Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (528)

Search Parameters:
Keywords = aerated water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8812 KB  
Article
Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice
by Oanamari Daniela Orbuleț, Cristina Modrogan, Magdalena Bosomoiu, Mirela Cișmașu (Enache), Elena Raluca Cîrjilă (Mihalache), Adina-Alexandra Scarlat (Matei), Denisa Nicoleta Airinei, Adriana Miu (Mihail), Mădălina Grinzeanu and Annette Madelene Dăncilă
Environments 2025, 12(8), 288; https://doi.org/10.3390/environments12080288 - 21 Aug 2025
Viewed by 253
Abstract
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions [...] Read more.
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions using two sustainable and readily available materials: autoclaved aerated concrete (AAC) and pumice stone (PS). Batch experiments were conducted under acidic (pH 3) and alkaline (pH 9) conditions to determine equilibrium adsorption capacities, and kinetic experiments were carried out for the best-performing adsorbent. Adsorption data were fitted to the Langmuir and the Freundlich isotherm models, while kinetic data were evaluated using pseudo-first-order and pseudo-second-order models. The Freundlich model showed the best correlation (R2 = 0.90 − 0.97), indicating the heterogeneous nature of the adsorbent surfaces, whereas the Langmuir parameters suggested monolayer adsorption, with maximum capacities of 1006.69 mg/kg for PS and 859.20 mg/kg for AAC at pH 3. Kinetic results confirmed a pseudo-second-order behavior, indicating chemisorption as the main mechanism and the rate-limiting step in the adsorption process. To the best of our knowledge, this is the first study to compare the thermodynamic performance of AAC and PS for phosphate removal under identical experimental conditions. The findings demonstrate the potential of both materials as efficient, low-cost, and thermodynamically favorable adsorbents. Furthermore, the use of AAC, an industrial by-product, and PS, a naturally abundant volcanic material, supports resource recovery and waste valorization, aligning with the principles of the circular economy and sustainable water management. Full article
Show Figures

Graphical abstract

20 pages, 3960 KB  
Article
Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective
by Mengbing Li, Sili Tan, Jiajun Huang, Qianhui Chen and Guanlong Yu
Water 2025, 17(16), 2482; https://doi.org/10.3390/w17162482 - 21 Aug 2025
Viewed by 281
Abstract
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and [...] Read more.
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and Manure biochar FBC) coupled with intermittent aeration technology to enhance nitrogen removal in constructed wetlands. Through the construction of vertical flow wetland systems, hydraulic retention time (HRT = 1–3 d) and influent C/N ratios (1, 3, 5) were regulated, before being combined with material characterization (FTIR/XPS) and microbial analysis (16S rRNA) to reveal the synergistic nitrogen removal mechanisms. HBC achieved efficient NH4+-N adsorption (32.44 mg/L, Langmuir R2 = 0.990) through its high porosity (containing Si-O bonds) and acidic functional groups. Under optimal operating conditions (HRT = 3 d, C/N = 5), the CW-HBC system achieved removal efficiencies of 97.8%, 98.8%, and 79.6% for NH4+-N, TN, and COD, respectively. The addition of biochar shifted the dominant bacterial phylum toward Actinobacteriota (29.79%), with its slow-release carbon source (TOC = 18.5 mg/g) alleviating carbon limitation. Mechanistically, HBC synergistically optimized nitrogen removal pathways through “adsorption-biofilm (bacterial enrichment)-microzone oxygen regulation (pore oxygen gradient).” Based on technical validation, a dual-track institutionalization pathway of “standards-legislation” is proposed: incorporating biochar physicochemical parameters and aeration strategies into multi-level water environment technical standards; converting common mechanisms (such as Si-O adsorption) into legal requirements through legislative amendments; and innovating legislative techniques to balance precision and universality. This study provides an efficient technical solution for low C/N wastewater treatment while constructing an innovative framework for the synergy between technical specifications and legislation, supporting the improvement of watershed ecological restoration systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 1535 KB  
Article
Optimization of the Wastewater Treatment Process Using Kinetic Equations for Nitrification Processes
by Eugen Marin and Carmen Otilia Rusănescu
Water 2025, 17(16), 2440; https://doi.org/10.3390/w17162440 - 18 Aug 2025
Viewed by 359
Abstract
The primary objective of the present study is to evaluate the effect of conglomerate microorganisms on nitrification in activated sludge. The present study compares this process with activated-sludge technology to explore the variables that influence the complex biochemical processes taking place in bioreactors. [...] Read more.
The primary objective of the present study is to evaluate the effect of conglomerate microorganisms on nitrification in activated sludge. The present study compares this process with activated-sludge technology to explore the variables that influence the complex biochemical processes taking place in bioreactors. The research under consideration involves monitoring the effectiveness of optimizing the wastewater treatment process using kinetic modeling for the nitrification and denitrification processes. The system is designed to simulate various operating scenarios and adjust process parameters in real time. The nitrification rate demonstrates a 99.03% performance, while the denitrification rate ranges from 19.08% to 91.01%. A substantial correlation has been demonstrated between this variable and the temperature of the treated wastewater. This provides the possibility of accurately assessing the ammonium oxidation potential. Furthermore, kinetic equations facilitate the estimation of parameters that are not typically measured, yet are essential for optimizing operational parameters (e.g., dissolved oxygen levels in the aeration tank, sludge dosage, and influent flow rate). This estimation is crucial for enhancing the effectiveness of the process and attaining the desired or anticipated outcomes. This validation underscores the efficacy of the technology, thereby establishing a foundational framework for subsequent research endeavors. These research efforts are directed towards providing decision-makers and stakeholders with actionable insights. The validation underscores the significance of optimized practices in the context of water resource protection. Moreover, it signifies a substantial advancement in the instrumentation of wastewater treatment plants. Full article
(This article belongs to the Special Issue Advanced Research on Anaerobic Wastewater Treatment)
Show Figures

Figure 1

36 pages, 5657 KB  
Article
Modeling of Temperature and Moisture Dynamics in Corn Storage Silos with and Without Aeration Periods in Three Dimensions
by F. I. Molina-Herrera, H. Jiménez-Islas, M. A. Sandoval-Hernández, N. E. Maldonado-Sierra, C. Domínguez Campos, L. Jarquín Enríquez, F. J. Mondragón Rojas and N. L. Flores-Martínez
ChemEngineering 2025, 9(4), 89; https://doi.org/10.3390/chemengineering9040089 - 15 Aug 2025
Viewed by 267
Abstract
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar [...] Read more.
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar radiation, grain moisture equilibrium with air humidity through the sorption isotherm (water activity), and grain respiration to simulate real storage conditions. The model is based on continuity, momentum, energy, and moisture conservation equations in porous media. This model was solved using the finite element method (FEM) to evaluate temperature and interstitial humidity variations during January and May, representing cold and warm environmental conditions, respectively. The simulations show that, without aeration, grain temperature progressively accumulates in the center and bottom region of the silo, reaching critical values for safe storage. In January, the low ambient temperature favors the natural dissipation of heat. In contrast, in May, the combination of high ambient temperatures and solar radiation intensifies thermal accumulation, increasing the risk of grain deterioration. However, implementing aeration periods allowed for a reduction in the silo’s internal temperature, achieving more homogeneous cooling and reducing the threats of mold and insect proliferation. For January, an airflow rate of 0.15 m3/(min·ton) was optimal for maintaining the temperature within the safe storage range (≤17 °C). In contrast, in May, neither this airflow rate nor the accumulation of 120 h of aeration was sufficient to achieve optimal storage temperatures. This indicates that, under warm conditions, the aeration strategy needs to be reconsidered, assessing whether a higher airflow rate, longer periods, or a combination of both could improve heat dissipation. The results also show that interstitial relative humidity remains stable with nocturnal aeration, minimizing moisture absorption in January and preventing excessive drying in May. However, it was identified that aeration period management must be adaptive, taking environmental conditions into account to avoid issues such as re-wetting or excessive grain drying. Full article
Show Figures

Figure 1

19 pages, 2655 KB  
Article
Removal of Ibuprofen and Paracetamol by Rhizobacteria from Roots of Scirpus grossus Exposed to a Synthetic Mix in Constructed Wetlands
by Osama Abrahiem AL Falahi, Siti Rozaimah Sheikh Abdullah, Hassimi Abu Hasan, Ahmad Razi Othman, Hind Mufeed Ewadh, Nur ‘Izzati Ismail, Muhammad Fauzul Imron and Setyo Budi Kurniawan
Water 2025, 17(16), 2396; https://doi.org/10.3390/w17162396 - 13 Aug 2025
Viewed by 347
Abstract
The presence of ibuprofen (IBP) and paracetamol (PAR) contaminants in wastewater has become an emerging issue. Traditional wastewater treatment facilities have not been adequately upgraded to remove these micropollutants. This study focused on screening and identifying effective rhizobacteria capable of assisting plants in [...] Read more.
The presence of ibuprofen (IBP) and paracetamol (PAR) contaminants in wastewater has become an emerging issue. Traditional wastewater treatment facilities have not been adequately upgraded to remove these micropollutants. This study focused on screening and identifying effective rhizobacteria capable of assisting plants in eliminating ibuprofen and paracetamol from wastewater using constructed wetlands. A total of 28 rhizobacteria were isolated from both the roots and the surrounding sand of Scirpus grossus after 30 days of pharmaceutical exposure. Among these, three isolates (Gram-negative Enterobacter aerogenes, Gram-positive Bacillus flexus, and Paenibacillus alvei) showed high tolerance to IBP and PAR with initial removal efficiencies > 75%. The addition of these three isolated rhizobacteria to a constructed wetland (planted with Scirpus grossus, 5-day HRT, 2 L/min aeration) assists the removal of IBP and PAR from wastewater. Bioaugmentation of rhizobacteria showed an increment of IBP removal (↑13%) from water (residual of 10 µg/L) and PAR (↑20%) from sand (residual 2.3 µg/L) as compared to the non-bioaugmented systems. The addition of rhizobacteria also showed the ability to significantly enhance the translocation of PAR into the shoot system of S. grossus, suggesting assisted phytoextraction mechanisms, while the removal of IBP in wetlands is suggested to occur via rhizodegradation. It is recommended that future research be conducted to elucidate the microbial degradation pathways and analyze the intermediate metabolites to accurately depict the pharmaceutical degradation mechanisms and evaluate their ecological risks. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3960 KB  
Article
Water Vapor Transmission Properties of Autoclaved Aerated Concrete of Four Density Classes—Experimental Determination in Stationary Processes
by Halina Garbalińska and Magdalena Bochenek
Appl. Sci. 2025, 15(16), 8818; https://doi.org/10.3390/app15168818 - 10 Aug 2025
Viewed by 327
Abstract
Moisture in porous building materials significantly affects all their technical parameters. For this reason, it is important to accurately determine coefficients that describe moisture transport inside these materials. The main parameters concerning the hygroscopic range are as follows: water vapor permeability δ, [...] Read more.
Moisture in porous building materials significantly affects all their technical parameters. For this reason, it is important to accurately determine coefficients that describe moisture transport inside these materials. The main parameters concerning the hygroscopic range are as follows: water vapor permeability δ, water vapor resistance factor μ, and water vapor diffusion coefficient D. Autoclaved aerated concrete (AAC), one of the most popular materials used for the construction of external walls, was tested. The study focused on the four density classes: 400, 500, 600, and 700. Using a modified cup method, measurements of the corresponding coefficients δ, μ, D were carried out in six ranges of relative air humidity: 11–30, 30–54, 54–60, 60–75, 75–85, 85–98%. The results prove that not only the level of humidity tested, but also the structure within the same material group has a significant impact on all parameters, strongly differentiating their values. In this regard, precise numerical simulations concerning moisture transport processes in autoclaved aerated concrete must take into account both its density class and the moisture range in which these processes occur. Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Construction Materials and Structures)
Show Figures

Figure 1

10 pages, 1835 KB  
Article
Evaluation of a Pilot-Scale Water Treatment System with Passive Aerated, Membraneless Microbial Fuel Cell
by Zabdiel A. Juarez, Víctor Ramírez, Carlos Hernández-Benítez, Luis A. Godínez, Irma Robles Gutierrez and Francisco J. Rodríguez-Valadez
Catalysts 2025, 15(8), 765; https://doi.org/10.3390/catal15080765 - 9 Aug 2025
Viewed by 443
Abstract
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive [...] Read more.
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive aerated membraneless microbial fuel cell (PAML-MFC) system consisting of 10 individual units, designed to treat 1000 L/day of real wastewater, using granular activated carbon anodes and cathodes. The pilot-scale water treatment system under study combines design and materials to result in low-cost operation. After 300 days of treating real wastewater originally characterized by a chemical oxygen demand (COD) value of 500 mg/L on average, it was found that the PAML-MFC under study removed 60 to 80% of the COD contained in real wastewater. Under these conditions, the individual MFCs reached an average power density below 1 mW/m3. Full article
Show Figures

Figure 1

21 pages, 65608 KB  
Article
Saline Peatland Degradation in the Mezzano Lowland: 66 Years of Agricultural Impacts on Carbon and Soil Biogeochemistry
by Aaron Sobbe, Valentina Brombin, Enzo Rizzo and Gianluca Bianchini
Land 2025, 14(8), 1621; https://doi.org/10.3390/land14081621 - 9 Aug 2025
Viewed by 308
Abstract
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical [...] Read more.
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical data from the Mezzano Lowland (ML) in Northeastern Italy, a former wetland drained over 60 years ago. The transformation, which affected approximately 18,100 hectares, was achieved through the construction of a network of drainage canals and pumping stations capable of removing large volumes of water, enabling intensive agricultural use. Results showed a marked decrease in electrical conductivity (EC) and sulphate concentration, indicating extensive salt leaching from the upper peat soil layers. EC dropped from historical values up to 196 mS/cm (1967–1968) to a current maximum of 4.93 mS/cm, while sulphate levels declined by over 90%. SOM also showed significant depletion, especially in deeper layers (50–100 cm), with losses ranging from 50 to 60 wt%, due to increased aeration and microbial activity post-drainage. These climatic and environmental changes, including a marked reduction in soil salinity and sulphate concentrations due to prolonged leaching, have likely shifted the Mezzano Lowland from a carbon sink to a net source of CO2 and CH4 by promoting microbial processes that enhance methane production under anaerobic conditions. To detect residual peat layers, we used Ground-Penetrating Radar (GPR), which, combined with soil sampling, proved effective for tracking long-term peat soil changes. This approach can inform sustainable land management strategies to prevent further carbon loss and maintain peat soil stability. Full article
Show Figures

Figure 1

19 pages, 3198 KB  
Article
Thermodynamic Analysis of Oxygenation Methods for Stationary Water: Mathematical Modeling and Experimental Investigation
by Mihaela Constantin, Cătălina Dobre and Mugurel Oprea
Thermo 2025, 5(3), 28; https://doi.org/10.3390/thermo5030028 - 8 Aug 2025
Viewed by 307
Abstract
This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate [...] Read more.
This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate the influence of temperature, bubble size, and mass transfer parameters. Key parameters, such as dissolved oxygen concentration, volumetric mass transfer coefficient (akL), and water temperature, were evaluated under different operational scenarios. The oxygenation system was powered by solar energy and included rotating fine-bubble generators mounted on a floating platform. Mathematical modeling carried out in MATLAB validated the theoretical models, showing how environmental factors such as temperature and bubble size influence oxygen dissolution. Initial experimental data, including dissolved oxygen levels (C0 = 3.12 mg/dm3), saturation concentrations at various temperatures (Cs = 8.3 mg/dm3 at 24 °C; Cs = 7.3 mg/dm3 at 30 °C), and a mass transfer coefficient of akL = 0.09 s−1, were used to support the model accuracy. The results highlight the potential of digitally controlled energy-efficient aeration technologies for applications in lake restoration, aquaculture, and sustainable water management. This paper introduces a coupled approach to oxygen transfer and temperature evolution validated experimentally, which has rarely been detailed in the literature. The novelty of this study lies in the combined thermodynamic modeling and exergy–entropy analysis along with real-time tracking, showing the relevance of energy-optimized, digitally monitored oxygenation platforms powered by solar energy. Full article
Show Figures

Figure 1

37 pages, 9843 KB  
Article
Soy Sauce Fermentation with Cordyceps militaris: Process Optimization and Functional Profiling
by Wanying Song, Xinyue Zhang, Huiyi Yang, Hanyu Liu and Baodong Wei
Foods 2025, 14(15), 2711; https://doi.org/10.3390/foods14152711 - 1 Aug 2025
Viewed by 421
Abstract
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to [...] Read more.
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to improve both nutritional and functional properties. Response surface methodology was employed to optimize the entire fermentation process. During the koji stage, temperature, aeration, and inoculum concentration were adjusted to maximize protease activity and cordycepin production. In the fermentation stage, temperature, brine concentration, and water-to-material ratio were optimized to increase amino acid nitrogen and bioactive compound levels. Under optimal conditions (24 °C, 679.60 LPM aeration, 9.6% inoculum for koji; 32 °C, 12% brine, 1.53:1 water-to-material ratio for fermentation), the resulting soy sauce contained 1.14 ± 0.05 g/100 mL amino acid nitrogen and 16.88 ± 0.47 mg/100 mL cordycepin. Compared with traditionally fermented soy sauce, the C. militaris product exhibited a darker color, enhanced umami taste, and a distinct volatile profile featuring linoleic acid, methyl palmitate, and niacinamide. These results demonstrate the feasibility of using C. militaris in soy sauce fermentation and its potential as a novel functional condiment with improved bioactivity and sensory quality. Full article
Show Figures

Figure 1

17 pages, 3327 KB  
Article
Hydraulic Flow Patterns in an On-Site Wastewater Treatment Unit Under Various Operating Conditions
by Tamás Karches and Tamás Papp
Symmetry 2025, 17(8), 1190; https://doi.org/10.3390/sym17081190 - 25 Jul 2025
Viewed by 222
Abstract
The role of on-site wastewater treatment (OSWT) is increasingly important for water reuse and local sustainability, but treatment efficiency is highly dependent on hydraulic behavior and mixing. This study used validated CFD simulations and tracer experiments to analyze flow patterns and mixing performance [...] Read more.
The role of on-site wastewater treatment (OSWT) is increasingly important for water reuse and local sustainability, but treatment efficiency is highly dependent on hydraulic behavior and mixing. This study used validated CFD simulations and tracer experiments to analyze flow patterns and mixing performance in a six-zone OSWT unit under different operational scenarios, including inflow, aeration, recirculation, combined mechanisms, and closed-loop operation without inflow. The results show that influent flow is essential for maintaining convective transport and system-wide momentum, while aeration and recirculation enhance local mixing, but cannot fully overcome geometric dead zones. The combined use of inflow, aeration, and recirculation achieved the highest mixing efficiency and minimized the dead volume, whereas scenarios lacking inflow exhibited severe stagnation and expanded dead zones. These findings highlight the need to integrate hydraulic interventions with thoughtful reactor design to ensure effective and resilient small-scale wastewater treatment systems. Full article
(This article belongs to the Special Issue Symmetry and Numerical Methods in Fluid Dynamics)
Show Figures

Figure 1

18 pages, 1422 KB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 729
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

16 pages, 2619 KB  
Article
Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology
by Lei Chen, Danhua Wang, Lieyu Zhang, Ao Li, Xu Wang, Shishun Sun and Huijuan Feng
Water 2025, 17(14), 2101; https://doi.org/10.3390/w17142101 - 15 Jul 2025
Viewed by 302
Abstract
Nitrogen-metabolizing microbes are the keystone drivers of reducing nitrogen pollutants in wastewater and natural waters, but the one-way experiment with fixed screening factors fails to discover the optimal scope of nitrogen-metabolizing microbes performing nitrogen reduction. This study novelly combines the one-way experiment and [...] Read more.
Nitrogen-metabolizing microbes are the keystone drivers of reducing nitrogen pollutants in wastewater and natural waters, but the one-way experiment with fixed screening factors fails to discover the optimal scope of nitrogen-metabolizing microbes performing nitrogen reduction. This study novelly combines the one-way experiment and response surface methodology (RSM) modeling to synthesize an effective nitrogen reduction microbial community, with the RSM model showing high goodness-of-fit (R2 = 0.83, p = 0.01) for optimizing the strain combination. Eight bacterial strains were isolated from contaminated sediment and activated sludge. Three efficient strains, arranged to Ignatzschieria indica, Staphylococcus epidermidis, and Acinetobacter baumannii by 16S rDNA sequencing, were screened using the above combination method to synthesize a nitrogen reduction microbial community. Within the synthetic microbial community, Ignatzschieria indica and Staphylococcus epidermidis possessed denitrification abilities, and Acinetobacter baumannii contributed to nitrification with 99% of ammonium oxidation. This synthesis microbial community displayed synchronous nitrification and denitrification under interval aeration and possessed wide pH tolerance from 6 to 10, with a steady >80% total inorganic nitrogen reduction. This research managed to synthesize a tolerant nitrogen reduction microbial community and provides novel insight for constructing synthetic microbial consortia. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 7489 KB  
Article
Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’
by Yun Pan, Daoyuan Chen, Yan Deng, Shunshun Wang, Feng Chen, Fei Wang, Luyu Xue, Yanru Duan, Yunxiao Guan, Jinliao Chen, Xiaotong Ji and Donghui Peng
Plants 2025, 14(14), 2092; https://doi.org/10.3390/plants14142092 - 8 Jul 2025
Viewed by 553
Abstract
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly [...] Read more.
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly and efficient alternatives. Biochar, a sustainable material with excellent physical and chemical properties, has been recognized as an effective promoter of plant growth. In this study, we investigated the influence of biochar derived from three raw materials (corn straw, bamboo, and walnut) mixed1 with coconut shell at ratios of 1:2, 1:10, and 4:1, on the growth of Phalaenopsis ‘Big Chili’. Over a 150-day controlled experiment, we evaluated multiple growth parameters, including plant height, crown width, total root length, total projected area, total surface area, and root volume. Compared to the traditional growing medium, the optimal biochar-coconut shell mixture (maize straw biochar: coconut shell = 1:2) increased plant height and crown width by 7.55% and 6.68%, respectively. Root metrics improved substantially, with total root length increasing by 10.96%, total projected area by 22.82%, total surface area by 22.14%, and root volume by 38.49%. Root biomass in the optimal treatment group increased by 42.47%, while aboveground and belowground dry weights increased by 6.16% and 77.11%, respectively. These improvements were closely associated with favorable substrate characteristics, including low bulk density, high total and water-holding porosity, moderate aeration, and adequate nutrient availability. These findings demonstrate that substrate characteristics critically influence plant performance and that biochar–coconut shell mixtures, particularly at a 1:2 ratio, represent a viable and sustainable alternative to sphagnum moss for commercial cultivation of Phalaenopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 1851 KB  
Article
Industrial-Scale Wastewater Nano-Aeration and -Oxygenation and Dissolved Air Flotation: Electric Field Nanobubble and Machine Learning Approaches to Enhanced Nano-Aeration and Flotation
by Niall J. English
Environments 2025, 12(7), 228; https://doi.org/10.3390/environments12070228 - 5 Jul 2025
Viewed by 877
Abstract
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence [...] Read more.
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence times of the order of just 10–15 s). Both ambient air and O2 cylinders were used as gas sources. In both cases, it was found that the levels of dissolved oxygen (DO) were maintained far higher for much longer than those of conventionally aerated water in the AS lane—and at DO levels in the optimal operational WWTP oxygenation zone of about 2.5–3.5 mg/L. In the AS lanes themselves, there were also excellent conversions to nitrate from nitrite, owing to reactive oxygen species (ROS) and some improvements in BOD and E. coli profiles. Nanobubble-enhanced Dissolved Air Flotation (DAF) was found to be enhanced at shorter times for batch processes: settlement dynamics were slowed slightly initially upon contact with virgin NBs, although the overall time was not particularly affected, owing to faster settlement once the recruitment of micro-particulates took place around the NBs—actually making density-filtering ultimately more facile. The development of machine learning (ML) models predictive of NB populations was carried out in laboratory work with deionised water, in addition to WWTP influent water for a second class of field-oriented ML models based on a more narrow set of more easily and quickly measured data variables in the field, and correlations were found for a more facile prediction of important parameters, such as the NB generation rate and the particular dependent variable that is required to be correlated with the efficient and effective functioning of the nanobubble generator (NBG) for the task at hand—e.g., boosting dissolved oxygen (DO) or shifting Oxidative Reductive Potential (ORP). Full article
Show Figures

Figure 1

Back to TopTop