Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems
Abstract
1. Introduction
Author(s) | Year | Soil Moisture | Stomatal Resistance | Interaction with Drainage/Retention Layer | PAI/SCF | Interception | Full Year Simulation | Validation With Evapotranspiration Data | No Numeric Solvers Needed | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Va | Ca | Va | Ca | Ca | Va | Ca | Va | |||||
Palomo del Barrio Q | 1998 | ✔ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
Alexandri & Jones [23] | 2007 | ✔ | ✔ | ✔ | ✔ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
Takebayashi & Moriyama [23] | 2007 | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✔ | ✖ |
Sailor [8] | 2008 | ✔ | ✖ | ✔ | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✔ | ✖ | ✖ |
Ouldboukhitine et al. [29] | 2011 | ✔ | ✖ | ✔ | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
Tabares-Velasco et al. [25] | 2012 | ✖ | ✖ | ✔ | ✔ | ✖ | ✔ | ✔ | ✖ | ✖ | ✖ | ✔ | ✔ |
Djedjig et al. [30] | 2012 | ✔ | ✔ | ✔ | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
de Munck et al. [26] | 2013 | ✔ | ✔ | ✔ | ✖ | ✖ | ✔ | ✔ | ✔ | ✖ | ✖ | ✖ | ✔ |
Decruz [27] | 2016 | ✔ | ✔ | ✔ | ✖ | ✖ | ✔ | ✔ | ✔ | ✖ | ✖ | ✖ | ✖ |
Tian et al. [31] | 2017 | ✔ | ✖ | ✔ | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
Hong et al. [32] | 2021 | ✖ | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ | ✖ |
- To model the two most essential variables—evapotranspiration and substrate temperature—with a high degree of accuracy, as they are fundamental for the prediction of the water use and energy performance of green roofs under changing weather conditions.
- To ensure usability and practicality, the model is designed to be applied with easily accessible input data, without requiring high computational resources, making it widely usable.
- To improve model accuracy by addressing key research gaps, specifically
- include interception calculation
- capture seasonal variation in PAI and SCF
- simulate and validate a full year
- include hydraulic coupling with drainage and retention layer
2. Materials and Methods
2.1. Study Site and Experimental Setup
2.2. Green Roof Model
2.2.1. Evaporation and Transpiration
2.2.2. PAI
2.2.3. Interception
2.2.4. Soil Cover Fraction
2.2.5. Substrate
2.2.6. Drainage and Substrate Resaturation
3. Results
3.1. Evapotranspiration Modelling
3.2. Substrate Temperature Modelling
4. Discussion
4.1. Evaluation of Model Performance Relative to Study Goals
4.1.1. Evapotranspiration
4.1.2. Substrate Temperature
4.1.3. Year-Round Usability and Computational Efficiency
4.1.4. Closing Knowledge Gaps in Process Representation
4.1.5. Comparative Model Performance in Literature Context
4.2. Limitations and Recommendations
4.3. Practical Implications
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Angstrom parameter | |
seasonal correction factor | |
Angstrom parameter | |
cloud cover | |
interception storage [mm] | |
volumetric heat capacity air | |
specific heat capacity air | |
discharge interception storage [mm] | |
drainage storage [mm] | |
maximum drainage storage [mm] | |
inverse earth-moon distance | |
vapour pressure at saturation [kPa] | |
actual vapour pressure [kPa] | |
potential evaporation [mm] | |
actual evaporation interception storage [mm] | |
substrate evaporation [mm for Equation (17)] | |
actual evapotranspiration [mm] | |
soil heat flux | |
soil heat flux plants | |
Gsc | solar constant |
soil heat flux substrate | |
sensible heat flux density | |
crop height [m] | |
relative air humidity | |
Substrate thickness [mm] [m for Equation (19)] | |
Substrate resaturation [mm] | |
Substrate resaturation velocity | |
number of day of the year | |
von Karman constant | |
longitude [rad] | |
longitude at center of time zone west of Greenwich [rad] | |
Monin–Obukhov’s stability parameter | |
measured sunshine duration [h] | |
rainfall [mm] | |
discharge drainage [mm] | |
discharge substrate [mm] | |
atmospheric pressure [kPA] | |
atmospheric density | |
water vapor density air | |
water vapor density substrate | |
saturated water vapor density | |
aerodynamic resistance | |
stomatal resistance | |
minimum stomatal resistance | |
substrate surface resistance | |
plant area index | |
plant area index Economy Roof | |
plant area index Retention Roof | |
outflow drainage layer [mm] | |
substrate drainage [mm] | |
extraterestric radiation [MJ ] | |
Richardson number | |
net radiation [MJ ] | |
shortwave net radiation [MJ ] | |
longwave net radiation [MJ ] | |
solar radiation [W ] | |
solar radiation at clear sky [W ] | |
seasonal correction factor sun hours [h] | |
maximum interception storage [mm] | |
soil cover fraction | |
Inverse soil cover fraction | |
standard time mid period | |
maximum daylight hours [h] | |
sun hours per day [h] | |
air temperature | |
substrate temperature | |
atmospheric transmission coefficient | |
maximum air temperature during period [K] | |
minimum air temperature during period [K] | |
virtual temperature [K] | |
actual transpiration [mm] | |
potential Transpiration [mm] | |
wind velocity | |
vapor pressure deficit | |
sun angle mid period [rad] | |
sun angle start period [rad] | |
sun angle end period [rad] | |
sun hour angle [rad] | |
height above sea level [m] | |
height of air humidity measurements [m] | |
height of wind velocity measurements [m] | |
roughness length for sensible heat flux [m] | |
roughness length for momentum [m] | |
height of temperature measurements [m] | |
albedo | |
psychrometric constant | |
sun angle [rad] | |
atmospheric emissivity at clear sky | |
substrate emissivity | |
atmospheric stability parameter | |
volumetric water content | |
discharge substrate | |
volumetric water content at field capacity | |
volumetric water content at wilting point | |
Maximum substrate resaturation | |
extinction coefficient | |
Stefan–Boltzmann constant | |
latent evaporative heat | |
heat flux atmospheric correction factor | |
momentum atmospheric correction factor | |
slope of the saturation–vapor–pressure temperature curve |
Appendix A
Equation | New/Adopted/Modified | Source | |
---|---|---|---|
Extraterrestrial Radiation | Adopted | [48] | |
Short and Longwave Radiation | Modified for timesteps < 24 h | [48] | |
Net Radiation Substrate | Modified for timesteps < 24 h | [49] | |
Albedo Substrate | | Adopted | [50] |
Emissivity Substrate | Adopted | [50] | |
Cloud Cover | Adopted | [51] | |
Meteorological Parameter | Adopted | [52] | |
Adopted | [48] | ||
Potential Transpiration | Adopted | [53] 22 September 2025 12:08:00 p.m. | |
Potential Evaporation | Adopted | [37] | |
Stomatal Resistance | Adopted | [8] | |
Adopted Adopted Modified Modified | [25] | ||
Evapotranspiration Transpiration Evaporation Interception | Modified | [42] | |
Interception | New | ||
Evaporation Substrate | Neutral Atmosphere : Unstable Atmosphere : Stable Atmosphere : | Adopted | [37,43,49,54] |
Sensible Heat Flux Substrate | Adopted | [50,55] | |
Water Content | ) | New | |
Substrate Temperature | New | ||
Drainage and Storage | New |
Constant | Value |
---|---|
0.25 | |
0.5 | |
0.0012 MJ | |
0.000001013 | |
5 mm for Economy Roof 28.5 mm for Retention Roof | |
0.082 | |
0.08 m for Economy Roof 0.15 m for Retention Roof | |
60 mm for Economy Roof 100 mm for Retention Roof | |
0.002 mm 5 min−1 for Economy Roof 0.005 5 min−1 for Retention Roof | |
0.41 | |
6.056292504 rad | |
336 for Economy Roof 168 for Retention Roof | |
650 m | |
0.2 m | |
0.2 m | |
0.0001 m | |
0.001 m | |
0.2 m | |
σ | 4.903 × 10−9 |
κ | 0.8 |
0.455 m3 m−3 | |
0.23 m3 m−3 for Economy Roof 0.41 m3 m−3 for Retention Roof | |
0.06 m3 m−3 |
References
- Santamouris, M. Heat Island Research in Europe: The State of the Art. Adv. Build. Energy Res. 2007, 1, 123–150. [Google Scholar] [CrossRef]
- Berardi, U. The Outdoor Microclimate Benefits and Energy Saving Resulting from Green Roofs Retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Rowe, D.B. Green Roofs as a Means of Pollution Abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Kohler, M.; Liu, K.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Richter, M.; Dickhaut, W. Retentionsgründächer als multifunktionale blau-grüne Infrastrukturen—Ergebnisse eines Langzeit-Monitorings in Hamburg. In Proceedings of the Grün Statt Grau, Glattfelden, Switzerland, 14–15 November 2022; Eawag, Switzerland: Glattfelden, Switzerland, 2022; pp. 54–61. [Google Scholar]
- Gößner, D.; Farkas, J.; Berger, D. Sind Zisternen mit intelligenter Steuerung als Überflutungsschutzspeicher nutzbar? Eine indikative Datenauswertung anhand von Praxisbeispielen. In Proceedings of the Urbanes Niederschlagswassermanagement: Herausforderungen—Möglichkeiten—Grenzen, Graz, Austria, 22–24 September 2024; Scientific Board der Aqua Urbanica: Graz, Austria, 2024. [Google Scholar]
- Getter, K.L.; Rowe, B. The Role of Green Roofs in Sustainable Development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef]
- Sailor, D.J. A Green Roof Model for Building Energy Simulation Programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature Reduction Effect of Vegetation Coverage on Building Surfaces. Energy Build. 2008, 40, 280–288. [Google Scholar]
- Lundholm, J. Green Roofs and Urban Biodiversity. Urban Habitats 2006, 4, 54–66. [Google Scholar]
- Madre, F.; Vergnes, A.; Machon, N.; Clergeau, C. Biodiversity of Extensive Green Roofs: Does Vegetation Composition and Substrate Depth Matter? Landsc. Urban Plan. 2014, 122, 93–101. [Google Scholar]
- Mentens, J.; Raes, D.; Hermy, M. Green Roofs as a Tool for Solving the Rainwater Runoff Problem in the Urbanized 21st Century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green Roof Performance towards Management of Runoff Water Quantity and Quality: A Review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Locatelli, L. and M., Ole and Mikkelsen, Peter Steen Modelling the Cooling Performance of a Green Roof System with Different Vegetation Types. Build. Environ. 2014, 82, 480–490. [Google Scholar] [CrossRef]
- Zhang, G. and Z., Xin and Jin, Hong and Lin, Zhi Modelling Green Roof Water and Energy Dynamics Using EnergyPlus. J. Build. Perform. Simul. 2020, 13, 66–79. [Google Scholar]
- Palla, A.; Gnecco, I.; Lanza, L.G. Compared Performance of a Conceptual and a Mechanistic Hydrologic Models of a Green Roof. Hydrol. Process. 2012, 26, 73–84. [Google Scholar] [CrossRef]
- Liu, K.; Baskaran, B. Bas Thermal Performance of Green Roofs through Field Evaluation. In Proceedings of the First North American Green Roof Infrastructure Conference, Awards and Trade Show: Greening Roof-Tops for Sustainable Communities, Chicago, IL, USA, 29–30 May 2003; NRCC Report: Washington, DC, USA, 2003. [Google Scholar]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The Evapotranspiration Process in Green Roofs: A Review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Niachou, A. and P., Konstantina and Santamouris, Mattheos and Tsangrassoulis, Aris and Mihalakakou, George Analysis of the Green Roof Thermal Properties and Investigation of Its Energy Performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Cirkel, D.; Voortman, B.; van Veen, T.; Bartholomeus, R. Evaporation from (Blue-)Green Roofs: Assessing the Benefits of a Storage and Capillary Irrigation System Based on Measurements and Modeling. Water 2018, 10, 1253. [Google Scholar] [CrossRef]
- Cibelli, E. Sedum on the Onondaga County Convention Center Roof: Calculating the Fraction of Coverage of Sedum Species on an Extensive Green Roof in Syracuse, New York. Bachelor’s Thesis, Syracuse University, Syracuse, NY, USA, 2021. [Google Scholar]
- Gößner, D.; Kunle, M.; Mohri, M. Green Roof Performance Monitoring: Insights on Physical Properties of 4 Extensive Green Roof Types after 2 Years of Microclimatic Measurements. Build. Environ. 2025, 269, 112356. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Surface Heat Budget on Green Roof and High Reflection Roof for Mitigation of Urban Heat Island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef]
- Tabares-Velasco, P.C.; Srebric, J. A Heat Transfer Model for Assessment of Plant Based Roofing Systems in Summer Conditions. Build. Environ. 2012, 49, 310–323. [Google Scholar] [CrossRef]
- Tabares-Velasco, P.C.; Zhao, M.; Peterson, N.; Srebric, J.; Berghage, R. Validation of Predictive Heat and Mass Transfer Green Roof Model with Extensive Green Roof Field Data. Ecol. Eng. 2012, 47, 165–173. [Google Scholar] [CrossRef]
- de Munck, C.S.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R. The GREENROOF Module (v7.3) for Modelling Green Roof Hydrological and Energetic Performances within TEB. Geosci. Model Dev. 2013, 6, 1941–1960. [Google Scholar] [CrossRef]
- Decruz, A. Development and Integration of a Green Roof Model within Whole Building Energy Simulation. Ph.D. Thesis, University of Notingham, Nottingham, UK, 2016. [Google Scholar]
- Gößner, D.; Mohri, M.; Krespach, J.J. Evapotranspiration Measurements and Assessment of Driving Factors: A Comparison of Different Green Roof Systems during Summer in Germany. Land 2021, 10, 1334. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.-E.; Belarbi, R.; Jaffal, I.; Trabelsi, A. Assessment of Green Roof Thermal Behavior: A Coupled Heat and Mass Transfer Model. Build. Environ. 2011, 46, 2624–2631. [Google Scholar] [CrossRef]
- Djedjig, R.; Ouldboukhitine, S.-E.; Belarbi, R.; Bozonnet, E. Development and Validation of a Coupled Heat and Mass Transfer Model for Green Roofs. Int. Commun. Heat Mass Transf. 2012, 39, 752–761. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, X.; Qi, B.; Sun, L. Study on Heat Fluxes of Green Roofs Based on an Improved Heat and Mass Transfer Model. Energy Build. 2017, 152, 175–184. [Google Scholar] [CrossRef]
- Hong, J.; Utzinger, D.M. Reducing the Heat Island Effect: A Mathematical Model of Green Roof Design. In Proceedings of the 17th Conference of IBPSA (Building Simulation 2021), Bruges, Belgium, 1 September 2021; Saelens, D., Laverge, J., Boydens, W., Helsen, L., Eds.; International Building Performance Simulation Association (IBPSA): Bruges, Belgium, 2021. [Google Scholar]
- Pitha, U.; Zluwa, I.; Scharf, B.; Lapin, K.; Besener, I.-M.; Virgolini, J.; Kapus, S.; Preiss, J.; Enzi, V.; Jesner, L.; et al. Leitfaden Dachbegrünung; GERICS: Hamburg, Germany, 2021. [Google Scholar]
- Brune, M.; Bender, S.; Groth, M. Gebäudebegrünung Und Klimawandel. Anpassung an Die Folgen Des Klimawandels Durch Klimawandeltaugliche Begrünung; Climate Service Center Germany: Hamburg, Germany, 2017. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Dunkerley, D.L.; Booth, T.L. Plant Canopy Interception of Rainfall and Its Significance in a Banded Landscape, Arid Western New South Wales, Australia. Water Resour. Res. 1999, 35, 1581–1586. [Google Scholar] [CrossRef]
- Tabares-Velasco, P.C. Predictive Heat and Mass Transfer Model of Plant-Based Roofing Materials for Assessment of Energy Savings. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2009. [Google Scholar]
- Feng, Y.; Burian, S.; Pardyjak, E. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. Water 2018, 10, 262. [Google Scholar] [CrossRef]
- Kemp, S.; Hadley, P.; Blanuša, T. The Influence of Plant Type on Green Roof Rainfall Retention. Urban Ecosyst 2019, 22, 355–366. [Google Scholar] [CrossRef]
- Franzaring, M.; Anemou, M.; Hernandez Cubero, L.C.; Katsarov, I.; Kauf, Z.; Mohiley, A.; Steffan, L.; Fangmeier, A. Untersuchungen zur Kühlwirkung und der Niederschlagsretention der extensiven Dachbegrünungsvegetation; KLIMOPASS-Berichte; LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2014. [Google Scholar]
- Knepper-Bartel, Y.-C. Dachbegrünungsrichtlinie—Richtlinien für Planung, Bau und Instandhaltung von Dachbegrünungen, 6th ed.; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e. V. (FLL): Bonn, Germany, 2018. [Google Scholar]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A Review of Rainfall Interception Modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef]
- Camillo, P.J.; Gurney, R.J. A Resistance Parameter for Bare-soil Evaporation Models. Soil Sci. 1986, 141, 95–105. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 0254-5284. [Google Scholar]
- de Vries, D.A. Thermal Properties of Soils. In Physics of Plant Environment; van Wijk, W.R., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Feng, C.; Meng, Q.; Zhang, Y. Theoretical and Experimental Analysis of the Energy Balance of Extensive Green Roofs. Energy Build. 2010, 42, 959–965. [Google Scholar] [CrossRef]
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA). Arbeitsblatt BWK-A 3-1/DWA-A 102-1, Dezember 2020: Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer—Teil 1: Allgemeines; Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau-BWK-e.V., Sindelfingen, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.-DWA-, Hennef, Eds.; BWK-Arbeitsblatt; Fraunhofer IRB Verlag: Stuttgart, Germany, 2020; ISBN 978-3-96862-044-2. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer Science & Business Media: Berlin, Germany, 1977. [Google Scholar]
- Van Bavel, C.H.M.; Hillel, D.I. Calculating Potential and Actual Evaporation from a Bare Soil Surface by Simulation of Concurrent Flow of Water and Heat. Agric. Meteorol. 1976, 17, 453–476. [Google Scholar] [CrossRef]
- Simunek, J.; Sejna, M.; Saito, D.; Sakai, M.; van Genuchten, M. The HYDRUS-1D Soft-Ware Package for Simulating the One-Dimensional Movement of Water, Heat Ans Multiple So-Lutes in Variably-Satured Media; Version 4.17; Department of Environmental Sciences, University of California, Riverside: Riverside, CA, USA, 2013. [Google Scholar]
- Tetens, O. Über Einige Meteorologische Begriffe; Zeitschrift für geophysik; Friedrich Vieweg & Sohn Akt.-Gesellschaft: Berlin, Germany, 1930. [Google Scholar]
- Choudhury, B.J.; Idso, S.B.; Reginato, R.J. Analysis of an Empirical Model for Soil Heat Flux under a Growing Wheat Crop for Estimating Evaporation by an Infrared-Temperature Based Energy Balance. Agric. For. Meteorol. 1987, 39, 283–297. [Google Scholar] [CrossRef]
- Brutsaert, W. The Roughness Length for Water Vapor Sensible Heat, and Other Scalars. J. Atmos. Sci. 1975, 32, 2028–2031. [Google Scholar] [CrossRef]
- Barbagallo, S.; Consoli, S.; Russo, A. A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes. Sensors 2009, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
Layer | Parameter | Measurement Device | Manufacturer | Accuracy |
---|---|---|---|---|
Atmospheric Layer | Precipitation | Rain[e] | LAMBRECHT meteo GmbH, Göttingen, Germany | ±1 mm or ±1% |
Air Temperature | CS215 Temperature and Relative Humidity Probe | Campbell Scientific Inc., Logan, UT, USA | ±0.3 °C (at 25 °C) ±0.4 °C (5° to 40 °C) ±0.9 °C (−40° to +70 °C) | |
Relative Humidity | CS215 Temperature and Relative Humidity Probe | Campbell Scientific Inc., Logan, UT, USA | ±2% (10% to 90% range) at 25 °C ±4% (0% to 100% range) at 25 °C | |
Short-Wave Solar Radiation | CMP10 Pyranometer | Kipp & Zonen B.V., Delft, The Netherlands | Total zero offset: <±9 W m−2 Non-stability (change/year): <±0.5% Non-linearity (100 to 1000 W m−2): <±0.2% Temperature response: <±1% (−10 °C to +40 °C) | |
Long-Wave Radiation | CGR3 Pyrgeometer (facing the sky) | Kipp & Zonen B.V., Delft, The Netherlands | Non-stability (change/year): <1% Non-linearity: <1% Temperature Dependence of Sensitivity: <5% (−14 °F to +104 °F) | |
Wind Speed | WindSonic4 Two-Dimensional Sonic Anemometer | Campbell Scientific Inc., Logan, UT, USA | ±2% (at 12 m s−1) | |
Vegetation Layer | Leaf Temperature + Air Temperature | Leaf and Air Temperature Type LAT-B2, Broadleaf | ECOMATIK GmbH, Dachau, Germany | ±0.2 °C |
Substrate Layer | Volumetric Water Content | CS655 Soil Water Content Reflectometer | Campbell Scientific Inc., Logan, UT, USA | ±1% |
Substrate Temperature | 105E Temperature Probe | Campbell Scientific Inc., Logan, UT, USA | ±0.5 °C | |
Heat Flux | HFP01 Heat Flux Plate | Hukseflux Thermal Sensors B.V., Delft, The Netherlands | ±3% | |
Total Setup | Weight | Scale 9392.16.140 | Soehnle Industrial Solutions GmbH, Backnang, Germany | ±15 g |
Outflow | Small Rain Gauge 100.054 | Pronamic ApS, Ringkoebing, Denmark | ±5% |
Models | Retention Roof | Economy Roof | ||||
---|---|---|---|---|---|---|
R2 | RMSE | PBIAS (%) | R2 | RMSE | PBIAS (%) | |
Winter (December–March) | 0.86 | 0.67 | −2 | 0.58 | 1.30 | 13 |
Spring (April–May) | 0.80 | 2.20 | −12 | 0.85 | 1.42 | 8 |
Summer (June–August) | 0.96 | 2.22 | 6 | 0.89 | 3.31 | 20 |
Autumn (September–November) | 0.86 | 1.94 | −6 | 0.90 | 1.79 | 78 |
Total year (January–December) | 0.87 | 1.75 | −1 | 0.77 | 2.20 | 22 |
Models | Retention Roof | Economy Roof | ||||
---|---|---|---|---|---|---|
R2 | RMSE | PBIAS (%) | R2 | RMSE | PBIAS (%) | |
Winter (December–March) | 0.43 | 3.82 | −90 | 0.67 | 2.68 | −41 |
Spring (April–May) | 0.69 | 4.36 | −7 | 0.88 | 4.40 | −1 |
Summer (June–August) | 0.42 | 5.75 | −12 | 0.93 | 4.47 | 4 |
Autumn (September–November) | 0.82 | 3.09 | −21 | 0.92 | 2.82 | −5 |
Total year (January–December) | 0.83 | 4.33 | −21 | 0.91 | 4.07 | −8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gößner, D. Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems. Urban Sci. 2025, 9, 396. https://doi.org/10.3390/urbansci9100396
Gößner D. Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems. Urban Science. 2025; 9(10):396. https://doi.org/10.3390/urbansci9100396
Chicago/Turabian StyleGößner, Dominik. 2025. "Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems" Urban Science 9, no. 10: 396. https://doi.org/10.3390/urbansci9100396
APA StyleGößner, D. (2025). Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems. Urban Science, 9(10), 396. https://doi.org/10.3390/urbansci9100396