Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,088)

Search Parameters:
Keywords = additive-controlled mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1668 KB  
Article
Sustainable Greenhouse Grape-Tomato Production Implementing a High-Tech Vertical Aquaponic System
by Ioanna Chatzigeorgiou, Maria Ravani, Ioannis A. Giantsis, Athanasios Koukounaras, Aphrodite Tsaballa and Georgios K. Ntinas
Horticulturae 2026, 12(1), 100; https://doi.org/10.3390/horticulturae12010100 (registering DOI) - 17 Jan 2026
Abstract
Growing pressure on water resources and mineral fertilizer use calls for innovative and resource-efficient agri-food systems. Aquaponics, integrating aquaculture and hydroponics, represents a promising approach for sustainable greenhouse production. This study, aiming to explore alternative water and nutrient sources for greenhouse tomato production [...] Read more.
Growing pressure on water resources and mineral fertilizer use calls for innovative and resource-efficient agri-food systems. Aquaponics, integrating aquaculture and hydroponics, represents a promising approach for sustainable greenhouse production. This study, aiming to explore alternative water and nutrient sources for greenhouse tomato production without compromising plant adaptability or yield, evaluated the co-cultivation of grape tomato and rainbow trout in a vertical decoupled aquaponic system under controlled greenhouse conditions. Two aquaponic nutrient strategies were tested: unmodified aquaponic water (AP) and complemented aquaponic water (CAP), with conventional hydroponics (HP) as a control, in a Deep Water Culture hydroponic system. Plant performance was assessed through marketable yield and physiological parameters, while system performance was evaluated using combined-biomass Energy Use Efficiency (EUE), Freshwater Use Efficiency (fWUE) and Nitrogen Use Efficiency (NUE), accounting for both plant and fish production. CAP significantly improved tomato yield (9.86 kg m−2) compared to AP (2.40 kg m−2), although it remained lower than HP (12.14 kg m−2). Fresh WUE was comparable between CAP and HP (9.22 vs. 9.24 g L−1), demonstrating effective water reuse. In contrast, EUE and NUE were lower in CAP, reflecting the additional energy demand of the recirculating aquaculture system and nutrient limitations of fish wastewater. These results highlight aquaponics as a water-efficient production system while emphasizing that optimized nutrient management and energy strategies are critical for improving its overall sustainability and performance. Full article
23 pages, 1539 KB  
Systematic Review
The Efficacy and Safety of Abaloparatide in Osteoporosis: A Systematic Review and Meta-Analysis
by Marco Bonifacio, Marco Ruggiero, Linda Lucchetti, Marco Giuseppe Musorrofiti, Giuseppe La Cava, Alessandro Chiappetta, Emanuele Fiorino, Alberto Lo Gullo and Alessandro Conforti
J. Clin. Med. 2026, 15(2), 673; https://doi.org/10.3390/jcm15020673 - 14 Jan 2026
Viewed by 111
Abstract
Background/Objectives: Abaloparatide is an osteoanabolic therapy used in patients at high risk of fracture; however, the breadth of evidence across routes, comparators, and sequential strategies has not yet been comprehensively summarized. This study aimed to evaluate the efficacy and safety of abaloparatide [...] Read more.
Background/Objectives: Abaloparatide is an osteoanabolic therapy used in patients at high risk of fracture; however, the breadth of evidence across routes, comparators, and sequential strategies has not yet been comprehensively summarized. This study aimed to evaluate the efficacy and safety of abaloparatide for reducing fractures and improving bone mineral density (BMD) in adults with osteoporosis. Methods: Following PRISMA 2020, we searched PubMed, Embase, CENTRAL, and Web of Science (2016–2024) for randomized controlled trials and comparative real-world studies. Additional meta-analyses and network meta-analyses were included as contextual evidence but not pooled to avoid double-counting. Primary outcomes were vertebral, non-vertebral, and hip fractures; secondary outcomes included percentage change in BMD and safety endpoints. Random-effects models were used; heterogeneity, influence analyses, and prediction intervals were examined. Risk of bias was assessed using RoB 2 and AMSTAR 2. Results: Nine quantitative evidence sources met the criteria. Abaloparatide reduced vertebral fractures (RR 0.13–0.21) and showed moderate reductions in non-vertebral fractures. Lumbar spine BMD increased substantially, while hip and femoral neck gains were smaller and heterogeneous. Hypercalcemia risk was consistently lower compared to teriparatide. Transdermal delivery was less effective, and sequential abaloparatide → antiresorptive therapy further reduced fractures. Serious adverse events were not increased. Conclusions: Abaloparatide provides strong vertebral protection, significant BMD improvement, and shows a favorable calcemic profile, with moderate certainty for non-vertebral effects. Evidence in men and long-term safety remains limited. Full article
(This article belongs to the Special Issue Clinical Therapeutic Advances in Bone Fractures)
Show Figures

Figure 1

23 pages, 4805 KB  
Article
Glucose and Lignin Differentially Drive Phosphorus Fractions to Vary in Mollisols (WRB) and Fluvo-Aquic Soil (Chinese Soil Taxonomy) via Microbial Community Shifts
by Xue Li, Fuyue Dai, Shuo Chen, Hongyuan Wang, Shuxia Wu, Bingqian Fan and Hongbin Liu
Agriculture 2026, 16(2), 213; https://doi.org/10.3390/agriculture16020213 - 14 Jan 2026
Viewed by 133
Abstract
Carbon (C) is crucial for nutrient cycling and the assembly of microbial populations in the soil. However, it is still unclear how the C-source utilization characteristics of microbes in distinct types of soils respond to changes in soil phosphorus (P) activity. This study [...] Read more.
Carbon (C) is crucial for nutrient cycling and the assembly of microbial populations in the soil. However, it is still unclear how the C-source utilization characteristics of microbes in distinct types of soils respond to changes in soil phosphorus (P) activity. This study investigated how the addition of different C sources with different decomposition rates (glucose, hemicellulose, and lignin) affects P transformation in two distinct agricultural soils (i.e., Mollisols and Fluvo-aquic soil). Results revealed that the short-term glucose addition to soil induced rapid acidification and microbial biomass accumulation, thereby significantly increasing labile P (NaHCO3-Pi, NaOH-Po) content in Fluvo-aquic soil. Lignin amendment promoted gradual HCl-P release in Mollisols, reflecting differential microbial utilization strategies. Glucose stimulated phosphatase activity (2.5–3.0× control) and phoD gene abundance (4.8×) in Fluvo-aquic soil in the early stage, favoring the growth of Pseudomonas and Burkholderia, whereas lignin sustained the mineralization of fungal-associated P in Mollisols (1.8–2.3× phosphatase activity) by enhancing the abundance of Streptomyces and Bradyrhizobium. Soil type dictated P mobilization efficiency. The Fluvo-aquic soil exhibited rapid but transient P release via bacterial dominance, while Mollisols retained slower yet persistent P availability through specialized microbial consortia. Notably, glucose enhanced organic P mineralization by stimulating C decomposition by microbes, particularly in C-rich Mollisols. Lignin increased P availability in Mollisols via Fe/Al-P desorption. However, in Fluvo-aquic soil, lignin reduced the availability of P through microbial immobilization. These findings highlight that C source degradability and soil properties interactively govern microbial-mediated P cycling in soil. Therefore, organic amendments in contrasting agroecosystems need to be optimized. Full article
(This article belongs to the Special Issue Phosphorus Utilization and Management in Agricultural Soil Systems)
Show Figures

Figure 1

20 pages, 730 KB  
Article
Fortification of Durum Wheat Pasta with Mealworm (Tenebrio molitor) Powder: Physicochemical, Nutraceutical, and Sensory Effects
by Ewelina Zielińska, Paulina Sidor and Urszula Pankiewicz
Molecules 2026, 31(2), 298; https://doi.org/10.3390/molecules31020298 - 14 Jan 2026
Viewed by 110
Abstract
Edible insects are gaining popularity as an alternative food source, highlighting the urgent need for research on their incorporation into traditional food products. This study investigated the impact of incorporating mealworm (Tenebrio molitor) powder (MP) at 2%, 5%, and 10% levels [...] Read more.
Edible insects are gaining popularity as an alternative food source, highlighting the urgent need for research on their incorporation into traditional food products. This study investigated the impact of incorporating mealworm (Tenebrio molitor) powder (MP) at 2%, 5%, and 10% levels on the nutritional, functional, and sensory properties of pasta. Proximate composition, mineral content, color parameters, cooking quality, antioxidant activity and sensory properties were evaluated. Starch digestibility fractions and predicted glycemic index (pGI) were calculated based on in vitro enzymatic hydrolysis. Results showed that 10% MP addition significantly increased protein (1.45-fold) and fat content (12-fold), enriched minerals (Fe, Zn, Mg, K), and improved antioxidant capacity (ABTS+·: 1.3-fold; DPPH·: 2.6-fold) and phenolic content (14.4-fold) compared to control. Color analysis revealed a decrease in lightness and an increase in redness, indicating darker tones with higher MP levels. This supplementation reduced rapidly digestible starch and pGI while increasing slowly digestible starch, suggesting benefits for glycemic control. Sensory evaluation revealed no significant differences (p > 0.05) among samples for appearance, color, taste, and overall impression, confirming good acceptability. Overall, MP fortification improved nutritional and functional properties without compromising sensory quality, supporting its application in developing high-protein, health-oriented foods. Full article
(This article belongs to the Special Issue Functional Foods Enriched with Natural Bioactive Compounds)
Show Figures

Graphical abstract

17 pages, 557 KB  
Article
Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep
by Pelin Beyazgül, Selçukhan Akarsu, Yasin Baykalir and Ülkü Gülcihan Şimşek
Animals 2026, 16(2), 233; https://doi.org/10.3390/ani16020233 - 13 Jan 2026
Viewed by 102
Abstract
This study evaluated the effects of varying dietary salt and boric acid addition doses on the milk quality of Savak Akkaraman sheep. A total of 120 animals were as-signed to six treatment groups (n = 20): control (C), rock salt (S; 10 [...] Read more.
This study evaluated the effects of varying dietary salt and boric acid addition doses on the milk quality of Savak Akkaraman sheep. A total of 120 animals were as-signed to six treatment groups (n = 20): control (C), rock salt (S; 10 g/day), boric acid 20 mg/day (B20), boric acid 40 mg/day (B40), BS20 (20 mg boric acid + 10 g/day rock salt), and BS40 (40 mg boric acid + 10 g/day rock salt). All analyses were performed in duplicate on six samples, taken on days 30 and 35 following the administration of the additives. Physicochemical analyses only showed significant variation in milk pH (p = 0.006), while acidity, dry matter, and ash remained unaffected. Strong positive correlations were found among protein, lactose, salt, and density (r > 0.95; p < 0.001). Coagulation times differed widely, with the longest being observed in BS20 (995.03 s) and the shortest in BS40 (141.73 s). Among mineral parameters, only selenium levels differed significantly between the treatment groups (p < 0.05). No significant differences were found for fat, solids-not-fat, lactose, freezing point, or electrical conductivity. Importantly, boron addition had a significant influence on total casein content (p < 0.001). Overall, dietary rock salt and boric acid did not markedly alter the basic milk composition but produced notable physicochemical changes, particularly in coagulation behavior and casein levels, which may influence the technological properties of sheep milk. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

13 pages, 288 KB  
Article
Yield, Nutritional Quality, and Microbial Safety of Microgreens Grown in Insect Frass and Vermicompost-Based Growing Substrates
by Giuseppe Di Cuia, Massimiliano D’Imperio, Federico Baruzzi, Alessia Marzulli, Francesco Gai and Angelo Parente
Agronomy 2026, 16(2), 158; https://doi.org/10.3390/agronomy16020158 - 8 Jan 2026
Viewed by 347
Abstract
Microgreens have gained increasing popularity due to their cooking versatility, ease of cultivation, and high nutritional value. The use of alternative organic substrates, such as vermicompost and insect frass, offers a promising alternative to peat. This study has evaluated the integration of Tenebrio [...] Read more.
Microgreens have gained increasing popularity due to their cooking versatility, ease of cultivation, and high nutritional value. The use of alternative organic substrates, such as vermicompost and insect frass, offers a promising alternative to peat. This study has evaluated the integration of Tenebrio molitor and Hermetia illucens frass, along with vermicompost, in a microgreen production, while assaying several concentrations (25%, 50%, 75%, and 100%) as replacements by weight. After a preliminary assay aimed at determining the optimal frass and vermicompost levels, we assessed the agronomic, nutritional, and microbiological performances of microgreens. The preliminary results revealed phytotoxic effects of T. molitor frass, while the addition of H. illucens frass or vermicompost did not significantly impact microgreen production. In the second experiment, the interaction between plant species and substrate composition significantly influenced the leaf area, plant height, and mineral content. Partial replacement of peat with H. illucens frass or vermicompost enhanced leaf area and plant height, with a notable increase in iron content in the mizuna microgreens grown with H. illucens frass, compared to the control with peat. Additionally, microbiological safety was ensured, and a complete absence of Salmonella spp. and E. coli was observed in the plants, in accordance with European food safety regulations. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
12 pages, 240 KB  
Article
Cereal-Based Derivatives as Functional Fortifiers of Sourdough Bread: Nutritional, Antioxidant and Quality Insights
by Stavros Kazakos, Ioanna Bampali, Ioanna Mantzourani and Stavros Plessas
Appl. Sci. 2026, 16(2), 646; https://doi.org/10.3390/app16020646 - 8 Jan 2026
Viewed by 137
Abstract
Fortifying sourdough bread with functional ingredients is an effective strategy to enhance nutritional value, bioactive content, and sensory quality. The novel strain Lactiplantibacillus paracasei SP5 was incorporated into mother sponges together with cereal-based derivatives, such as trahanas or delignified wheat bran (2% and [...] Read more.
Fortifying sourdough bread with functional ingredients is an effective strategy to enhance nutritional value, bioactive content, and sensory quality. The novel strain Lactiplantibacillus paracasei SP5 was incorporated into mother sponges together with cereal-based derivatives, such as trahanas or delignified wheat bran (2% and 5% w/w), and their effects on sourdough bread functionality were compared with a control bread without supplementation. Sourdough bread containing 5% w/w trahanas exhibited the highest lactic acid bacteria (10.4 log cfu/g), approximately 22% higher than the control, and the strongest fermentation activity, leading to acetic acid levels 27% higher than the control. This sourdough bread sample also had 73% higher total phenolic content (112.1 mg GAE/100 g) and approximately 27% higher antioxidant activity compared to control bread. In addition, phytic acid degradation exceeded 91%, representing a 16% higher reduction than the control, thereby improving mineral bioavailability. Shelf-life was also markedly extended, in terms of mould and rope spoilage compared with the control. Wheat bran-supplemented breads showed moderate improvements, with LAB counts, antioxidant activity, and phytic acid reduction about 10–25% higher than the control. Overall, these findings demonstrate that L. paracasei SP5 in combination with nutrient-rich, low-cost cereal-based derivatives can significantly enhance the technological, nutritional, and bioactive properties of sourdough breads. This approach provides a simple, industrially feasible strategy for producing functional breads with improved health-promoting and preservative attributes. Full article
21 pages, 6648 KB  
Article
Biochar Integrate with Beneficial Microorganisms Boosts Soil Organic Fractions by Raising Carbon-Related Enzymes and Microbial Activities in Coastal Saline-Alkali Land
by Rui Wang, Qian Cui, Zeyuan Wang, Hongjun Yang, Yuting Bai and Ling Meng
Microorganisms 2026, 14(1), 115; https://doi.org/10.3390/microorganisms14010115 - 5 Jan 2026
Viewed by 298
Abstract
Biochar and beneficial microorganisms (BM) is considered promising soil amendment for saline-alkali amelioration and soil carbon storage.However, the effects of biochar combined with BM addition soil organic carbon (SOC) accumulation and microbial characteristics are less known in coastal saline-alkali soil. Herein, we investigated [...] Read more.
Biochar and beneficial microorganisms (BM) is considered promising soil amendment for saline-alkali amelioration and soil carbon storage.However, the effects of biochar combined with BM addition soil organic carbon (SOC) accumulation and microbial characteristics are less known in coastal saline-alkali soil. Herein, we investigated the SOC content and fractions, soil carbon enzyme activities, and microbial community composition in coastal saline-alkali soil, following three levels of biochar and BM addition. Compared to the control treatment, biochar and BM application effectively reduced soil salinity by 37.58–66.53% and increased soil NH4+ by 9.49–121.16% and NO3 by 43.56–254.28%, respectively. Biochar integrated with BM addition significantly increased the content of SOC, soil mineral-associated organic carbon (MAOC), soil particulate organic carbon (POC), and carbon pool management index (CPMI) by 37.76–108.02%, 15.43–140.44%, 13.73–64.55%, and 81.11–154.61%, respectively, compared with CK treatment. Additionally, biochar and BM significantly enhanced the activities of soil carbon cycle enzymes, including α-1,4-glucosidase (14.54–124.45%), β-1,4-glucosidase (12.71–133.98%), and cellulose hydrolase (6.07–19.17%). Biochar and BM addition also improved the bacterial diversity and altered the microbial composition at the phylum level. The co-addition of biochar and BM improved SOC by decreasing soil salinity and, enhancing soil nutrient availability, soil carbon cycle enzymes, and microbial activity. Furthermore, the combination of 4% biochar and BM exhibited the highest MAOC/POC ratio, demonstrating the most significant impacts on enhancing SOC stability in coastal saline-alkali soil. This study highlighted that the combined use of biochar and BM could serve as a promising approach to fortify soil carbon pool content and stability in saline-alkali land. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

21 pages, 2068 KB  
Article
Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees
by Petros Anargyrou Roussos, Maria Ligka, Petros D. Katsenos, Maria Zoti and Dionisios Gasparatos
Agriculture 2026, 16(1), 128; https://doi.org/10.3390/agriculture16010128 - 4 Jan 2026
Viewed by 279
Abstract
Three organic soil amendments of different origins (chicken manure, fungal biomass obtained through biological fermentation, and a leonardite-based humic acid product) were applied to young chestnut trees, alongside mineral fertilizer, which when applied alone served as the control. During the second year, bud [...] Read more.
Three organic soil amendments of different origins (chicken manure, fungal biomass obtained through biological fermentation, and a leonardite-based humic acid product) were applied to young chestnut trees, alongside mineral fertilizer, which when applied alone served as the control. During the second year, bud break pattern, photosynthetic activity, leaf carbohydrate concentrations, soil properties, and leaf nutrient content were evaluated across multiple sampling events. Sampling time significantly influenced most measured parameters. The addition of organic amendments accelerated bud break, influenced plant nutrient uptake, and modified soil properties. Notably, soil organic matter increased following chicken manure and fungal biomass applications, available phosphorus decreased under fungal biomass and leonardite-based humic acids (to 14.5 and 12.4 ppm, respectively, compared to 17.5 ppm in the mineral fertilizer control), and soil iron concentrations tripled under leonardite-based humic acids relative to the control. However, no significant effects were observed on photosynthetic performance or leaf carbohydrate concentrations. Discriminant and hierarchical cluster analyses revealed clear differences among amendments, with the humic acid-based product exerting distinct effects. As there are not many data available in the literature on the efficacy of organic amendments in chestnut cultivation, the present results underscore the importance of the site-specific selection of organic amendments, tailored to soil characteristics (in the present trial, an acidic soil) and specific nutritional objectives to optimize tree physiological performance. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 1357 KB  
Article
Effects of Alkaline Mineral Complex Supplementation on Growth Performance, Meat Quality, Serum Biochemical Parameters, and Digestive Function of Fattening Lambs
by Qing Mu, Jiawei Ai, Zhiqiang Gao, Shujun Tian and Xiaoyong Chen
Animals 2026, 16(1), 106; https://doi.org/10.3390/ani16010106 - 30 Dec 2025
Viewed by 245
Abstract
Serving as a mineral-derived dietary buffer, the alkaline mineral complex (AMC) has the potential to influence the physiological functions of animals. Nonetheless, there is a notable scarcity of research in the field of ruminant science regarding its effects on fattening lambs. Therefore, the [...] Read more.
Serving as a mineral-derived dietary buffer, the alkaline mineral complex (AMC) has the potential to influence the physiological functions of animals. Nonetheless, there is a notable scarcity of research in the field of ruminant science regarding its effects on fattening lambs. Therefore, the purpose of the present study was to investigate the effects of AMC supplementation on the growth performance, meat quality, serum biochemical parameters, and digestive function of fattening lambs. A total of 96 six-month-old male Small-Tailed Han lambs with an average body weight of 48 ± 3.85 kg were randomly assigned to four groups: the control group (CON, 0 g/d per lamb of AMC), test group 1 (LAMC, 2 g/d per lamb of AMC), test group 2 (MAMC, 3 g/d per lamb of AMC), and test group 3 (HAMC, 4 g/d per lamb of AMC). Each group contained 24 lambs, with 3 pens per group and 8 lambs per pen. The trial lasted for 45 days, and the results showed that, compared with the CON group, the MAMC group demonstrated a significantly enhanced average daily gain (ADG) with a reduced feed conversion ratio (FCR) (p < 0.05). The redness (a*) of the meat in the AMC-treated groups was significantly greater than that of the CON group (p < 0.05). The intramuscular fat (IMF) content in the longissimus dorsi (LD) of the MAMC group was significantly increased compared to the CON group (p < 0.05). The low-density lipoprotein (LDL) and total cholesterol (TC) levels in the HAMC group were greater than those of other groups (p < 0.01), and the superoxide dismutase (SOD) content was higher in the AMC-treated groups compared to the CON group (p < 0.05). In addition, the duodenum lipase content in the HAMC group was significantly lower than that in the CON group (p < 0.05), and the amylase content in the MAMC group was significantly higher than that of the CON group (p < 0.05). The HAMC group had a significantly lower jejunum lipase content than those in the other groups (p < 0.05). The LEfSe analysis showed that the MAMC group possessed significantly increased g_Prevotellaceae_Ga6A1_group levels. Furthermore, SOD and catalase (CAT) were both positively correlated with meat redness (a*) but were not significantly associated with ADG. In contrast, malondialdehyde (MDA) was negatively correlated with ADG, while no significant relationship was observed for meat redness (a*). In conclusion, an appropriate supplementation of AMC (3 g/d per lamb) can improve growth performance and meat quality by enhancing the antioxidant capacity and modulating the composition of beneficial rumen bacteria. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

27 pages, 6323 KB  
Article
Multivariate Analysis and Hydrogeochemical Evolution of Groundwater in a Geologically Controlled Aquifer System: A Case Study in North Central Province, Sri Lanka
by Uthpala Hansani, Sapumal Asiri Witharana, Prasanna Lakshitha Dharmapriya, Pushpakanthi Wijekoon, Zhiguo Wu, Xing Chen, Shameen Jinadasa and Rohan Weerasooriya
Water 2026, 18(1), 89; https://doi.org/10.3390/w18010089 - 30 Dec 2025
Viewed by 365
Abstract
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns [...] Read more.
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns of groundwater chemistry in heterogeneous fractured systems are distinctly controlled by integrated effects of lithological variations, structurally driven flow pathways, aquifer stratification, and geochemical processes, including cation exchange and mineral-specific weathering. To test this, we integrated hydrogeochemical signatures with mapped hydrogeological data and applied multi-stage multivariate analyses, including Piper diagrams, Hierarchical Cluster Analysis (HCA), and Principal Component Analysis (PCA), and various bivariate plots. Piper diagrams identified five distinct hydrochemical facies, but these did not correlate directly with specific rock types, highlighting the limitations of traditional methods in heterogeneous settings. Employing a multi-stage multivariate analysis, we identified seven clusters (C1–C7) that exhibited unique spatial distributions across different rock types and provided a more refined classification of groundwater chemistries. These clusters align with a three-unit aquifer framework (shallow weathered zone, intermittent fracture zone at ~80–100 m MSL, and deeper persistent fractures) controlled by a regional syncline and lineaments. Further analysis through bivariate diagrams revealed insights into dominant weathering processes, cation-exchange mechanisms, and groundwater residence times across the identified clusters. Recharge-type clusters (C1, C2, C5) reflect plagioclase-dominated weathering and short flow paths; transitional clusters (C3, C7) show mixed sources and increasing exchange; evolved clusters (C4, C6) exhibit higher mineralization and longer residence. Overall, the integrated workflow (facies plots + PCA/HCA + bivariate/process diagrams) constrains aquifer dynamics, recharge pathways, and flow-path evolution without additional drilling, and provides practical guidance for well siting and treatment. Full article
Show Figures

Figure 1

34 pages, 1550 KB  
Review
A Comprehensive Review of Lubricant Behavior in Internal Combustion, Hybrid, and Electric Vehicles: Thermal Demands, Electrical Constraints, and Material Effects
by Subin Antony Jose, Erick Perez-Perez, Terrence D. Silva, Kaden Syme, Zane Westom, Aidan Willis and Pradeep L. Menezes
Lubricants 2026, 14(1), 14; https://doi.org/10.3390/lubricants14010014 - 28 Dec 2025
Viewed by 487
Abstract
The global transition from internal combustion engines (ICEs) to hybrid (HEVs) and electric vehicles (EVs) is fundamentally reshaping lubricant design requirements, driven by evolving thermal demands, electrical constraints, and material compatibility challenges. Conventional ICE lubricants are primarily formulated to withstand high operating temperatures, [...] Read more.
The global transition from internal combustion engines (ICEs) to hybrid (HEVs) and electric vehicles (EVs) is fundamentally reshaping lubricant design requirements, driven by evolving thermal demands, electrical constraints, and material compatibility challenges. Conventional ICE lubricants are primarily formulated to withstand high operating temperatures, mechanical stresses, and combustion-derived contaminants through established additive chemistries such as zinc dialkyldithiophosphate (ZDDP), with thermal stability and wear protection as dominant considerations. In contrast, HEV lubricants must accommodate frequent start–stop operation, pronounced thermal cycling, and fuel dilution while maintaining performance across coupled mechanical and electrical subsystems. EV lubricants represent a paradigm shift, where requirements extend beyond tribological protection to include electrical insulation and conductivity control, thermal management of electric motors and battery systems, and compatibility with copper windings, polymers, elastomers, and advanced coatings, alongside mitigation of noise, vibration, and harshness (NVH). This review critically examines lubricant behavior, formulation strategies, and performance requirements across ICE, HEV, and EV powertrains, with specific emphasis on heat transfer, electrical performance, and lubricant–material interactions, covering mineral, synthetic, and bio-based fluids. Additionally, regulatory drivers, sustainability considerations, and emerging innovations such as nano-additives, multifunctional and smart lubricants, and AI-assisted formulation are discussed. By integrating recent research into industrial practice, this work highlights the increasingly interdisciplinary role of tribology in enabling efficient, durable, and sustainable mobility for next-generation automotive systems. Full article
(This article belongs to the Special Issue Tribology in Vehicles, 2nd Edition)
Show Figures

Figure 1

10 pages, 277 KB  
Opinion
Should Children Drink Water with Very Low Mineral Content? Implications of the Global Expansion of Water Filtration Systems and Relevance of Consumption of Water with Higher Mineralization Levels
by Cidália D. Pereira and Maria João Martins
Nutrients 2026, 18(1), 103; https://doi.org/10.3390/nu18010103 - 28 Dec 2025
Viewed by 477
Abstract
The consumption of water with very low mineral content (W-VLMC; water with total dissolved solids below 50 mg/L), despite limited and inconsistent evidence and the resulting knowledge gaps, has not been associated with health risks for the general population. However, certain population subgroups [...] Read more.
The consumption of water with very low mineral content (W-VLMC; water with total dissolved solids below 50 mg/L), despite limited and inconsistent evidence and the resulting knowledge gaps, has not been associated with health risks for the general population. However, certain population subgroups (those eating very unbalanced diets or avoiding certain foods, engaged in prolonged periods of fasting, and/or doing prolonged or strenuous exercise as well as pregnant or breastfeeding women) should be mindful of maintaining sufficient intake of all essential minerals through their food if regularly using this type of water as their main beverage. The rapid expansion of water filtration systems—often producing W-VLMC—creates a timely and valuable opportunity to advance research on the health implications of W-VLMC intake. As these systems become increasingly common in educational settings and homes, children represent a subgroup experiencing rising exposure to W-VLMC. Additional studies are needed to assess the health effects of such exposure from early childhood. A complementary yet contrasting perspective is that the use of water intended for human consumption—with stringent quality control standards—and natural mineral waters—inherently pure, thus eliminating the need for filtration—with higher mineralization in both types of water, may provide an additional dietary source of essential minerals, especially for all the population subgroups mentioned above. Full article
(This article belongs to the Section Nutrition and Public Health)
21 pages, 4327 KB  
Article
Investigation of the Remineralization Effect of an Experimental Toothpaste Containing Bioactive Glass and Essential Oil
by Cem Peskersoy, Nimet Nur Karamanci and Seda Ersus
Appl. Sci. 2026, 16(1), 260; https://doi.org/10.3390/app16010260 - 26 Dec 2025
Viewed by 378
Abstract
This study aimed to develop bioactive toothpaste and compare its remineralization potential on initial enamel lesions with toothpaste containing other active agents. Sixty extracted human maxillary incisors were randomly assigned to six groups: Group EXP (Experimental toothpaste), Group SRP (Sensodyne Repair & Protect), [...] Read more.
This study aimed to develop bioactive toothpaste and compare its remineralization potential on initial enamel lesions with toothpaste containing other active agents. Sixty extracted human maxillary incisors were randomly assigned to six groups: Group EXP (Experimental toothpaste), Group SRP (Sensodyne Repair & Protect), Group ZAC (Zubio Active Carbon Whitening), Group GTM (GC Tooth Mousse), Group CSP (Colgate Sensitive Pro-Relief), and Group ASS (Artificial saliva, control). Artificial caries were induced by immersion in a demineralization solution for three days. Specimens then underwent a seven-day pH-cycling protocol, during which toothpaste was applied twice daily for two minutes. Analyses were performed at baseline, post-demineralization, and post-remineralization using ATR-FTIR, SEM-EDS, and Vickers micro-hardness testing. Statistical analyses were conducted using SPSS (version 27.0, IBM Corp., Chicago, IL, USA). All treatment groups, except the control, showed significant microhardness recovery after remineralization, with the highest increase in group CSP followed by group EXP (p < 0.05). Granular surface deposits were observed, most pronounced in groups SRP and GTM (p < 0.05). Calcium and phosphorus contents increased in all groups (p < 0.05), with calcium highest in group GTM and phosphorus in group EXP. The mineral-to-matrix ratio increased in all groups, and a statistically significant difference was identified between the experimental toothpaste (EXP) and the other toothpaste formulations (p < 0.05). It is hypothesized that pomegranate seed essential oil may exhibit a remineralizing effect due to its content of anthocyanidins, anthocyanins, and various polyphenolic compounds. Therefore, the development of a toothpaste with enhanced remineralization potential was targeted by incorporating pomegranate seed essential oil into the experimental formulation in addition to bioactive agents such as bioactive glass, hydroxyapatite, and casein phosphopeptide. Full article
Show Figures

Figure 1

27 pages, 19906 KB  
Article
Origin and Evolution of the Qingshan Pb–Zn Deposit, Northwestern Guizhou, SW China: Evidences from Fluid Inclusions and C–O–S–Pb Isotopes
by Jalil Ahmed, Runsheng Han, Yan Zhang, Lei Wang and Yi Chen
Minerals 2026, 16(1), 17; https://doi.org/10.3390/min16010017 - 23 Dec 2025
Viewed by 309
Abstract
The Qingshan lead–zinc (Pb–Zn) deposit in northwestern Guizhou Province is a structurally controlled, carbonate-hosted system formed from basin-derived hydrothermal processes. Geology, fluid inclusion, and isotopic data reveal a multi-stage hydrothermal circulation after Emeishan Large Igneous Province (ELIP, ~260 Ma) tectono-thermal reactivation within the [...] Read more.
The Qingshan lead–zinc (Pb–Zn) deposit in northwestern Guizhou Province is a structurally controlled, carbonate-hosted system formed from basin-derived hydrothermal processes. Geology, fluid inclusion, and isotopic data reveal a multi-stage hydrothermal circulation after Emeishan Large Igneous Province (ELIP, ~260 Ma) tectono-thermal reactivation within the Sichuan–Yunnan–Guizhu triangle (SYGT) area. Fluid inclusion microthermometry indicates that ore-forming fluids were derived from deep sources influenced by enhanced crustal heat flow linked with possible thermal input from Indo-Caledonian tectonic activity after ELIP. Ore-stage calcite records mixed carbon derived from marine carbonates with additional inputs from organic matter and deep-sourced fluids, reflecting carbonate dissolution and fluid–rock interaction. Sulfide, together with fluid inclusion temperatures > 120 °C, indicates sulfur derived from evaporitic sulfate reduced by thermochemical sulfate reduction (TSR); the heavy sulfur signature and partial isotopic disequilibrium among coexisting sulfides reflect dynamic fluid mixing during ore deposition. Lead isotopes indicate metallogenic metals were leached mainly from Devonian–Permian carbonates with subordinate basement input. Ore precipitated by cooling, depressurization, and mixing of metal-rich, H2S-bearing fluids in structurally confined zones where the carbonate–clastic interface effectively trapped ore-forming fluids, producing high-grade sphalerite–galena mineralization. Collectively, these data support a Huize-type (HZT) carbonate-hosted Pb–Zn genetic model for the Qingshan deposit. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits: 2nd Edition)
Show Figures

Figure 1

Back to TopTop