Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Milk Supply
2.2. pH, Acidity, Dry Matter, Ash, and Fat Content Measurements
2.3. Determination of Coagulation Time
2.4. Determination of Lactoscan Analyses
2.5. Determination of Mineral Substance Analyses
2.6. Determination of Casein Fractions by SDS-PAGE Method
2.7. Statistical Analyses
3. Results
3.1. pH, Acidity (% Lactic Acid), Dry Matter, and Ash Contents
3.2. Results of Coagulation Time
3.3. Lactoscan Analyses of Milk
3.4. Results of Mineral Substance Analyses
3.5. Results of Determination of Casein Fractions by SDS-PAGE Method
4. Discussion
4.1. pH, Acidity (Lactic Acid%), Dry Matter, Ash, and Fat Content
4.2. Coagulation Time
4.3. Lactoscan Contents of Milk
4.4. Mineral Substance Content of Milk
4.5. Casein Content of Milk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TSI | Turkish Standard Institute |
| TS | Turkish Standard |
| AOAC | Association of Official Analytical Chemists |
| SNF | Solids-not-fat |
| SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
| ANOVA | Analysis of variance |
| SPSS | Statistical Package for the Social Sciences |
| TÜBİTAK | The Scientific and Technological Research Council of Türkiye |
| DMT1 | Divalent Metal Transporter 1 |
| ISO | The International Organization for Standardization |
| IDF | International Dairy Federation |
References
- OECD-FAO. Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021; pp. 24–25. Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2025-2034_601276cd-en.html (accessed on 23 December 2025).
- Food and Agriculture Organization of the United Nations (FAO). Transforming the Livestock Sector Through the Sustainable Development Goals; FAO: Rome, Italy, 2018; Available online: https://openknowledge.fao.org/items/c1f3e566-9c9a-4314-a1d9-621b0adb3589 (accessed on 23 December 2025).
- Anonymous. Qualities of Milk (Topic 3) (Sütün Nitelikleri). 2023. Available online: https://acikders.ankara.edu.tr/course/view.php?id=5754 (accessed on 23 December 2025).
- The Food and Agriculture Organization (FAO). Dairy Sector Overview and Basic Information (Süt Sektör Özeti ve Temel Bilgiler); FAO: Rome, Italy, 2021; Available online: https://ulusalsutkonseyi.org.tr (accessed on 23 December 2025).
- Turkish Statistical Institute (TSI). Animal Production Statistics; TSI: Ankara, Türkiye, 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Hayvansal-%C3%9Cretim-%C4%B0statistikleri-2024-53935&dil=1 (accessed on 23 December 2025).
- Turkish Statistical Institute (TSI). Raw Milk Production Statistics; TSI: Ankara, Türkiye, 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=%C3%87i%C4%9F-S%C3%BCt-%C3%9Cretim-%C4%B0statistikleri-2024-53541&dil=1 (accessed on 23 December 2025).
- Park, Y.W.; Juarez, M.; Ranos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Riberio, A.C.; Riberio, S.D.A. Specialty products made from goat milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Zeng, S.S.; Gipson, T.A. Factor affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Mestawet, T.A.; Girma, A.; Ådnøy, T.; Devold, T.G.; Narvhus, J.A.; Vegarud, G.E. Milk production, composition and variation at different lactation stages of four goat breeds in Ethiopia. Small Rumin. Res. 2012, 105, 176–181. [Google Scholar] [CrossRef]
- Ramos, M.; Juarezi, M. Sheep milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Oxford, UK, 2011; pp. 494–502. [Google Scholar]
- Amigo, L.; Fontecha, J. Goat milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Oxford, UK, 2011; pp. 484–493. [Google Scholar]
- Vincent, D.; Elkins, A.; Condina, M.R.; Ezernieks, V.; Rochfort, S. Quantitation and identification of intact major milk proteins for High-Throughput LC-ESI-Q-TOF MS analyses. PLoS ONE 2016, 11, e0163471. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An uptade. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT—Livestock Primary: Sheep; FAO Statistics Division: Rome, Italy, 2025. Available online: https://www.fao.org/faostat/en/#data/QL (accessed on 23 December 2025).
- Akgün, B.; Genç, S.; Arıcı, M. Salt: Its perception, functions and strategies to reduce its use in foods. Acad. Food J. (Akad. Gıda) 2018, 16, 361–370. [Google Scholar]
- Yorgancılar, M.Ü. Small ruminant breeding systems: Environmental conditions, shelters (Küçükbaş hayvancılıkta yetiştirme sistemleri: Çevre şartları, barınaklar). In Sheep and Goat Health and Breeding (Koyun Keçi Sağlığı ve Yetiştiriciliği); Erdem, H., Çiftci, E., Işık, M.K., Eds.; Academician Bookstore: İstanbul, Türkiye, 2021; p. 35. [Google Scholar]
- Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007.
- Agricultural and Food Research Council (AFRC). Technical Committee on Responses to Nutrients: Report No. 5. Nutrition of the Sheep; CAB International: Wallingford, UK, 1991. [Google Scholar]
- Suttle, N.F. Copper. In Mineral Nutrition of Livestock, 5th ed.; Suttle, N.F., Gunn, R.G., Allen, W.M., Linklater, K.A., Wiener, G., Eds.; CABI: Wallingford, UK, 2022; Volume 11, pp. 259–300. [Google Scholar]
- Bulut, G.; Aydın, Ş.B.; Perek, K.T.; Arslan, F. Enrichment of boron using physical and chemical methods: A review. Process. Extr. Metall. Rev. 2025, 1–18. [Google Scholar] [CrossRef]
- Başkan, S.; Kanak, E.K.; Yılmaz, S.Ö. Antimicrobial effects of boron and evaluation of usage opportunities as a preservative in foods. J. Food (Gıda) 2022, 47, 399–407. [Google Scholar] [CrossRef]
- Khaliq, H.; Zhong, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res. 2018, 186, 31–51. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Boron in Drinking Water Report; WHO Press: Geneva, Switzerland, 2009; pp. 1–12. [Google Scholar]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- Estevez-Fregoso, E.; Kilic, A.; Rodríguez-Vera, D.; Nicanor-Juárez, L.; Romero-Rizo, C.E.M.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on liposoluble hormone functions. Inorganics 2023, 11, 84. [Google Scholar] [CrossRef]
- Armstrong, T.A.; Spears, J.W. Effect of dietary boron on growth performance, calcium and phosphorus metabolism, and bone mechanical properties in growing barrows. J. Anim. Sci. 2001, 79, 3120–3127. [Google Scholar] [CrossRef]
- Nielsen, F.H. Boron in human and animal nutrition. Plant Soil Sci. 1997, 193, 199–208. [Google Scholar] [CrossRef]
- Başaran, N.; Duydu, Y.; Bacanlı, M.; Gül Anlar, H.; Dilsiz, S.A.; Üstündağ, A.; Yalçın, C.Ö.; Schwerdtle, T.; Bolt, H.M. Evaluation of oxidative stress and immune parameters of boron exposed males and females. Food Chem. Toxicol. 2020, 142, 111488. [Google Scholar] [CrossRef]
- Krishnan, B.B.; Selvaraju, S.; Gowda, N.K.S.; Subramanya, K.B.; Pal, D.; Archana, S.S.; Bhatta, R. Dietary boron supplementation enhances sperm quality and immunity through influencing the associated biochemical parameters and modulating the genes expression at testicular tissue. J. Trace Elem. Med. Biol. 2019, 55, 6–14. [Google Scholar] [CrossRef]
- Cortés, S.; Espinoza-Navarro, O.; Ferreccio, C. High exposure to boron in drinking water and sperm parameters in chilean young people. Int. J. Morphol. 2017, 35, 99–104. [Google Scholar] [CrossRef][Green Version]
- Association of Official Analytical Chemists (AOAC). Dairy products. In Official Methods of Analysis of AOAC International, 22nd ed.; Latimer, G.W., Ed.; Oxford University Press: Washington DC, USA, 2023; Chapter 33. [Google Scholar]
- The International Organization for Standardization (ISO 19662-IDF 238). Milk-Determination of Fat Content-Acido-Butyrometric (Gerber Method), 1st ed.; The International Organization for Standardization: Geneva, Switzerland, 2018; Volume 2. [Google Scholar]
- Anusha, R.; Singh, M.K.; Bindhu, O. Characterization of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur. Food Res. Technol. 2014, 238, 997–1006. [Google Scholar] [CrossRef]
- Berridge, N.J. Some observation on the determination of activity of rennet. Analyst 1952, 77, 57–62. [Google Scholar] [CrossRef]
- Pal, G.; Sinha, N.K. Isolation, crystallisation and properties of Calotropains DI and DII from Calotropis gigantea. Arch. Biochem. Biophys. 1980, 202, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, A.; Tsafou, M.; Goliomytis, M.; Hager-Theodorides, A.; Politi, K.; Simitzis, P. Effect of dietary supplementation with a mixture of natural antioxidants on milk yield, composition, oxidation stability and udder health in dairy ewes. Antioxidants 2023, 12, 1571. [Google Scholar] [CrossRef]
- Pacquette, L.H.; Thompson, J.J.; Malaviole, I.; Zywicki, R.; Woltjes, F.; Ding, Y.; Mittal, A.; Ikeuchi, Y.; Sadipiralla, B.; Kimura, S.; et al. Minerals and trace elements in milk, milk products, infant formula, and adult/pediatric nutritional formula, ICP-MS method: Collaborative study, AOAC final action 2015.06, ISO/DIS 21424, IDF 243. J. AOAC Int. 2018, 101, 536–561. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Sinaga, H.; Bansal, N.; Bhandari, B.; Sinaga, H.; Bansal, N.; Bhandari, B. Effects of milk pH alteration on casein micelle size and gelation properties of milk. Int. J. Food Prop. 2016, 20, 179–197. [Google Scholar] [CrossRef]
- Praveen, S.; Chandra, R.; Kumar, N.; Ashutosh Naveen, P.; Jamwal, S.; Fernandes, A. Assessment of milk yield and milk quality on boron supplemented groups in crossbred Karanfries (Holstein Friesian X Tharparker) cows during hot humid season. Indian J. Anim. Nutr. 2021, 38, 383–391. [Google Scholar] [CrossRef]
- Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 2014, 28, 379–382. [Google Scholar] [CrossRef]
- Aljumaah, R.S.; Salama, A.A.K.; Abdelrahman, M.M.; Ayadi, M.; Caja, G.; Alshaikh, M.A.; Al-Badwi, M.A.; Matar, A.M. Exploring the role of salt supplementation on milk composition, fatty acids, and insulin response in lactating camels. Vet. Sci. 2025, 12, 22. [Google Scholar] [CrossRef]
- Çelik, M.N.; Vural, A.; Erkan, M.E. The study of the microbiological, physico-chemical and organoleptic properties of the raw ewe’s milk in Diyarbakır province. Erciyes Üniv. Vet. Fak. Derg. 2019, 16, 178–183. [Google Scholar] [CrossRef][Green Version]
- Dagdelen, U.; Esenbuga, N. Effect of breed, age and pasture periods on milk yield, milk components, somatic cell counts and lipid profiles of raw milk from Morkaraman and Tushin Sheeps. Large Anim. Rev. 2022, 28, 193–198. [Google Scholar]
- Koca, D.; Turgut, A.O.; Çetin, N.; Üner, S.; Gülendağ, E.; Karagülle, B. Chemical composition and physical properties of milk in Norduz sheep. Van Vet. J. 2023, 34, 271–274. [Google Scholar] [CrossRef]
- Turgut, A.O.; Gülendağ, E. Milk composition traits of Hamdani crossbreed sheep raised under extensive management. ISPEC J. Agric. Sci. 2023, 7, 271–279. [Google Scholar]
- Alichanidis, E.; Polychroniadou, A. Characteristics of major traditional regional cheese varieties of East-Mediterranean countries: A review. Food Chem. 2008, 112, 281–290. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F.; Wendorff, W.L. (Eds.) Overview of milk of non-bovine mammals. In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–9. [Google Scholar]
- McSweeney, P.L.; Fox, P.F. (Eds.) Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; Springer Science & Business Media: London, UK, 2013. [Google Scholar]
- Ceballos, L.S.; Morales, E.R.; de la Torre Adarve, G.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Guo, M.R.; Dixon, P.H.; Park, Y.W.; Gilmore, J.A.; Kindstedt, P.S. Seasonal changes in the chemical composition of commingled goat milk. J. Dairy Sci. 2001, 84, E79–E83. [Google Scholar] [CrossRef]
- Soyeurt, H.; Dardenne, P.; Dehareng, F.; Lognay, G.; Veselko, D.; Marlier, M.; Bertozzi, C.; Mayeres, P.; Gengler, N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006, 89, 3690–3695. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. A review on the effect of calcium sequestering salts on casein micelles: From model milk protein systems to processed cheese. Molecules 2023, 28, 2085. [Google Scholar] [CrossRef] [PubMed]
- Udabage, P.; McKinnon, I.R.; Augustin, M.A. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. J. Dairy Sci. 2001, 84, 1569–1575. [Google Scholar] [CrossRef]
- Çelik, Ş.; Özdemir, S. The variations of some chemical and physicochemical parameters of Morkaraman sheep milk during lactation (Morkaraman ırkı koyun sütlerinin bazı kimyasal ve fizikokimyasal parametrelerinin laktasyon boyunca değişimi). Atatürk Univ. J. Agric. Fac. 2003, 34, 263–268. [Google Scholar]
- Çelik, Ş.; Özdemir, S. β-Lactoglobulin variants in Awassi and Morkaraman sheep and their association with the composition and rennet clotting time of the milk. Turk. J. Vet. Anim. Sci. 2006, 30, 539–544. [Google Scholar]
- Salvador, D.; Acosta, Y.; Zamora, A.; Castillo, M. Rennet-Induced casein micelle aggregation models: A review. Foods 2022, 11, 1243. [Google Scholar] [CrossRef]
- Mutlu, M.; Mutlu, S.İ.; Ergin, R.E.; Seven, P.T.; Seven, İ.; Kanmaz, O.E. Evaluation of nutrient profile and heavy metal risks of feed and milk content of Şavak Akkaraman sheep. Turk. J. Agric.—Food Sci. Technol. 2025, 13, 1776–1783. [Google Scholar]
- Sanjulián, L.; Fernández-Rico, S.; González-Rodríguez, N.; Cepeda, A.; Miranda, J.M.; Fente, C.; Lamas, A.; Regal, P. The role of dairy in human nutrition: Myths and realities. Nutrients 2025, 17, 646. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.D. Dietary boron: Progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 2012, 26, 157–160. [Google Scholar]
- Özkaya, A.; Sucak, M.G.; Ağyar, O.; Yılmaz, E. Determination of mineral and fatty acid concentrations of Akkaraman Sheep’s milk. Commagene J. Biol. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol. 2018, 50, 137–142. [Google Scholar]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Swelum, A.A.; Perillo, A.; Losacco, C. The vital roles of boron in animal health and production: A comprehensive review. J. Trace Elem. Med. Biol. 2018, 50, 296–304. [Google Scholar] [PubMed]
- Kurćubić, V.S.; Lević, S.; Pavlović, V.; Mihailović, R.; Nikolić, A.; Lukić, M.; Jovanović, J.; Danilović, B.; Milinković, M.; Oz, F.; et al. Manufacture of low-Na white soft brined cheese: Effect of NaCl substitution with a combination of Na-K Salts on proximate composition, mineral content, microstructure, and sensory acceptance. Foods 2024, 13, 1381. [Google Scholar] [CrossRef]

| Treatment Groups | pH | Acidity (% Lactic Acid) | Dry Matter (%) | Ash (%) |
|---|---|---|---|---|
| C | 6.88 ± 0.03 a | 0.21 ± 0.01 | 19.65 ± 1.26 | 0.76 ± 0.12 |
| S | 6.65 ± 0.05 b | 0.22 ± 0.01 | 19.82 ± 0.35 | 0.83 ± 0.11 |
| B20 | 6.74 ± 0.07 ab | 0.36 ± 0.13 | 19.28 ± 0.65 | 0.89 ± 0.05 |
| B40 | 6.62 ± 0.02 b | 0.22 ± 0.01 | 20.04 ± 0.73 | 0.90 ± 0.09 |
| BS20 | 6.66 ± 0.03 b | 0.23 ± 0.01 | 18.68 ± 0.69 | 0.99 ± 0.05 |
| BS40 | 6.72 ± 0.04 ab | 0.28 ± 0.13 | 19.78 ± 0.67 | 0.76 ± 0.10 |
| p-value | 0.006 | 0.401 | 0.847 | 0.505 |
| Coagulation Time (s) | C | S | B20 | B40 | BS20 | BS40 | p-Value |
|---|---|---|---|---|---|---|---|
| Min | * | 355.00 | * | * | * | * | 0.453 |
| Max | 875.00 | 1045.00 | 2110 | * | 2215.00 | 425.00 | |
| Mean | 291.73 | 703.33 | 813.36 | * | 995.03 | 141.73 |
| Treatment Groups | Fat (%) | SNF (%) | Density (g/cm3) | Protein (%) | Lactose (%) | Salt (%) | Freezing Point (°C) | Electrical Conductivity (mS/cm) |
|---|---|---|---|---|---|---|---|---|
| C | 9.40 | 13.47 | 1.042 ab | 4.86 ab | 7.34 | 1.06 ab | −1.02 | 4.32 |
| S | 8.90 | 13.32 | 1.042 ab | 4.84 ab | 7.25 | 1.05 ab | −1.00 | 4.22 |
| B20 | 9.27 | 12.14 | 1.037 b | 4.41 b | 6.63 | 0.94 b | −0.91 | 4.47 |
| B40 | 8.45 | 13.70 | 1.043 a | 4.98 a | 7.46 | 1.06 a | −1.03 | 4.50 |
| BS20 | 8.81 | 12.87 | 1.040 ab | 4.67 ab | 7.01 | 1.01 ab | −0.96 | 4.57 |
| BS40 | 9.38 | 13.37 | 1.041 ab | 4.86 ab | 7.32 | 1.04 ab | −1.01 | 4.37 |
| SEM | 0.47 | 0.37 | 0.034 | 0.13 | 0.19 | 0.02 | 0.03 | 0.15 |
| p-value | 0.712 | 0.058 | 0.048 | 0.045 | 0.059 | 0.027 | 0.102 | 0.634 |
| Minerals | C | S | B20 | B40 | BS20 | BS40 | SEM | p-Value |
|---|---|---|---|---|---|---|---|---|
| Boron (×103 ppb) | 1.88 | 1.82 | 1.98 | 1.95 | 1.94 | 1.99 | 0.03 | 0.178 |
| Calcium (×106 ppb) | 0.80 | 0.78 | 0.83 | 0.84 | 0.80 | 0.90 | 0.02 | 0.227 |
| Copper (×10 ppb) | 5.15 | 5.26 | 5.41 | 4.67 | 3.67 | 3.42 | 0.07 | 0.690 |
| Iron (×103 ppb) | 0.81 | 1.19 | 1.05 | 0.88 | 1.09 | 0.88 | 0.06 | 0.478 |
| Magnesium (×105 ppb) | 1.18 | 1.09 | 1.15 | 1.19 | 1.03 | 1.32 | 0.04 | 0.151 |
| Manganese (×10 ppb) | 7.54 | 8.84 | 9.39 | 7.54 | 7.94 | 7.48 | 0.28 | 0.229 |
| Molybdenum (×10 ppb) | 4.72 | 4.46 | 4.22 | 4.62 | 3.98 | 4.80 | 0.03 | 0.594 |
| Selenium (×10 ppb) | 8.26 ab | 8.26 ab | 9.48 a | 9.55 a | 6.51 b | 7.78 ab | 0.03 | 0.026 |
| Zinc (×103 ppb) | 4.43 | 5.33 | 5.04 | 4.93 | 3.95 | 5.28 | 0.17 | 0.147 |
| Treatment Groups | Alpha-Casein (OD%) | Beta-Casein (OD%) | Total Casein (OD%) |
|---|---|---|---|
| C | 9.93 d | 4.97 d | 16.55 d |
| S | 14.57 b | 7.28 b | 24.28 b |
| B20 | 15.60 a | 7.80 a | 26.00 a |
| B40 | 16.17 a | 8.09 a | 26.95 a |
| BS20 | 11.31 c | 5.66 c | 18.85 c |
| BS40 | 12.16 c | 6.08 c | 20.26 c |
| SEM | 0.23 | 0.11 | 0.38 |
| p-value | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Beyazgül, P.; Akarsu, S.; Baykalir, Y.; Şimşek, Ü.G. Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep. Animals 2026, 16, 233. https://doi.org/10.3390/ani16020233
Beyazgül P, Akarsu S, Baykalir Y, Şimşek ÜG. Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep. Animals. 2026; 16(2):233. https://doi.org/10.3390/ani16020233
Chicago/Turabian StyleBeyazgül, Pelin, Selçukhan Akarsu, Yasin Baykalir, and Ülkü Gülcihan Şimşek. 2026. "Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep" Animals 16, no. 2: 233. https://doi.org/10.3390/ani16020233
APA StyleBeyazgül, P., Akarsu, S., Baykalir, Y., & Şimşek, Ü. G. (2026). Effects of Dietary Salt and Boric Acid on Milk Quality in Savak Akkaraman Sheep. Animals, 16(2), 233. https://doi.org/10.3390/ani16020233

