Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Media
2.2. Growth and Nitrogen Removal Experiments
2.3. Isolation and Identification of Bacterial Strains
2.4. Optimization of Nitrogen Removal Using RSM
3. Results
3.1. Screening, Physiological Characteristics, and Taxonomic Research of Nitrogen Removal Bacteria
3.2. Response Surface Optimization Experiment and Verification of Single Bacteria
3.3. Response Surface Optimization Experiment and Verification of Composite Bacteria
4. Discussion
4.1. Functional Diversity and Phylogenetic Divergence of Denitrifying Consortia
4.2. Single-Strain Optimization: Temperature as a Dominant Control Parameter
4.3. Synergistic Effects in Composite Consortia: Balancing Aeration and Environmental Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Zhu, J.X.; Liu, Z.W.; Liu, L. The Eutrophication-related Index of Drinking Water Sources Based on the Oxidation-Reduction Potential. Bioresources 2024, 19, 4941–4959. [Google Scholar] [CrossRef]
- Mycielski, R.; Blaszczyk, M.; Jackowska, A.; Olkowska, H. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. II. Ethanol. Acta Microbiol. Pol. 1983, 32, 381–388. [Google Scholar] [PubMed]
- Wang, S.H.; Ma, Y.K.; Zhang, X.Y.; Yu, Y.; Zhou, X.H.; Shen, Z.Y. Nitrogen transport and sources in urban stormwater with different rainfall characteristics. Sci. Total Environ. 2022, 837, 155902. [Google Scholar] [CrossRef]
- Guo, J.X.; Wang, L.C.; Yang, L.; Deng, J.C.; Zhao, G.M.; Guo, X.Y. Spatial-temporal characteristics of nitrogen degradation in typical Rivers of Taihu Lake Basin, China. Sci. Total Environ. 2020, 713, 136456. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Das, P.; Mehra, A.; Chattopadhyay, S. A Comprehensive Review on the Biofilm-Mediated Removal of Nitrogen and Chemical Oxygen Demand from Different Wastewater Sources. Clean-Soil Air Water 2024, 52, e202300282. [Google Scholar] [CrossRef]
- Gilbert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
- Sanoja-López, K.A.; Loor-Molina, N.S.; Luque, R. Nitrifying bacteria for the remediation of organic nitrogen-contaminated waters: A review. Biofuels Bioprod. Biorefining-Biofpr 2025, 19, 250–259. [Google Scholar] [CrossRef]
- Chen, X.; Duan, F.; Yu, X.; Xie, Y.Y.; Wang, Z.B.; Ni, S.Q. Uncovering pathway and mechanism of simultaneous thiocyanate detoxicity and nitrate removal through anammox and denitrification. NPJ Clean Water 2024, 7, 109. [Google Scholar] [CrossRef]
- Ning, M.Y.; Li, X.; Lu, Z.D.; Yang, Y.L.; Liu, W.L. Heterotrophic nitrification-aerobic denitrification (HNAD) in marine aquaculture wastewater treatment: Nitrogen removal performance, mechanism and microbial community characteristics. J. Water Process Eng. 2025, 70, 107006. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gao, D.W.; Peng, Y.Z.; Wang, P.; Yang, Q. Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2004, 49, 121–127. [Google Scholar] [CrossRef]
- Ju, C.J.; Niyazi, S.; Cao, W.Y.; Wang, Q.; Chen, R.P.; Yu, L. Characteristics and comparisons of the aerobic and anaerobic denitrification of a Klebsiella oxytoca strain: Performance, electron transfer pathway, and mechanism. J. Environ. Manag. 2023, 338, 117787. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lu, D.W.; Qin, B.D.; Liu, Q.L.; Zhao, Y.M.; Liu, H.L.; Ma, J. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11. Bioresour. Technol. 2018, 256, 366–373. [Google Scholar] [CrossRef]
- Sander, E.M.; Virdis, B.; Freguia, S. Bioelectrochemical nitrogen removal as a polishing mechanism for domestic wastewater treated effluents. Water Sci. Technol. 2017, 76, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Zou, S.Q.; Capodaglio, A.G.; He, Z. Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems. Sci. Total Environ. 2018, 636, 881–890. [Google Scholar] [CrossRef]
- Cecconet, D.; Sabba, F.; Anastasi, V.; Bolognesi, S.; Callegari, A.; He, Z.; Capodaglio, A.G. Integrated experimental and modeling evaluation of removal efficiency and energy consumption for an autotrophic denitrifying biocathode. Environ. Sci.-Water Res. Technol. 2022, 8, 1466–1477. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Cooke, P.; Nirmalakhandan, N. Nitrogen-fertilizer recovery from urban sewage via gas permeable membrane: Process analysis, modeling, and intensification. Chem. Eng. J. 2021, 411, 128443. [Google Scholar] [CrossRef]
- Liu, Z.J.; Kieffer, J.M.; Kingery, W.L.; Huddleston, D.H.; Hossain, F. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program. J. Environ. Sci. Health Part Toxic Hazard. Subst. Environ. Eng. 2007, 42, 2023–2032. [Google Scholar] [CrossRef]
- Li, J.N.; Feng, Y.J.; Qiu, Y.; Chen, D.H.; Liang, D.D.; Zhou, J.J.; Liu, G.H. Recovery of electron and carbon source from agricultural waste corncob by microbial electrochemical system to enhance wastewater denitrification. Sci. Total Environ. 2023, 878, 162926. [Google Scholar] [CrossRef]
- Pan, Y.; Hua, T.W.; Sun, R.Z.; Fu, Y.Y.; Xiao, Z.C.; Wang, J.; Yu, H.Q. Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification. Environ. Sci. Technol. 2024, 58, 12498–12508. [Google Scholar] [CrossRef]
- Ren, G.B.; Zhou, M.H.; Zhang, Q.Z.; Xu, X.; Li, Y.C.; Su, P.; Paidar, M.; Bouzek, K. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water Res. 2019, 154, 336–348. [Google Scholar] [CrossRef]
- Maxwell, B.M.; Birgand, F.; Schipper, L.A.; Barkle, G.; Rivas, A.A.; Helmers, M.J.; Christianson, L.E. High-frequency, in situ sampling of field woodchip bioreactors reveals sources of sampling error and hydraulic inefficiencies. J. Environ. Manag. 2020, 272, 110996. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.L.; Wan, N.; Shi, J.X.; Tang, Y.J.; Hu, H. Exploration of simulation-based optimization and impact factors in short-cut nitrification-denitrification start-up in coal pyrolysis wastewater. J. Water Process Eng. 2024, 63, 105482. [Google Scholar] [CrossRef]
- Yang, S.; Yang, F.L. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. J. Hazard. Mater. 2011, 195, 318–323. [Google Scholar] [CrossRef]
- Zhang, C.; Sha, H.; Lv, Z.; Hu, X.M. Enhancement of Pulsed Electric Field on Anammox Process to Reduce the Higher Nitrogen Loading Shock. Waste Biomass Valorization 2023, 14, 2167–2177. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Weng, T.-Y.; Yeh, T.-Y.; Chou, P.-J.; Whang, L.-M. Nitrogen removal strategy for real swine wastewater by combining partial nitrification-denitrification process with anammox. Chemosphere 2024, 364, 143116. [Google Scholar] [CrossRef]
- Fu, H.M.; Jiang, X.W.; Sun, C.P.; Li, S.J.; Weng, X.; Peng, M.W.; Yan, P.; Xu, X.W.; Chen, Y.P.; Shen, Y. Exploring the physical disruptions of anammox granular sludge under propylene glycol stress: Implications for nitrogen removal and long-term stability. J. Water Process Eng. 2025, 71, 107405. [Google Scholar] [CrossRef]
- Wang, X.L.; Han, Q.H.; Yu, H.Y.; Lin, S.S. Enhancement of the reactivation process of long-term starved anammox granular sludge with gravel balls: Microbial succession and metabolic impact. Environ. Res. 2024, 263, 120227. [Google Scholar] [CrossRef]
- Li, B.Y.; Song, Y.X.; Liu, C.H.; He, Y.Q.; Ma, B. Rapid cultivation of anammox bacteria by forming free cells in a membrane bioreactor. Water Environ. Res. 2021, 93, 1640–1650. [Google Scholar] [CrossRef]
- Wang, W.Y.; Wang, R.; Abbas, G.; Wang, G.; Zhao, Z.G.; Deng, L.W.; Wang, L. Aggregation enhances the activity and growth rate of anammox bacteria and its mechanisms. Chemosphere 2022, 291, 132907. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, H.; Lyu, Y.K.; Wang, Y. Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification. J. Chem. Technol. Biotechnol. 2019, 94, 1165–1175. [Google Scholar] [CrossRef]
- Wang, J.L.; Gong, B.Z.; Wang, Y.M.; Wen, Y.H.; Zhou, J.; He, Q. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater. Bioresour. Technol. 2017, 243, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, P.J. Heterotrophic nitrification-An eternal mystery in the nitrogen cycle. Soil Biol. Biochem. 2022, 168, 108611. [Google Scholar] [CrossRef]
- Han, K.; Yeum, Y.; Yun, G.; Kim, Y.W.; Park, C.W.; Kim, Y. Evaluating the efficacy of slow-releasing carbon source tablets for in situ biological heterotrophic denitrification of groundwater. Chemosphere 2022, 304, 135268. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.F.; Feng, Y.L.; Li, H.R.; Jiang, S.W.; Yao, Y.S.; Liu, M.Y.; Wang, J.W. A study of the mechanism of the degradation of dodecylamine in mineral processing wastewater by deep-sea microflora. J. Water Process Eng. 2025, 70, 107081. [Google Scholar] [CrossRef]
- Gupta, R.K.; Poddar, B.J.; Nakhate, S.P.; Chavan, A.R.; Singh, A.K.; Purohit, H.J.; Khardenavis, A.A. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: A nonconventional nitrogen removal pathway in wastewater treatment. Lett. Appl. Microbiol. 2022, 74, 159–184. [Google Scholar] [CrossRef]
- Qin, Y.L.; Liang, Z.L.; Ai, G.M.; Liu, W.F.; Tao, Y.; Jiang, C.Y.; Liu, S.J.; Li, D.F. Heterotrophic nitrification by Alcaligenes faecalis links organic and inorganic nitrogen metabolism. Isme J. 2024, 18, wrae174. [Google Scholar] [CrossRef]
- Maharjan, A.K.; Mori, K.; Nishida, K.; Toyama, T. Nitrogen removal from ammonium-contaminated groundwater using dropping nitrification-cotton-based denitrification reactor. Water Supply 2022, 22, 462–473. [Google Scholar] [CrossRef]
- Li, Y.C.; Dong, W.Y.; Hou, Z.L.; Zhao, Z.L.; Xie, J.; Wang, H.J.; Huang, X.; Peng, Y.Z. Intermittent hydroxylamine dosing to strengthen stability of partial nitrification and nitrogen removal efficiency through continuous-flow anaerobic–aerobic-anoxic reactor treating municipal wastewater. Bioresour. Technol. 2024, 406, 130947. [Google Scholar] [CrossRef]
- Xu, W.L.; Chen, J.Y.; Jian, Y.; Pan, Z.C.; Mou, Z.S. Treatment of Sewage Using a Constructed Soil Rapid Infiltration System Combined with Pre-Denitrification. Int. J. Environ. Res. Public Health 2018, 15, 2005. [Google Scholar] [CrossRef]
- Bydalek, F.; Webster, G.; Barden, R.; Weightman, A.J.; Kasprzyk-Hordern, B.; Wenk, J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. Water Res. 2024, 254, 121408. [Google Scholar] [CrossRef]
- LaPara, T.M.; Konopka, A.; Alleman, J.E. Energy spilling by thermophilic aerobes in potassium-limited continuous culture. Water Res. 2000, 34, 2723–2726. [Google Scholar] [CrossRef]
- Höhne, A.; Müller, B.M.; Schulz, H.; Dara, R.; Posselt, M.; Lewandowski, J.; McCallum, J.L. Fate of trace organic compounds in the hyporheic zone: Influence of microbial metabolism. Water Res. 2022, 224, 119056. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, J.; Tang, Z.; Wan, S.; Hu, J.; Li, B.; Wang, J.; Li, F. Unveiling the nitrogen metabolism mechanism for nitrogen retention in compost via in-situ ammonia recycling strategy. J. Environ. Manag. 2025, 379, 124863. [Google Scholar] [CrossRef] [PubMed]
- Holguin, G.; Bashan, Y. Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol. Biochem. 1996, 28, 1651–1660. [Google Scholar] [CrossRef]
- Alitaleshi, F.; Daghbandan, A.; Pendashteh, A. Performance of rice husk biocarrier on ammonia nitrogen removal in the MBBR treating aquaculture wastewater using biological attached growth process: Performance and kinetic study. J. Environ. Chem. Eng. 2024, 12, 111446. [Google Scholar] [CrossRef]
- He, J.; Hong, L.; Song, M.; Zhang, Y.; Zhang, W.; Zhang, L.; Zhou, D.; Chen, Z.; Yu, Y.; Chen, H.; et al. Diverse Acinetobacter species and Plasmid-Driven spread of carbapenem resistance in pharmaceutical settings in China. Environ. Int. 2025, 198, 109373. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Zhong, X.; Jiang, J.; Zhu, F.; Huang, S.; Zhang, Z.; Wu, Y.; Xue, S. Metabolism of Penicillium oxalicum-mediated microbial community reconstructed by nitrogen improves stable aggregates formation in bauxite residue: A field-scale demonstration. J. Clean. Prod. 2025, 493, 144963. [Google Scholar] [CrossRef]
- Chen, M.; Xia, Y.; Qiu, Z.; Zhu, S.; Yin, P.; Zhao, Y.; Luo, X. Enzyme-responsive aptasensor based on the functionalized fluorescent protein chromophore derivative for the detection of alkaline phosphatase activity. Sens. Actuators B Chem. 2024, 417, 136178. [Google Scholar] [CrossRef]
- Ma, Q.; Yuan, Y.; Wu, E.; Wang, H.; Dang, K.; Feng, Y.; Ivanistau, A.; Feng, B. Endogenous bioactive gibberellin/abscisic acids and enzyme activity synergistically promote the phytoremediation of alkaline soil by broomcorn millet (Panicum miliaceum L.). J. Environ. Manag. 2022, 305, 114362. [Google Scholar] [CrossRef]
- Wan, W.; Wang, Y.; Tan, J.; Qin, Y.; Zuo, W.; Wu, H.; He, H.; He, D. Alkaline phosphatase-harboring bacterial community and multiple enzyme activity contribute to phosphorus transformation during vegetable waste and chicken manure composting. Bioresour. Technol. 2020, 297, 122406. [Google Scholar] [CrossRef]
- Yang, L.; Abudu, A.; Zhu, K.; Han, T.; Duan, C.; Chen, Y.; Li, X.; Shi, G.; Zhu, C.; Li, G.; et al. Acute alkalinity stress induces functional damage and alters immune metabolic pathways in the gill tissue of spotted scat (Scatophagus argus). Aquaculture 2025, 599, 742186. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Zhou, C.; Huang, X.; Chen, Y.; Wang, S.; Liu, G. Enhanced nitrogen removal via partial nitrification/denitrification coupled Anammox using three stage anoxic/oxic biofilm process with intermittent aeration. Water Res. 2024, 255, 121491. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.-N.; Yin, Y.; Guo, Z.; Wang, Q.; Xu, Y.; Zhang, F.; Xiao, Y.; Liu, C. Partial nitrification-denitrification and enrichment of paracoccus induced by iron-chitosan beads addition in an intermittently-aerated activated sludge system. J. Environ. Manag. 2024, 353, 120189. [Google Scholar] [CrossRef]
- Leite, W.; Magnus, B.S.; Guimarães, L.B.; Gottardo, M.; Belli Filho, P. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing. J. Environ. Manag. 2017, 201, 335–344. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature (°C) | 15 | 25 | 35 |
pH | 6 | 8 | 10 |
Bacterial inoculation volume (%) | 1 | 3 | 5 |
Serial Number | A: Temperature (°C) | B: pH | C: Bacterial Inoculation Rate (%) | Nitrate Removal Rate of Strain 8 (%) | Nitrate Removal Rate of Strain 6 (%) | Nitrate Removal Rate of Strain 3 (%) | Ammonia Nitrogen Removal Rate of Strain 1 (%) | Ammonia Nitrogen Removal Rate of Strain 2 (%) |
---|---|---|---|---|---|---|---|---|
1 | 35 | 8 | 5 | 80 | 48.3 | 62.3 | 90.66 | 88.7 |
2 | 25 | 6 | 5 | 93.2 | 49 | 58.2 | 55.09 | 55.64 |
3 | 25 | 8 | 3 | 79.7 | 47.7 | 62.4 | 78.06 | 51.3 |
4 | 35 | 8 | 1 | 61.3 | 61.5 | 59.1 | 86.2 | 91.4 |
5 | 15 | 10 | 3 | 52.3 | 15.7 | 3.6 | 57.87 | 48.22 |
6 | 25 | 10 | 5 | 87.4 | 42.9 | 58.9 | 87.95 | 92.75 |
7 | 35 | 6 | 3 | 87.5 | 45.4 | 26.7 | 76.33 | 76.72 |
8 | 15 | 8 | 5 | 47.9 | 16.2 | 21 | 35.87 | 44.91 |
9 | 25 | 8 | 3 | 79.4 | 52.2 | 65.6 | 38.19 | 78.3 |
10 | 15 | 8 | 1 | 35 | 16.3 | 25.1 | 29.93 | 54.53 |
11 | 25 | 8 | 3 | 92.1 | 61.9 | 65.5 | 72.74 | 72.14 |
12 | 25 | 6 | 1 | 25 | 38.9 | 59.1 | 46.81 | 45.46 |
13 | 25 | 10 | 1 | 68.4 | 25.4 | 61.2 | 81.73 | 80.12 |
14 | 25 | 8 | 3 | 76.3 | 67.3 | 62.6 | 83.36 | 67.31 |
15 | 15 | 6 | 3 | 41.5 | 5.3 | 19 | 10.91 | 28.72 |
16 | 35 | 10 | 3 | 80 | 31.8 | 77.5 | 94.12 | 96.1 |
17 | 25 | 8 | 3 | 80 | 68.2 | 69.1 | 78.12 | 69.67 |
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature (°C) | 20.4 | 27.7 | 35 |
pH | 6 | 8 | 10 |
Aeration interval time (h) | 2 | 7 | 12 |
Serial Number | A: Temperature (°C) | B: pH | Aeration Interval Time (h) | Ammonia Nitrogen Removal Rate (%) | Residual Nitrate Content (mg/L) | Residual Nitrite (mg/L) |
---|---|---|---|---|---|---|
1 | 27.7 | 6 | 2 | 53.7 | 0.00 | 1.24 |
2 | 27.7 | 6 | 12 | 31.8 | 0.00 | 0.52 |
3 | 35 | 6 | 7 | 76.4 | 0.00 | 0.75 |
4 | 20.4 | 10 | 7 | 64.6 | 0.00 | 1.19 |
5 | 27.7 | 8 | 7 | 65.2 | 6.78 | 3.70 |
6 | 35 | 8 | 12 | 33 | 1.54 | 1.11 |
7 | 27.7 | 10 | 2 | 67.6 | 4.47 | 2.12 |
8 | 20.4 | 6 | 7 | 48.9 | 0.72 | 0.51 |
9 | 20.4 | 8 | 12 | 49.3 | 0.63 | 2.04 |
10 | 20.4 | 8 | 2 | 42 | 0.72 | 2.04 |
11 | 27.7 | 8 | 7 | 79.3 | 0.00 | 2.04 |
12 | 27.7 | 8 | 7 | 59 | 0.38 | 0.04 |
13 | 27.7 | 10 | 12 | 59.5 | 0.19 | 0.57 |
14 | 27.7 | 8 | 7 | 57 | 4.95 | 0.24 |
15 | 35 | 10 | 7 | 80.9 | 0.53 | 1.24 |
16 | 35 | 8 | 2 | 78.4 | 0.00 | 1.08 |
17 | 27.7 | 8 | 7 | 66.9 | 1.92 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, D.; Zhang, L.; Li, A.; Wang, X.; Sun, S.; Feng, H. Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology. Water 2025, 17, 2101. https://doi.org/10.3390/w17142101
Chen L, Wang D, Zhang L, Li A, Wang X, Sun S, Feng H. Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology. Water. 2025; 17(14):2101. https://doi.org/10.3390/w17142101
Chicago/Turabian StyleChen, Lei, Danhua Wang, Lieyu Zhang, Ao Li, Xu Wang, Shishun Sun, and Huijuan Feng. 2025. "Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology" Water 17, no. 14: 2101. https://doi.org/10.3390/w17142101
APA StyleChen, L., Wang, D., Zhang, L., Li, A., Wang, X., Sun, S., & Feng, H. (2025). Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology. Water, 17(14), 2101. https://doi.org/10.3390/w17142101