Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,396)

Search Parameters:
Keywords = active power control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3571 KB  
Article
Methodology for Transient Stability Assessment and Enhancement in Low-Inertia Power Systems Using Phasor Measurements: A Data-Driven Approach
by Mihail Senyuk, Svetlana Beryozkina, Ismoil Odinaev, Inga Zicmane and Murodbek Safaraliev
Mathematics 2025, 13(19), 3192; https://doi.org/10.3390/math13193192 - 5 Oct 2025
Abstract
Modern energy systems are undergoing a profound transformation characterized by the active replacement of conventional fossil-fuel-based power plants with renewable energy sources. This transition aims to reduce the carbon emissions associated with electricity generation while enhancing the economic performance of electric power market [...] Read more.
Modern energy systems are undergoing a profound transformation characterized by the active replacement of conventional fossil-fuel-based power plants with renewable energy sources. This transition aims to reduce the carbon emissions associated with electricity generation while enhancing the economic performance of electric power market players. However, alongside these benefits come several challenges, including reduced overall inertia within energy systems, heightened stochastic variability in grid operation regimes, and stricter demands on the rapid response capabilities and adaptability of emergency controls. This paper presents a novel methodology for selecting effective control laws for low-inertia energy systems, ensuring their dynamic stability during post-emergency operational conditions. The proposed approach integrates advanced techniques, including feature selection via decision tree algorithms, classification using Random Forest models, and result visualization through the Mean Shift clustering method applied to a two-dimensional representation derived from the t-distributed Stochastic Neighbor Embedding technique. A modified version of the IEEE39 benchmark model served as the testbed for numerical experiments, achieving a classification accuracy of 98.3%, accompanied by a control law synthesis delay of just 0.047 milliseconds. In conclusion, this work summarizes the key findings and outlines potential enhancements to refine the presented methodology further. Full article
(This article belongs to the Special Issue Mathematical Applications in Electrical Engineering, 2nd Edition)
Show Figures

Figure 1

17 pages, 609 KB  
Article
Portulaca oleracea as a Functional Ingredient in Organic Cooked Frankfurters: A Sustainable Approach to Shelf-Life Extension and Oxidative Stability Without Synthetic Nitrites
by Kadyrzhan Makangali, Gulnazym Ospankulova, Gulzhan Tokysheva, Aknur Muldasheva and Kalamkas Dairova
Processes 2025, 13(10), 3167; https://doi.org/10.3390/pr13103167 - 5 Oct 2025
Abstract
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. [...] Read more.
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. This study investigated the application of Portulaca oleracea powder as a multifunctional ingredient to fully replace sodium nitrite in organic cooked frankfurters. Two formulations were produced: control frankfurters with sodium nitrite and experimental frankfurters with purslane powder 1.2%. Physicochemical, oxidative, proteomic, and antioxidant parameters were monitored during refrigerated storage. Purslane incorporation improved the lipid profile by increasing α-linolenic acid and lowering the ω-6/ω-3 ratio, while peroxide, thiobarbituric acid reactive substances (TBARS), and acid values remained significantly lower than in nitrite-containing controls after 10 days. Protein oxidation was also reduced, and SDS-PAGE profiles confirmed that the major structural muscle proteins remained stable, indicating that purslane addition did not disrupt the core proteome. Antioxidant assays showed strong ferric-reducing antioxidant power (FRAP) activity 13.7 mg GAE/g and enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity 22.3%, highlighting purslane’s contribution to oxidative stability. Although redness (a*) was lower than in nitrite controls, overall color stability (L*, b*) remained high. Taken together, purslane enhanced oxidative stability and quality attributes of nitrite-free organic frankfurters; microbiological validation is ongoing and will be reported separately. Full article
(This article belongs to the Special Issue Development of Innovative Processes in Food Engineering)
27 pages, 1664 KB  
Review
Actomyosin-Based Nanodevices for Sensing and Actuation: Bridging Biology and Bioengineering
by Nicolas M. Brunet, Peng Xiong and Prescott Bryant Chase
Biosensors 2025, 15(10), 672; https://doi.org/10.3390/bios15100672 - 4 Oct 2025
Abstract
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical [...] Read more.
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical and physical cues and modular adaptability. We begin with a comparative overview of natural and synthetic nanomachines, positioning actomyosin as a uniquely scalable and biocompatible platform. We then discuss experimental advances in controlling actomyosin activity through ATP, calcium, heat, light and electric fields, as well as their integration into in vitro motility assays, soft robotics and neural interface systems. Emphasis is placed on longstanding efforts to harness actomyosin as a biosensing element—capable of converting chemical or environmental signals into measurable mechanical or electrical outputs that can be used to provide valuable clinical and basic science information such as functional consequences of disease-associated genetic variants in cardiovascular genes. We also highlight engineering challenges such as stability, spatial control and upscaling, and examine speculative future directions, including emotion-responsive nanodevices. By bridging cell biology and bioengineering, actomyosin-based systems offer promising avenues for real-time sensing, diagnostics and therapeutic feedback in next-generation biosensors. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

20 pages, 3146 KB  
Article
Transient Injection Quantity Control Strategy for Automotive Diesel Engine Start-Idle Based on Target Speed Variation Characteristics
by Yingshu Liu, Degang Li, Miao Yang, Hao Zhang, Liang Guo, Dawei Qu, Jianjiang Liu and Xuedong Lin
Energies 2025, 18(19), 5256; https://doi.org/10.3390/en18195256 - 3 Oct 2025
Abstract
Active control of injection quantity during start-up idle optimizes automotive diesel engine starting performance, aligning with low-carbon goals. Conventional methods rely on a calibrated demand torque map adjusted by speed, temperature, and pressure variations, requiring extensive labor for calibration and limiting energy-saving and [...] Read more.
Active control of injection quantity during start-up idle optimizes automotive diesel engine starting performance, aligning with low-carbon goals. Conventional methods rely on a calibrated demand torque map adjusted by speed, temperature, and pressure variations, requiring extensive labor for calibration and limiting energy-saving and emission improvements. To address this problem, this paper proposes a transient injection quantity active control method for the start-up process based on the variation characteristics of target speed. Firstly, the target speed variation characteristics of the start-up process are optimized by setting different accelerations. Secondly, a transient injection quantity control strategy for the start-up process is proposed based on the target speed variation characteristics. Finally, the control strategy proposed in this paper was compared with the conventional starting injection quantity control method to verify its effectiveness. The results show that the start-up idle control strategy proposed in this paper reduces the cumulative fuel consumption of the start-up process by 25.9% compared to the conventional control method while maintaining an essentially unchanged start-up time. The emissions of hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NOx) exhibit peak reductions of 12.4%, 32.5%, and 62.9%, respectively, along with average concentration drops of 27.2%, 35.1%, and 41.0%. Speed overshoot decreases by 25%, and fluctuation time shortens by 23.6%. The results indicate that the proposed control method not only avoids complicated calibration work and saves labor and material resources but also effectively improves the starting performance, which is of great significance for the diversified development of automotive power sources. Full article
25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Graphical abstract

16 pages, 2540 KB  
Article
Monthly and Daily Dynamics of Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) in Livestock Farms of the Batna Region (Northeastern Algeria)
by Chaimaa Azzouzi, Mehdi Boucheikhchoukh, Noureddine Mechouk, Scherazad Sedraoui and Safia Zenia
Parasitologia 2025, 5(4), 52; https://doi.org/10.3390/parasitologia5040052 - 2 Oct 2025
Abstract
Stomoxys calcitrans (Linnaeus, 1758) is a hematophagous fly species of veterinary importance, known for its negative effects on animal health and productivity. The stress caused by their painful bites results in losses in milk and meat production. Despite its impact, data on its [...] Read more.
Stomoxys calcitrans (Linnaeus, 1758) is a hematophagous fly species of veterinary importance, known for its negative effects on animal health and productivity. The stress caused by their painful bites results in losses in milk and meat production. Despite its impact, data on its ecology and activity in Algeria are lacking. Such knowledge is needed to evaluate its potential effects on livestock production and rural health, and to support surveillance, outbreak prediction, and control strategies. This study aimed to investigate the monthly and daily dynamics of S. calcitrans in livestock farms in the Batna region and evaluate the influence of climatic factors on its abundance. From July 2022 to July 2023, Vavoua traps were placed monthly from 7 a.m. to 6 p.m. on four farms in the Batna region, representing different livestock types. Captured flies were identified, sexed, and counted every two hours. Climatic data were collected both in situ and from NASA POWER datasets. Fly abundance was analyzed using non-parametric statistics, Spearman’s correlation, and multiple regression analysis. A total of 1244 S. calcitrans were captured, mainly from cattle farms. Activity occurred from August to December, with a peak in September. Males were more abundant and exhibited a bimodal activity in September. Fly abundance was positively correlated with temperature and precipitation and negatively correlated with wind speed and humidity. This study presents the first ecological data on S. calcitrans in northeastern Algeria, highlighting its seasonal dynamics and the climatic drivers that influence it. The results highlight the species’ preference for cattle and indicate that temperature and rainfall are key factors influencing its abundance. These findings lay the groundwork for targeted control strategies against this neglected pest in Algeria. Full article
Show Figures

Figure 1

21 pages, 1106 KB  
Article
Risk Assessment Method for CPS-Based Distributed Generation Cluster Control in Active Distribution Networks Under Cyber Attacks
by Jinxin Ouyang, Fan Mo, Fei Huang and Yujie Chen
Sensors 2025, 25(19), 6053; https://doi.org/10.3390/s25196053 - 1 Oct 2025
Abstract
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) [...] Read more.
In modern power systems, distributed generation (DG) clusters such as wind and solar resources are increasingly being integrated into active distribution networks through DG cluster control, which enhances the economic efficiency and adaptability of the DGs. However, cyber attacks on cyber–physical systems (CPS) may disable control links within the DG cluster, leading to the loss of control over slave DGs and resulting in power deficits, thereby threatening system stability. Existing CPS security assessment methods have limited capacity to capture cross-domain propagation effects caused by cyber attacks and lack a comprehensive evaluation framework from the attacker’s perspective. This paper establishes a CPS system model and control–communication framework and then analyzes the cyber–physical interaction characteristics under DG cluster control. A logical model of cyber attack strategies targeting DG cluster inverters is proposed. Based on the control topology and master–slave logic, a probabilistic failure model for DG cluster control is developed. By considering power deficits at cluster point of common coupling (PCC) and results in internal network of the DG cluster, a physical consequence quantification method is introduced. Finally, a cyber risk assessment method is proposed for DG cluster control under cyber attacks. Simulation results validate the effectiveness of the proposed method. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 1939 KB  
Review
Challenges of Ozone Therapy in Periodontal Regeneration: A Narrative Review and Possible Therapeutic Improvements
by Nada Tawfig Hashim, Rasha Babiker, Vivek Padmanabhan, Md Sofiqul Islam, Sivan Padma Priya, Nallan C. S. K. Chaitanya, Riham Mohammed, Shahistha Parveen Dasnadi, Ayman Ahmed, Bakri Gobara Gismalla and Muhammed Mustahsen Rahman
Curr. Issues Mol. Biol. 2025, 47(10), 811; https://doi.org/10.3390/cimb47100811 - 1 Oct 2025
Abstract
Ozone (O3) has re-emerged in periodontology for its antimicrobial, oxygenating, and immunomodulatory actions, yet its role in regeneration remains contentious. This narrative review synthesizes current evidence on adjunctive ozone use in periodontal therapy, delineates cellular constraints—especially in periodontal ligament fibroblasts (PDLFs)—and [...] Read more.
Ozone (O3) has re-emerged in periodontology for its antimicrobial, oxygenating, and immunomodulatory actions, yet its role in regeneration remains contentious. This narrative review synthesizes current evidence on adjunctive ozone use in periodontal therapy, delineates cellular constraints—especially in periodontal ligament fibroblasts (PDLFs)—and explores mitigation strategies using bioactive compounds and advanced delivery platforms. Two recent meta-analyses indicate that adjunctive ozone with scaling and root planing yields statistically significant reductions in probing depth and gingival inflammation, with no significant effects on bleeding on probing, plaque control, or clinical attachment level; interpretation is limited by heterogeneity of formulations, concentrations, and delivery methods. Mechanistically, ozone imposes a dose-dependent oxidative burden that depletes glutathione and inhibits glutathione peroxidase and superoxide dismutase, precipitating lipid peroxidation, mitochondrial dysfunction, ATP depletion, and PDLF apoptosis. Concurrent activation of NF-κB and upregulation of IL-6/TNF-α, together with matrix metalloproteinase-mediated extracellular matrix degradation and tissue dehydration (notably with gaseous applications), further impairs fibroblast migration, adhesion, and ECM remodeling, constraining regenerative potential. Emerging countermeasures include co-administration of polyphenols (epigallocatechin-3-gallate, resveratrol, curcumin, quercetin), coenzyme Q10, vitamin C, and hyaluronic acid to restore redox balance, stabilize mitochondria, down-modulate inflammatory cascades, and preserve ECM integrity. Nanocarrier-based platforms (nanoemulsions, polymeric nanoparticles, liposomes, hydrogels, bioadhesive films) offer controlled ozone release and co-delivery of protectants, potentially widening the therapeutic window while minimizing cytotoxicity. Overall, current evidence supports ozone as an experimental adjunct rather than a routine regenerative modality. Priority research needs include protocol standardization, dose–response definition, long-term safety, and rigorously powered randomized trials evaluating bioactive-ozone combinations and nanocarrier systems in clinically relevant periodontal endpoints. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

20 pages, 9056 KB  
Article
Impact of Voltage Supraharmonics on Power Supply Units in Low-Voltage Grids
by Primož Sukič, Danilo Dmitrašinović and Gorazd Štumberger
Electronics 2025, 14(19), 3918; https://doi.org/10.3390/electronics14193918 - 1 Oct 2025
Abstract
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude [...] Read more.
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude disturbances throughout the electrical network. When addressing issues in a real low-voltage (LV) grid, it was observed that activation of a single device emitting supraharmonics caused oscillating currents across all feeders connected to the transformer’s busbars, matching the frequency of the supraharmonic source. To investigate this phenomenon further, the grid voltage containing supraharmonics was replicated in a controlled laboratory environment and used to supply various power electronic devices. The laboratory results closely mirrored those observed in the field. Supraharmonics present in the supply voltage caused current oscillations in the power electronic devices at the same frequency. Moreover, the amplitude of the observed current oscillations increased with the amplitude of the injected supply voltage supraharmonics. In some cases, the root mean square (RMS) value of the current drawn by the power electronic devices doubled, indicating a substantial impact on device behaviour and potential implications for grid stability and energy efficiency. Full article
27 pages, 16191 KB  
Article
Far Transfer Effects of Multi-Task Gamified Cognitive Training on Simulated Flight: Short-Term Theta and Alpha Signal Changes and Asymmetry Changes
by Peng Ding, Chen Li, Zhengxuan Zhou, Yang Xiang, Shaodi Wang, Xiaofei Song and Yingwei Li
Symmetry 2025, 17(10), 1627; https://doi.org/10.3390/sym17101627 - 1 Oct 2025
Abstract
Cognitive deficiencies are significant factors affecting aviation piloting capabilities. However, due to the limited stability resulting from the insufficient appeal of traditional attention or memory cognitive training, multi-task gamified cognitive training (MTGCT) may be more beneficial in generating far transfer effects in task [...] Read more.
Cognitive deficiencies are significant factors affecting aviation piloting capabilities. However, due to the limited stability resulting from the insufficient appeal of traditional attention or memory cognitive training, multi-task gamified cognitive training (MTGCT) may be more beneficial in generating far transfer effects in task performance. This study explores the enhancement effects of simulated flight operation capabilities based on visuo-spatial attention and working memory MTGCT. Additionally, we explore the neurophysiological impacts through changes in EEG power spectral density (PSD) characteristics and brain asymmetry, and whether these impacts exhibit a certain retention effect. This study designed a 28-day simulated flight operation capability enhancement experiment. In addition, the behavioral performance and EEG signal changes in 28 college students (divided into control and training groups) were analyzed. The results indicated that MTGCT significantly enhanced simulated flight operational capabilities, and the neural framework formed by physiological changes remains effective for at least two weeks. The physiological changes included a decrease in the θ band PSD and an increase in the α band PSD in the frontal and parietal lobes due to optimized cognitive resource allocation, as well as the frontal θ band leftward asymmetry and the frontoparietal α band rightward asymmetry due to the formation of neural activity patterns. These findings support, to some extent, the feasibility and effectiveness of using MTGCT as a periodic training method to enhance the operational and cognitive abilities of aviation personnel. Full article
(This article belongs to the Special Issue Advances in Symmetry/Asymmetry and Biomedical Engineering)
Show Figures

Figure 1

16 pages, 3190 KB  
Article
Effects of Seat Vibration on Biometric Signals and Postural Stability in a Simulated Autonomous Driving Environment
by Emi Yuda, Yutaka Yoshida, Kunio Sato, Hideki Sakamoto and Makoto Takahashi
Sensors 2025, 25(19), 6039; https://doi.org/10.3390/s25196039 - 1 Oct 2025
Abstract
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking [...] Read more.
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking natural respiration) and no vibration. Physiological and behavioral metrics—including Psychomotor Vigilance Task (PVT), seat pressure distribution, heart rate variability (HRV), body acceleration, and skin temperature—were assessed across three phases. Results demonstrated that seat vibration significantly enhanced parasympathetic activity, as evidenced by increased HF power and decreased LF/HF ratio (p < 0.05), suggesting reduced autonomic stress. Additionally, seated posture remained more stable under vibration, with reduced asymmetry and sway, while the no-vibration condition showed time-dependent postural degradation. Interestingly, skin surface temperature was lower in the vibration condition (p < 0.001), indicating a possible thermoregulatory mechanism. In contrast, PVT performance revealed more false starts in the vibration condition, particularly among older adults, suggesting that vibration may not enhance—and could slightly impair—cognitive alertness. These findings suggest that low-frequency seat vibration can support physiological stability and postural control during prolonged sedentary conditions, such as in autonomous vehicles. However, its effects on vigilance appear limited and age-dependent. Overall, rhythmic vibration may contribute to enhancing passenger comfort and reducing fatigue-related risks, particularly in older individuals. Future work should explore adaptive vibration strategies to balance physiological relaxation and cognitive alertness in mobility environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

28 pages, 2852 KB  
Article
Total Fuel Cost, Power Loss, and Voltage Deviation Reduction for Power Systems with Optimal Placement and Operation of FACTS and Renewable Power Sources
by Tuan Anh Nguyen, Le Chi Kien, Minh Quan Duong, Tan Minh Phan and Thang Trung Nguyen
Appl. Sci. 2025, 15(19), 10596; https://doi.org/10.3390/app151910596 - 30 Sep 2025
Abstract
The paper finds optimal power flows and optimal placement of wind power plants (WPPs), static var compensators (SVCs), and thyristor-controlled series capacitors (TCSCs) in the IEEE 30-bus transmission power network by applying three high-performance algorithms, such as the equilibrium optimizer (EO), the Coot [...] Read more.
The paper finds optimal power flows and optimal placement of wind power plants (WPPs), static var compensators (SVCs), and thyristor-controlled series capacitors (TCSCs) in the IEEE 30-bus transmission power network by applying three high-performance algorithms, such as the equilibrium optimizer (EO), the Coot optimization algorithm (COOT), and the marine predators algorithm (MPSA). The three algorithms are run for the system without any added electric components and with three single objectives, including active power losses, total fuel cost, and total voltage deviation, for comparison with other previous algorithms. The three algorithms can reach better results than many algorithms and suffer worse results than a few algorithms. EO is more effective than MPSA and COOT in all cases. For simulation cases with SVCs, TCSCs, and WPPs, the losses are significantly reduced compared to the base case. The power loss of the base case is 3.066 MW, and the best loss is 2.869 MW for two cases with two SVCs and one TCSC. When applying the obtained solution and optimizing the placement of one, two, and three WPPs, the power loss is, respectively, 2.053, 1.512, and 1.112 MW. By optimizing two SVCs, one TCSC, and WPPs simultaneously, the power loss is, respectively, 2.041, 1.508, and 1.093 MW for one, two, and three WPPs. So, the optimal placement of TCSCs, SVCs, and WPPs can result in high benefits for power systems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
27 pages, 1387 KB  
Systematic Review
Effectiveness of Electroencephalographic Neurofeedback for Parkinson’s Disease: A Systematic Review and Meta-Analysis
by Leon Andreas W. R. von Altdorf, Martyn Bracewell and Andrew Cooke
J. Clin. Med. 2025, 14(19), 6929; https://doi.org/10.3390/jcm14196929 - 30 Sep 2025
Abstract
Background: Electroencephalographic (EEG) neurofeedback training is gaining traction as a non-pharmacological treatment option for Parkinson’s disease (PD). This paper reports the first pre-registered, integrated systematic review and meta-analysis of studies examining the effects of EEG neurofeedback on cortical activity and motor function in [...] Read more.
Background: Electroencephalographic (EEG) neurofeedback training is gaining traction as a non-pharmacological treatment option for Parkinson’s disease (PD). This paper reports the first pre-registered, integrated systematic review and meta-analysis of studies examining the effects of EEG neurofeedback on cortical activity and motor function in people with PD. Method: We searched Cochrane Databases, PubMed, Embase, Scopus, Web of Science, PsycInfo, grey literature repositories, and trial registers for EEG neurofeedback studies in people with PD. We included randomized controlled trials, single-group experiments, and case studies. We assessed risk of bias using the Cochrane Risk of Bias 2 and Risk of Bias in Non-Randomized Studies tools, and we used the Grading of Recommendations, Assessment, Development and Evaluations tool to assess certainty in the evidence and resultant interpretations. Random-effects meta-analyses were performed. Results: A total of 11 studies (143 participants; Hoehn and Yahr I–IV) met the criteria for inclusion. A first meta-analysis revealed that EEG activity is modified in the prescribed way by neurofeedback interventions. The effect size is large (SMD = 1.30, 95% CI = 0.50–2.10, p = 0.001). Certainty in the estimate is high. Despite successful cortical modulation, a subsequent meta-analysis revealed inconclusive effects of EEG neurofeedback on motor symptomology. The effect size is small (SMD = 0.10, 95% CI = −1.03–1.23, p = 0.86). Certainty in the estimates is low. Narrative evidence revealed that interventions are well-received and may yield specific benefits not detected by general symptomology reports. Conclusion: EEG neurofeedback successfully modulates cortical activity in people with PD, but downstream impacts on motor function remain unclear. The neuromodulatory potential of EEG neurofeedback in people with PD is encouraging. Additional well-powered and high-quality research into the effects of EEG neurofeedback in PD is warranted. Full article
(This article belongs to the Special Issue New Insights into Augmentative Therapy for Parkinson’s Disease)
Show Figures

Figure 1

24 pages, 1553 KB  
Article
Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems
by Dominik Gößner
Urban Sci. 2025, 9(10), 396; https://doi.org/10.3390/urbansci9100396 - 30 Sep 2025
Abstract
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to [...] Read more.
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to bridge the gap in urban climate adaptation by providing a modeling tool that captures both hydrological and thermal functions of green roofs throughout all seasons, notably including periods with dormancy and low vegetation activity. A key novelty is the explicit and empirically validated integration of core physical processes—water storage layer coupling, explicit rainfall interception, and vegetation cover dynamics—with the latter strongly controlled by plant area index (PAI). The PAI, here quantified as the plant surface area per unit ground area using digital image analysis, directly determines interception capacity and vegetative transpiration rates within the model. This process-based representation enables a more realistic simulation of seasonal fluctuations and physiological plant responses, a feature often neglected in previous green roof models. The model, which can be fully executed without high computational power, was validated against comprehensive field measurements from a temperate climate, showing high predictive accuracy (R2 = 0.87 and percentage bias = −1% for ET on the Retention Roof; R2 = 0.91 and percentage bias = −8% for substrate temperature on the Economy Roof). Notably, the layer-specific coupling of vegetation, substrate, and water storage advances ecological realism compared to prior approaches. The results illustrate the model’s practical applicability for urban planners and researchers, offering a user-friendly and transparent tool for integrated assessments of green infrastructure within the context of climate-resilient city design. Full article
Show Figures

Figure 1

45 pages, 7020 KB  
Review
Mechanism, Efficacy, and Safety of Natural Antibiotics
by Andrei Teodor Matei and Anita Ioana Visan
Antibiotics 2025, 14(10), 981; https://doi.org/10.3390/antibiotics14100981 - 29 Sep 2025
Abstract
The growing ineffectiveness of common antibiotics against multidrug-resistant pathogens has made antimicrobial resistance (AMR) a serious global health concern. This review emphasizes that natural antibiotics from animals, bacteria, fungi, and plants are worthy alternatives for combating this crisis. Evolutionary pressure has shaped these [...] Read more.
The growing ineffectiveness of common antibiotics against multidrug-resistant pathogens has made antimicrobial resistance (AMR) a serious global health concern. This review emphasizes that natural antibiotics from animals, bacteria, fungi, and plants are worthy alternatives for combating this crisis. Evolutionary pressure has shaped these molecules, leading to antibiotic-resistant bacteria that can withstand single-target synthetic drugs but are vulnerable to multiple attack pathways (e.g., cell wall disruption, protein synthesis inhibition, biofilm interference) from natural compounds. Natural antibiotics are frequently incorporated into treatment strategies or drug-delivery systems for minimizing side effects, reducing doses, and improving their effectiveness. The review discusses recent progress in this field, describing the mechanisms of action of natural antibiotics, their incorporation into several drug-delivery systems, and their ‘omics’-driven discovery to improve production, while expressing the challenges that remain. Extracellular application of these compounds, however, is compromised by their low stability in the extracellular environment; furthermore, formulation advancements, such as nanoparticle encapsulation, have been shown to enhance the bioavailability and activity of these substances. Combining indigenous knowledge and modern scientific advances, natural antibiotics may be developed to fight AMR both as monotherapy and adjuvants in a sustainable way. Leveraging these synergies, alongside the latest advances in research, is key to bridging the antibiotic discovery–resistance gap and may provide a route to clinical translation and global AMR control. The promise of natural antibiotics is clear, but their path to mainstream medicine is fraught with obstacles like reproducibility, standardization, and scalability. It is more realistic to see these substances as powerful complements to existing therapies, not outright replacements. Their true strength is in their ability to interfere with resistance mechanisms and create new possibilities for drug development, positioning them as a vital, though complicated, part of the global effort to combat AMR. Full article
Show Figures

Figure 1

Back to TopTop