its operating empty mass is reduced by 13.6%, its aerodynamic performance is improved by 8.5%, and it has 6.4% more efficient engines. Full article
Show Figures

Figure 1

21 pages, 2110 KiB  
Article
Preliminary Sizing of a Vertical-Takeoff–Horizontal-Landing TSTO Launch Vehicle Using Multidisciplinary Analysis Optimization
by Xiaoyu Xu, Xinrui Fang and Xiongqing Yu
Aerospace 2025, 12(7), 567; https://doi.org/10.3390/aerospace12070567 - 22 Jun 2025
Viewed by 328
Abstract
The vertical-takeoff–horizontal-landing (VTHL) two-stage-to-orbit (TSTO) system is a kind of novel launch vehicle in which a reusable first stage can take off vertically like a rocket and land horizontally like an airplane. The advantage of the VTHL TSTO vehicle is that the launch [...] Read more.
The vertical-takeoff–horizontal-landing (VTHL) two-stage-to-orbit (TSTO) system is a kind of novel launch vehicle in which a reusable first stage can take off vertically like a rocket and land horizontally like an airplane. The advantage of the VTHL TSTO vehicle is that the launch costs can be reduced significantly due to its reusable first stage. This paper presents an application of multidisciplinary analysis optimization on preliminary sizing in conceptual design of the VTHL TSTO vehicle. The VTHL TSTO concept is evaluated by multidisciplinary analysis, including geometry, propulsion, aerodynamics, mass, trajectory, and static stability. The preliminary sizing of the VTHL TSTO vehicle is formulated as a multidisciplinary optimization problem. The focus of this paper is to investigate the impacts of the first-stage reusability and propellant selection on the staging altitude and velocity, size, and mass of the VTHL TSTO vehicles. The observations from the results show that the velocity and altitude of the optimal staging point are determined mainly by the reusability of the first stage, which in turn affects the size and mass of the upper stage and the first stage. The first stage powered by hydrocarbon fuel has a lower dry mass compared with that powered by liquid hydrogen. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

36 pages, 4752 KiB  
Article
A New Concept of Hybrid Maglev-Derived Systems for Faster and More Efficient Rail Services Compatible with Existing Infrastructure
by Jesus Felez, Miguel A. Vaquero-Serrano, David Portillo, Santiago Antunez, Giuseppe Carcasi, Angela Nocita, Michael Schultz-Wildelau, Lorenzo A. Parrotta, Gerardo Fasano and Pietro Proietti
Sustainability 2025, 17(11), 5056; https://doi.org/10.3390/su17115056 - 30 May 2025
Viewed by 885
Abstract
Magnetic levitation (maglev) technology offers significant advantages for rail transport, including frictionless propulsion, reduced noise, and lower maintenance costs. However, its widespread adoption has been limited due to the need for a dedicated infrastructure incompatible with conventional rail networks. The MaDe4Rail project, funded [...] Read more.
Magnetic levitation (maglev) technology offers significant advantages for rail transport, including frictionless propulsion, reduced noise, and lower maintenance costs. However, its widespread adoption has been limited due to the need for a dedicated infrastructure incompatible with conventional rail networks. The MaDe4Rail project, funded by Europe’s Rail Joint Undertaking (ERJU), explores Maglev-Derived Systems (MDSs) as means to integrate maglev-inspired solutions into existing railway corridors with minimal modifications. This paper focuses on the so-called “hybrid MDS” configuration, which refers to levitating systems that can operate on existing rail infrastructure. Unlike current maglev systems, which require dedicated tracks, the proposed MDS system is designed to operate on conventional rail tracks, allowing for its compatibility with traditional trains and ensuring the interoperability of lines. In order to identify the most viable solution, two different configurations have been analysed. The evaluated scenario could benefit from the introduction of hybrid MDSs based on magnetic levitation, where a group of single vehicles, also called pods, is used in a virtual coupling configuration. The objective of this case study is to increase the capacity of traffic on the existing railway line by significantly reducing travel time, while maintaining a similar energy consumption to that of the current conventional trains operating on this line. Simulation results indicate that the hybrid MDS can optimise railway operations by taking advantage of virtual coupling to improve traffic flow, reducing travel times and energy consumption with the optimisation of the aerodynamic drag. The system achieves a balance between increased speed and energy efficiency, making it a viable alternative for future rail transport. An initial cost–benefit analysis suggests that the hybrid MDS could deliver substantial economic advantages, positioning it as a promising solution for enhancing European railway networks with minimal infrastructure investment. Full article
Show Figures

Figure 1

17 pages, 3434 KiB  
Article
Experimental Study of Comprehensive Performance Analysis Regarding the Dynamical/Mechanical Aspects of 3D-Printed UAV Propellers and Sound Footprint
by Florin Popișter
Polymers 2025, 17(11), 1466; https://doi.org/10.3390/polym17111466 - 25 May 2025
Viewed by 826
Abstract
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets [...] Read more.
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets accessibility for individual and small-scale users, the results have broader implications for scalable UAV propulsion systems. The research was conducted within an experimental UAV development framework aimed at optimizing propeller performance through strategic material selection, geometrical design optimization, and additive manufacturing processes. Six propeller variants were manufactured using widely available thermoplastic polymers, including polyethylene terephthalate glycol-modified (PETG) and thermoplastic polyurethane (TPU), as well as photopolymer-based propellers fabricated using vat photopolymerization, also known as digital light processing (DLP). Mechanical and aerodynamic characterizations were performed to assess the structural integrity, flexibility, and performance of each material under dynamic conditions. Two blade configurations, a toroidal propeller with anticipated aerodynamic advantages and a conventional tri-blade propeller (Gemfan 51466-3)—were comparatively analyzed. The primary contribution of this work is the systematic evaluation of performance metrics such as thrust generation, acoustic signature, mechanical strength, and thermal stress imposed on the electrical motor, thereby establishing a benchmark for polymer-based propeller fabrication via additive manufacturing. The findings underscore the potential of polymeric materials and layer-based manufacturing techniques in advancing the design and production of UAV propulsion components. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

22 pages, 6550 KiB  
Article
Research on Conceptual Design Method and Propulsive/Aerodynamic Coupling Characteristics of DEP STOL UAV
by Xin Zhao, Zhou Zhou, Kelei Wang, Han Wang and Xu Li
Drones 2025, 9(5), 363; https://doi.org/10.3390/drones9050363 - 11 May 2025
Viewed by 665
Abstract
This paper establishes an analytical model for component mass, takeoff weight, and performance constraints of distributed electric propulsion (DEP) propeller-driven short takeoff and landing (STOL) unmanned aerial vehicles (UAV), and develops a conceptual design method considering propulsive/aerodynamic coupling effects. The proposed approach was [...] Read more.
This paper establishes an analytical model for component mass, takeoff weight, and performance constraints of distributed electric propulsion (DEP) propeller-driven short takeoff and landing (STOL) unmanned aerial vehicles (UAV), and develops a conceptual design method considering propulsive/aerodynamic coupling effects. The proposed approach was applied to design a 350 kilogram-class DEP UAV with STOL capability, verifying the feasibility and effectiveness of the design method. To investigate the layout design and propulsive/aerodynamic coupling characteristics of DEP UAV, three UAV configurations with different DEP arrangements are formulated and studied, and the results indicate that the flap deflection significantly increases the lift coefficient of the UAV during takeoff, and under the same total thrust and power conditions, the lift-enhancement using DEP arrangement is more significant. In addition, it is necessary to fully consider the propulsive/aerodynamic coupling effects in the conceptual design process, and this is of great significance for the future development of DEP STOL UAV. Full article
Show Figures

Figure 1

19 pages, 4234 KiB  
Article
Introduction of a System Definition in the Common Parametric Aircraft Configuration Schema (CPACS)
by Tim Burschyk, Marko Alder, Andrea Mancini, Thimo Bielsky, Vivian Kriewall, Frank Thielecke and Björn Nagel
Aerospace 2025, 12(5), 373; https://doi.org/10.3390/aerospace12050373 - 25 Apr 2025
Viewed by 516
Abstract
The aircraft design process is a complex task that requires the collaboration of disciplinary experts from various fields. In practice, this complexity requires a large investment in setting up communication interfaces for the exchange of disciplinary data, and serious misinterpretations are not uncommon. [...] Read more.
The aircraft design process is a complex task that requires the collaboration of disciplinary experts from various fields. In practice, this complexity requires a large investment in setting up communication interfaces for the exchange of disciplinary data, and serious misinterpretations are not uncommon. To increase the efficiency and robustness of data exchange, a common language is essential. As such, the Common Parametric Aircraft Configuration Schema (CPACS) serves as a central data model, which currently includes detailed parametrizations of aircraft geometry and analysis results from traditional disciplines (e.g., aerodynamics, structure, etc.). However, with the recent interest in alternative propulsion and complex on-board system architectures, CPACS is proving to be too limited to meet the needs of the various disciplinary system experts. The particular challenge here is to enable different views on the same systems, i.e., a functional/logical as well as a geometric/physical representation, without violating the principle of unambiguous data. Therefore, this paper proposes an extension of CPACS which introduces an explicit system definition covering both representations. Its potential is demonstrated by two use cases from disciplinary experts in the field of on-board system design at the Hamburg University of Technology (TUHH), based on data provided by aircraft design experts. Through validation against the experts’ needs, the proposed system definition proves to bridge the gap between preliminary aircraft design and on-board system design, enabling a holistic, robust and efficient aircraft design process. Full article
(This article belongs to the Special Issue Aircraft Design and System Optimization)
Show Figures

Figure 1

33 pages, 11917 KiB  
Article
Multi-Fidelity Surrogate-Assisted Aerodynamic Optimization of Aircraft Wings
by Eleftherios Nikolaou, Spyridon Kilimtzidis and Vassilis Kostopoulos
Aerospace 2025, 12(4), 359; https://doi.org/10.3390/aerospace12040359 - 20 Apr 2025
Viewed by 877
Abstract
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design [...] Read more.
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design phase is highly beneficial for aircraft designers. This study introduces a comprehensive optimization framework for designing the wing of a Class I fixed-wing mini-UAV with electric propulsion, focusing on maximizing aerodynamic efficiency and operational performance. Utilizing Class-Shape Transformation (CST) in combination with Surrogate-Based Optimization (SBO) techniques, the research first optimizes the airfoil shape to identify the most suitable airfoil for the UAV wing. Subsequently, SBO techniques are applied to generate wing geometries with varying characteristics, including aspect ratio (AR), taper ratio (λ), quarter-chord sweep angle (Λ0.25), and tip twist angle (ε). These geometries are then evaluated using both low- and high-fidelity aerodynamic simulations. The integration of SBO techniques enables an efficient exploration of the design space while minimizing the computational costs associated with iterative simulations. Specifically, the proposed SBO framework enhances the wing’s aerodynamic characteristics by optimizing the lift-to-drag ratio and reducing drag. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop