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Abstract

Modern energy systems are undergoing a profound transformation characterized by the
active replacement of conventional fossil-fuel-based power plants with renewable energy
sources. This transition aims to reduce the carbon emissions associated with electricity
generation while enhancing the economic performance of electric power market players.
However, alongside these benefits come several challenges, including reduced overall in-
ertia within energy systems, heightened stochastic variability in grid operation regimes,
and stricter demands on the rapid response capabilities and adaptability of emergency
controls. This paper presents a novel methodology for selecting effective control laws
for low-inertia energy systems, ensuring their dynamic stability during post-emergency
operational conditions. The proposed approach integrates advanced techniques, includ-
ing feature selection via decision tree algorithms, classification using Random Forest
models, and result visualization through the Mean Shift clustering method applied to
a two-dimensional representation derived from the t-distributed Stochastic Neighbor
Embedding technique. A modified version of the IEEE39 benchmark model served
as the testbed for numerical experiments, achieving a classification accuracy of 98.3%,
accompanied by a control law synthesis delay of just 0.047 milliseconds. In conclusion,
this work summarizes the key findings and outlines potential enhancements to refine
the presented methodology further.

Keywords: power system; transient stability; emergency control; machine learning;
clustering algorithm; low inertia; renewable energy sources

MSC: 68T01

1. Introduction

Control of electric power system (EPS) modes falls into the category of optimization
problems under uncertain conditions regarding the electrical regime and parameters of
equivalent circuits for power equipment. For designing control laws governing normal
and transient processes in traditional EPS, deterministic methods have traditionally been
employed. These methods rely on solving systems of differential-algebraic equations that
describe energy transformation and transmission in electric circuits [1]. Such deterministic
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approaches are practical in traditional EPS dominated by fossil fuel-based generation,
where sufficient inertia ensures stable operation. However, modern transformations in
EPS introduce profound changes affecting transient process dynamics, generation capacity
structures, and control methodologies [2]. Specifically, the increasing penetration of renew-
able energy sources (RES), the widespread adoption of power-electronics-based control
devices, and the deployment of Flexible Alternating Current Transmission Systems (FACTS)
concurrently with the phasing out of fossil fuel power plants result in diminished inertia
and amplified oscillations, as well as faster transients [3]. Under these evolving operational
conditions, traditional deterministic control strategies cannot meet heightened demands
for rapidity and adaptability in selecting control actions (CAs).

Deterministic algorithms for synthesizing emergency control laws in EPS require
substantial preprocessing computations using predefined input data. Consequently, the
determination of optimal CAs incurs delays tied to the cycle of updating information. In
low-inertia environments typical of future EPS, such delays risk rendering controls either
inadequate or overly aggressive, given the dramatic shifts in electrical regimes occurring
between updates of the emergency control law. Beyond changes in generation mixes
and control paradigms, another defining trait of next-generation EPS is their growing
reliance on digitization and massive data collection. This trend facilitates the emergence
of intelligent monitoring and control systems that can leverage advanced analytics [4].
Therefore, enhancing the adaptability and responsiveness of emergency control systems
becomes crucial for ensuring the timely and appropriate execution of control actions amidst
reduced inertia and accelerated transient phenomena.

The reduction in the inertial component in modern EPS has the most significant
impact on ensuring transient stability (TS), which becomes more challenging due to the
increased speed of transient processes, despite the active implementation of control systems
that provide synthetic inertia [5]. To meet the requirements of modern EPS in terms of
adaptability and responsiveness, machine learning (ML) algorithms can be effectively
applied. This class of supervised learning algorithms enables the identification of complex
correlations based on training data, thereby determining the correspondence between
electrical regime parameters and CA [6]. When using unsupervised learning, control laws
are synthesized based on the results of the interaction between the control agent and the
environment being studied. The agent’s actions are aimed at maximizing the reward
function, which determines the optimality of the CA [7]. From the perspective of ML
algorithms, the task of emergency control of EPS regimes is a classification problem with
multiple classes that define control actions. The parameters of the electrical regime describe
the attributes or features of the classification [8], which form a variable space in which the
classification procedure is performed.

When using unsupervised ML algorithms, the diagram shown in Figure 1 will change
in terms of algorithm training, while the operational stage will remain unchanged. Unsu-
pervised ML algorithms determine decision rules during interaction with the environment
under study, so they do not require preparing a data sample. The source of data for
training the ML algorithm is a combination of physical and synthetic data. The source of
physical data can be EPS emergency control systems, which are based on deterministic algo-
rithms [9]. The combination of synthetic and physical data ensures the representativeness
and sufficiency of the data sample, which allows it to be used for training ML algorithms.
Based on the generated data sample, a CA is selected to ensure the considered parameter of
the post-emergency mode [10]. Next, the generated data sample is processed to eliminate
noise, outliers, balance classes, and select informative features. The collected data is used
for pruning, testing, and validating the considered ML algorithms [11].
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Figure 1. General structure of the emergency control complex for EPS operating modes based on
ML algorithms.

At the operational stage, the sources of initial data are measurements obtained from
phasor measurement units (PMU) [12] and supervisory control and data acquisition
(SCADA) systems. Based on the acquired measurements, procedures are performed to
identify the type and location of a short circuit (SC) [13,14] or other disturbance that causes
dangerous measurements of the electrical mode from the perspective of TS. Using pre-
emergency parameters of the electrical mode and information on the type of disturbance,
an assessment of the TS of the post-emergency mode is performed. When identifying the
loss of TS, the selection of optimal CA is performed, followed by its implementation. After
the implementation of CA, a repeated assessment of TS is performed; in case of identifying
the insufficiency of CA, they are re-selected and implemented [15].

The emergency control organization scheme shown in Figure 1 can be applied both
in traditional and in EPS with reduced inertia. In the latter case, it is necessary to develop
accelerated algorithms for synchrophasor evaluation, disturbance type and location iden-
tification, TS evaluation, and CA selection. Most of these challenges can be effectively
addressed by employing ML algorithms. The objective of this study is to enhance the
methodology outlined in [16] from the perspective of CA selection for EPS operating modes
with TS loss.
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2. Current State of the Problem

The task of TS analysis and CA selection for maintaining stability of the post-accident
scheme is characterized by high nonlinearity [17]. Typically, the solution to such problems
relies on computationally complex deterministic methods involving the numerical analysis
of systems of differential-algebraic equations that describe the dynamic model of the
protected EPS. Despite this complexity, modern EPS emergency control systems are subject
to high requirements for speed, adaptability, and accuracy of mode parameters. ML
algorithms stand out as one of the most promising classes of methods for EPS TS assessment
and CA selection, meeting these requirements. These algorithms are capable of uncovering
hidden and implicit correlations in data, providing a solution to the problem of emergency
control of EPS operating modes with minimal delay compared to deterministic methods [18].
To date, researchers have proposed the following ML algorithms to accelerate the solution
of the TS analysis and CA selection problem:

eXtreme Gradient Boosting (XGBoost) [19];
Deep learning (DL) [20];

Support vector machine (SVM) [21];
Autoencoder [22];

Graph neural network (GNN) [23];

Deep belief network (DBN) [24];

Deep reinforcement learning (DRL) [25];
Lyapunov neural network (LNN) [26];
Stacking of multilayer perceptrons [27];

Least square support vector machine (LS-SVM) [28].

In the work [19], the extreme gradient boosting algorithm is employed to estimate the
EPS TS. Let us denote this algorithm as Al. The choice of Al is motivated by its high speed
in the training and testing process, the absence of the need for a data preprocessing stage,
and the presence of a built-in regularizer. The latter is designed to prevent the algorithm
from overfitting by introducing a limitation on the obtained parameters. One of the stages
of constructing A1l involves the selection of dominant input features from the dataset. For
this purpose, the work utilizes a procedure for calculating the mutual correlation of features,
with a threshold value of 0.98. The method was tested using the IEEE 39 power system
model. A detailed description of the division of the dataset into training and test samples
is not provided in the work. The authors propose the operating mode parameters of each
synchronous generator (SG) as input features of A1 for solving the EPS TS analysis problem.
The work compares Al with the following algorithms: random forest (RF), decision tree
(DT), SVM, and artificial neural network (ANN). The accuracy of Al in classifying the
loss or preservation of EPS TS in post-accident mode was 97.82% with a time delay of
11 ms. Thus, A1l proved to be the most accurate compared to the other listed algorithms.
The positive aspect of the algorithm is its robustness to outliers in the initial data and the
absence of resource-intensive and complex mathematical functions. The negative aspect of
the algorithm is the effect of overtraining.

To analyze the preservation of EPS TS, the paper [20] proposes the use of a deep
learning algorithm. Let us denote this algorithm as A2. The electrical mode parameters
transmitted by PMU are used as input features for forming the dataset. The EPS TS is
estimated based on the disturbance severity index calculation method. This method takes
into account changes in the module, phase, and frequency in the EPS nodes. Transient
processes were simulated based on the IEEE39 and IEEE118 EPS power system models. As
a result, synthetic data were generated in 3528 and 2476 transient processes for the IEEE39
and IEEE118 models, respectively. When noise was imposed on the generated data in the
range from 40 to 60 dB, the classification accuracy on the considered data samples varied
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from 99.12% to 99.64%. The positive side of A2 includes its high adaptability. Increasing the
number of hidden layers in the presence of a large volume of training data can significantly
enhance the generalization ability of the algorithm. The main disadvantage of A2 is the
computational load due to the use of complex mathematical functions in neurons.

In [21], the EPS TS is estimated based on the SVM algorithm, which uses the Maha-
lanobis distance. We will further denote it as A3. The A3 algorithm enables the analysis of
the DS for each SG. The training dataset used consisted of records of 1680 SG operating
modes, each with a capacity of 300 MW. The testing results showed that the accuracy of
A3 is 96.79%. The positive side of A3 is its low computational load. However, the efficiency
of the algorithm is inversely proportional to the growth of the training data volume.

In [22], it is proposed to estimate EPS TS using an autoencoder. Let us denote this
algorithm as A4. The input features for A4 are the data obtained from synchronized
vector measurements. The training dataset was obtained based on numerical experiments
performed for the IEEE50 model. In this model, three-phase SC’s with durations of 0.1,
0.15, 0.2, and 0.3 s were modeled as disturbances in different EPS nodes. As a result, a
dataset of 28,436 transient processes was formed, 70% of which related to disturbances
with preservation of the control system, and the remaining 30% to disturbances with loss of
TS. Testing of A4 is performed based on a numerical experiment, and its comparison with
the following algorithms is carried out: support vector method, decision tree, K-nearest
neighbors (KNN), RE, ANN, naive Bayes classifier (NBC), nearest centroid classifier (NCC),
and XGBoost. As a result, the authors of [22] found that the accuracy of A4 is 97.23%, and
the delay in classifying one transient process is 62 ms. Thus, A4, in comparison with the
considered algorithms, proves to be dominant in accuracy, but in terms of performance, it
is inferior to the algorithms of ANN, DT, and XGBoost. The positive aspects of A4 include
its robustness to noise in the original data. The disadvantage of the algorithm is the need to
use mathematical functions for the trained model.

In [23], the estimation of EPS TS is performed based on the GNN algorithm. Let us
denote it as A5. The foundation of this network’s operation for TS estimation is as follows:
the stability of a node is determined by a combination of its internal characteristics and
the characteristics of the external electrical network. TS is the result of the interaction of
all generator nodes. Testing of A5 was carried out based on the mathematical models of
the IEEE39 and IEEE300 EPS. For the first model, the algorithm’s classification accuracy
was 98.50%, and for the second model, it was 98.48%. As future work, the possibility of

evaluating the dynamic stability of individual nodes is considered, which is a development
of Dimo’s theory of nodal equivalents [29]. The algorithm’s advantage lies in its inter-
pretability, which stems from data processing based on the physical principles of EPS. The
primary disadvantage is the computational load resulting from the use of multiple models
for step-by-step data processing.

In the study [24], the use of the DBN algorithm is proposed for selecting the CA to
ensure EPS TS in post-accident operation mode. Let us designate it as A6. As the objective
function of emergency control, the equation is proposed:

minC = min Y (r{? AP}'¥ + ydown ppdown), (1)

iESG

where C is the total cost of emergency control, i is the number of SGs connected to the
control unit, r is the cost of loading or unloading the SG, and AP is the change in SG capacity
by increasing or decreasing.

Algorithm A6 consists of two DBNs. The first is designed to assess TS, while the second
is intended for selecting CA. For training the networks, a series of transient processes was
synthesized based on the mathematical model of the South Carolina power system, which
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has 500 nodes. The validation results showed that the accuracy of A6 in classification was
99.15%, and its time delay for one transient process was 0.01 s. The advantage of A6 lies in
its flexibility due to the ability to increase the number of neurons and layers. The drawback
of the algorithm is its relatively high computational complexity.

In [25], it is proposed to use a DRL for selecting CA to ensure TS in the post-fault
operation mode of the EPS. Let us denote this algorithm as A7. The structure of the
emergency control block consists of two modules: an agent and an environment. The agent
is the emergency control system capable of generating CA, while the environment is the EPS.
The algorithm was tested based on the mathematical models of the IEEE39 and NPCC140
EPS. A comparison of the proposed algorithm for classifying CA with the particle swarm
optimization method was conducted. As a direction for future research, the paper suggests
testing the algorithm on real EPS data. The positive aspect of A7 is its flexibility, which
enables the solution of problems involving complex dynamic systems. The negative aspect
of the algorithm is its long training time and relatively high computational complexity.

In [26], the selection of CA for ensuring EPS TS is performed based on an LNN. Let
us denote this algorithm as A8. The algorithm was tested on the mathematical models of
the IEEE9, IEEE39, and IEEE118 power systems. In the computational experiments, A8 is
compared with a linear-quadratic regulator. The advantage of algorithm A8 is its flexibility.
Its disadvantage is the high computational load.

In [27], a stacking was formed from a set of separately taken multilayer perceptrons.
Let us denote this algorithm as A9. The input features of the algorithm for selecting
CA to maintain TS in the post-fault operation mode of the EPS are the active powers of
SGs, the modules, and the phases of voltages in the EPS nodes. When a loss of dynamic
stability is detected, the selection of CA is performed in the EPS regime optimization
block with dynamic constraints. To form the dataset, a series of 5000 electromechanical
transient processes was generated based on the mathematical model of the IEEE39.
Approximately 56% of these data relate to transient processes without CA, and the
remaining part relates to transient processes with CA. In [27], A9 is compared with
the following algorithms: RF, SVM, convolutional neural network (CNN), autoencoder,
and DBN. As a result, it was shown that the proposed method was the most effective
with an accuracy of 98.55%. The positive aspect of the algorithm is its flexibility due to
the number of feedforward neural networks and layers in them. The drawback of the
algorithm is its computational complexity.

In [28], the selection of CA for ensuring EPS TS is performed based on the LS-SVM
method. Let us denote this algorithm as A10. The input features are the amplitude and
phase of voltages measured by synchronized vector measurement devices. A numerical
experiment is carried out based on the IEEE39 mathematical model. The positive aspect of
the algorithm is its fast training. Its negative side is its sensitivity to outliers in the data.

For clarity, the characteristics of the above-described algorithms A1-A10 are compared
in Table 1. In the columns for CA and TS, the symbol «+» indicates the algorithm’s ability
to select CA and assess the EPS TS.

The issue of developing a methodology for selecting the control unit and assessing the
control system of the EPS is described in detail in the considered works. In the considered
works, algorithms based on neural networks and deep learning are mainly proposed to
solve the problem. This allows for an acceptable level of accuracy and adaptability of the
solution to the problem of emergency control of the EPS operating modes. Moreover, the
use of multilayer and nested ML algorithms allows for the identification of hidden and
implicit patterns in the data sample. The testing of the considered algorithms A1-A10 is
carried out using synthetic data generated as a result of a series of numerical experiments
based on the EPS models IEEE9, IEEE39, IEEE118, NPCC140, and IEEE300. The accuracy
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of these classification algorithms on test data varies in the range from 97.23% to 99.64%.
Additionally, several of the considered works assess the robustness of the algorithm to
noise in the original data.

Table 1. Analysis of methods for assessing EPS TS and selecting CA.

Ref. Method CA TS Advantages and Drawbacks

(+) robustness to outliers in the data and the absence of complex mathematical functions

[19] Al v (—) overfitting effect

(+) high adaptability, possibility to increase generalization ability

(201 A2 v (—) computational load due to complex mathematical functions in neurons
(+) low computational load

211 A3 v (—) efficiency decreases with increasing data volume

[22] Ad v (+) robustness to noise in the initial data
(—) need to apply mathematical functions after training

23] A5 v (+) interpretability due to the algorithm’s operation based on the physical principles of EPS
(—) computational load depends on the set of models used

[24] A6 v v (+) flexibility due to the increase in the number of neurons and layers
(—) preservation of mathematical functions after training

[25] A7 v v (+) high flexibility due to the number of layers
(—) long training and relatively computational complexity
(+) high flexibility due to the number of layers

[20] A8 v v (—) comparatively high computational load

[27] A9 v v (+) flexibility due to the number of feedforward neural networks and layers
(—) computational complexity

28] A10 v v (+) fast learning

(=) sensitivity to outliers in data

Among the disadvantages of the reviewed studies, the following can be highlighted:
the lack of consideration for changes in the topology of the EPS in the training and test
datasets, insufficient development of the task of estimating the time delay in CA selection,
and the use of a non-verified algorithm for selecting CA as a reference for generating the
dataset. To compensate for the described shortcomings of algorithms A1-A10 for selecting
CA and ensuring TS in post-fault operation modes of the EPS, a new methodology is
proposed in this work. This methodology is based on the application of an algorithm for
selecting CA that has been adopted for industrial use. When generating the dataset, the
schematic and operational diversity is taken into account by changing the topology of the
test EPS [30]. The classification time delays are determined.

3. Methodology for Selecting CA to Ensure EPS TS Based on
ML Algorithms

EPS TS is one of the key types of stability, the requirements for which have changed
significantly due to the reduction in constant inertia. When EP occurs with the disconnec-
tion of the power transmission line, SG or SC, an accelerating moment acts on the SG rotors,
leading to an increase in the angular velocity of rotation of the rotor and a loss of stability.
A sufficient condition for maintaining EPS TS is the fulfillment of the following equality in
the space of the SG rotor moment and the load angle:

o

2

L= [ (Mr — Msc)ds — AW, @
ds

(wo + Aw)? —w

J: >
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where ] is the moment of inertia of the SG rotor and turbine, Mr is the accelerating torque
created by the turbine, Mg is the braking torque created by the SG magnetic field, wy is
the angular velocity of the SG rotor before the occurrence of EP, Aw is the change in the
angular velocity of the SG rotor by the end time of SC, Js is the load angle of the SG before
the occurrence of ED, d¢ is the load angle of the SG by the end time of SC, AW} is the energy
spent on damping the oscillations of the SG rotor and turbine.

Equation (2) describes the law of conservation of energy in EPS. When EPS EP occurs,
an imbalance of active power occurs, leading to an excess of the accelerating torque with an
increase in the load angles SG’s. When the load angle along the power transmission lines
exceeds the value of 360 degrees, an out-of-step cutset is formed with the division of EPS
into several parts. In the general case, the division of EPS fragments occurs with negative or
positive imbalances of active power depending on the pre-emergency directions of active
power flows along the power transmission lines. An example of the division of EPS into
fragments is shown in Figure 2.

| EPS emergency control ’
complex

CiT LS
v
P12
4 EPS1 N 5 EPS2

I
Out-of-step
cut_set I

[ SC

Load I / Load
; ;
o )
Increasing angular velocities Decreasing angular velocities
of SG's of SG's

Figure 2. Illustration of the CA selection principle.

When SC occurs on one of the two parallel transmission lines connecting EPS1 and
EPS2, an asynchronous running section occurs, limiting the transmission of active power,
shown in Figure 2 by the designation “P 12”. Thus, in EPS1, an excess of active power
occurs, leading to an increase in the angular velocities of SGs. In EPS2, a deficit of active
power occurs, accompanied by a decrease in the angular velocities of SGs. To maintain
EPS TS, GT-type CA is used in EPS1, and LS-type CA is used in EPS2. This method of
organizing EPS control enables maintaining TS in post-emergency mode.

To implement the EPS emergency control complex, information about EPS operation
parameter measurements, a mathematical model of the protected EPS, and a list of possible
CAs and EP parameters are utilized. Figure 3 shows an example of input and output
information for the EPS emergency control complex. Based on the information received
from SCADA and PMU, the EP parameters are identified, including the type, location,
and parameters of the EP. Using the mathematical model of the protected EPS, the state
estimating procedure is performed, and the optimal CAs are selected to ensure EPS TS.
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SCADA,
PMU

[EPS mathematicall EPS
model CMErgency Optimal CA's
control complex

( 3

Available CA's —»
. J
'd Y
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Figure 3. Input and output data for the EPS of the emergency control complex.

The proposed methodology for selecting CA to ensure TS in the post-fault operation
mode of the EPS represents a pipeline structure [31], organizing the end-to-end process of
synthesis, data preparation, training, and testing of ML algorithms, as well as the analysis
of the classification quality of the CA type. Figure 4 shows the block diagram of the

proposed methodology.
( )
Start
. ¢ J
EPS dynamlc model N CA selection > Train anq test ML
forming algorithms
J
Define the law of EPS . Evaluate classification
Data sample formation .
state changes metrics
Definition of the electrical ' Choose an acceptable ML
network topology hange Feature selection .
law ) algorithm

v v v

Set the list of emergency
processes

Classes balancing — [ Finish ]

[:] Data preporation

Data processing and classification
Figure 4. The proposed method for CA selection to ensure EPS TS based on ML algorithms.

From the perspective of machine learning theory, the task of choosing a CA falls under
multiclass classification, where electrical mode parameters serve as features and types of CA
represent classes. The input data for solving this classification problem consists of samples
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describing changes in features and classes depending on the scheme-regime situation,
which is influenced by the topological configuration of the electrical network and power
flow distribution. Data samples can be obtained either through real-time deterministic
anti-emergency management systems or via mathematical modeling. Both approaches
have their advantages and disadvantages. Real-world data from actual deterministic
anti-emergency management systems describe genuine transient processes considering
the actual state of the EPS, but face limitations due to the inability to consider atypical
regimes and calculate unexamined emergency processes (EPs) [32]. On the other hand,
synthetic data do not reflect processes in real-life EPSs; however, they allow arbitrary
schematic-regime scenarios and practically any EPs during mathematical simulations.

The first stage of the proposed methodology involves specifying the initial data
required for varying the analyzed schematic-regime situations. In the study, numerical
simulation results of electromechanical transient processes in the mathematical model
of the EPS were utilized as the source of data. To achieve diversity in schematic-regime
configurations, variations are introduced into the states of transmission lines, load values at
EPS nodes, and generation levels of SGs. Additionally, loads at EPS nodes vary according
to predefined laws with random components added that follow normal distributions.
Furthermore, the input information includes a list of considered EP, which in this research
specify the type of SC, its location, and duration [33].

After constructing the dynamic model of the EPS and compiling the list of input data,
the simulation of electromechanical transient processes is carried out, followed by the eval-
uation of loss of TS and selection of CA using a verified algorithm [1]. Generally speaking,
any algorithm accepted as a reference may be employed for CA selection. The resulting
choice is presented in matrix form, where rows correspond to modes described by unique
schematic-regime situations, columns include the type of CA, features characterizing the
parameters of the electrical mode, and a description of the relevant EP. The type of CA
implies the determination of the place and volume of disconnection of SG or load in the
nodes of the EPS.

The learning speed of the ML algorithm, like any optimization algorithm, signifi-
cantly depends on the dimensionality of the solved problem, i.e., the number of features
considered during solution search. When creating a dataset for selecting CA to main-
tain TS in post-fault operation mode of the EPS, there exist several features exerting
minimal influence on the classification result. Such features could include active power
flows along transmission lines feeding dead-end substations, voltages in remote nodes
of the EPS away from the fault point, etc. Expert identification of these features is
labor-intensive and often non-trivial, given the changing schematic-regime situation.
Selection of significant features is achieved by calculating feature importance for DT
algorithms [34], which rely on partitioning the input sample set at each node based on
logical rules over selected features aimed at reducing entropy in sub-samples. Features
are ranked by significance depending on how frequently they appear in logical rules as
output from the decision tree algorithm; a vector of features and corresponding signifi-
cance values expressed by the Gini coefficient [35] is generated. Experts can determine
a threshold value for significance, eliminating a feature from further use in training
and testing classification algorithms. In this study, the threshold significance value was
chosen equal to 0.03, meaning that if the Gini coefficient is less than 0.03, then such a
feature is removed from the dataset. This threshold significance value might change
depending on the specific EPS model and the range of CA and EP being considered.
Automatic selection of the threshold significance value has not been addressed in this
study and remains a subject for future research.
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One of the requirements imposed on a dataset intended for training ML algorithms
is balance, i.e., representation of each class in equal proportions within the dataset. If the
dataset is imbalanced, the ML algorithm may train predominantly on the most frequent
class, thereby ignoring the least represented ones, rendering it ineffective when applied
to new data. Several methods can be employed to ensure balanced sampling [36], in-
cluding class weighting, oversampling, and undersampling. Class weighting assigns
weights to each class. The weight factor’s value is determined based on the proportion
of the class in the dataset. However, this introduces additional complexity because
determining the appropriate weight vector adds another degree of freedom to the classi-
fication process, making overall data preparation more uncertain. Oversampling and
undersampling involve adjusting the quantity of data in the dataset by removing or
duplicating specific modes. Undersampling is applicable only when sufficient data
exists, including an adequate representation of minority classes. Oversampling does
not provide a reliable way to capture patterns characteristic of minority classes. Due to
the limitations associated with class weighting, oversampling, and undersampling, the
most commonly adopted techniques are those involving the synthesis of artificial data.
These methods generate new data points based on existing examples of the minority
class, preserving underlying patterns. Two widely recognized methods for generating
synthetic data are the synthetic minority oversampling technique (SMOTE) and adaptive
synthetic sampling. Both techniques synthesize new modes by interpolating between
neighboring instances identified through Euclidean distance calculations. Adaptive
synthetic sampling additionally considers the difficulty of classifying the type of CA,
leading to slower performance compared to SMOTE. Therefore, in this study, we employ
the SMOTE method to balance classes in the dataset.

The processed dataset, considering the selection of significant features and class bal-
ancing, is utilized for training and testing ML algorithms. The division of the dataset into
training and test sets follows an 80/20 ratio. Training of the ML algorithms entails hyper-
parameter tuning through grid search [37], whose nodes are defined by expert judgment.
For this investigation, the following ML algorithms have been selected: Linear Regres-
sion (LR), k-Nearest Neighbors (KNN), Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), AdaBoost, CatBoost, Light Gradient Boosting Machine (LightGBM), Support
Vector Machines (SVM), and Restricted Boltzmann Machines (RBM) [38]. The choice of ML
algorithms reflects a compromise between computational complexity, adaptability, and the
ability to uncover fuzzy and hidden correlations within the data.

Standard metrics [39] were used to assess the quality of the classification. The data
quality assessment was based on the Mean shift clustering [40] algorithm with the calcula-
tion of the following clustering quality metrics: Silhouette coefficient, Davies-Bouldin index,
Calinski-Harabasz index, Adjusted Rand index, Homogeneity score, V-measure score [41].
An additional metric reflecting the quality of the trained ML algorithm’s performance is
the classification delay incurred by the ML algorithm when identifying the type of CA for
one EP.

The scientific novelty of the study lies in developing a methodology for selecting CA to
ensure TS EPS, providing the required levels of speed and adaptability dictated by modern
EPS with a significant share of RES.

4. Case Study

Validation of the proposed control action selection methodology for ensuring dynamic
stability was carried out using the mathematical model of the power system IEEE39 [42].
This model consists of 10 SGs, simulated to account for turbine models, automatic voltage
regulators, and system stabilizers, as well as 39 nodes and 46 transmission lines. The
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graphical representation of the modified IEEE39 model is shown in Figure 5. In this
model, all SGs are connected to the electrical grid through block step-up transformers.
SG1 simulates a connection to an external power system; hence, it is directly connected
to node 39, while the remaining SGs represent equivalent power plants. For modeling
electromechanical transient processes, selecting CAs, processing data samples, training,
and testing machine learning algorithms, the Python 3 development environment was
utilized, employing parallel computations on graphics processors. For modeling wind
generators (WG), the model and graphs of generated active power from [43] were used.
The procedure for forming a data sample is described in detail in studies [6,43], and a
similar procedure is used in this study.

SGS
SG10 37
30
. 25 Lo 1—L2s Llroo
2
27
SG1 -1 3 18 17
| | | 38
=39 16 214 |
SG7 :
_ ! e
4 15 =+ ,
36
- 14+ 24 WG9
5 13 23

WG5S

Figure 5. Modified IEEE39 mathematical model (WGs have been added to nodes 31, 32, 34, 35,
and 38).

Table 2 shows the values of base loads in the IEEE39 model nodes with the CA presence
flag of the load scheduling (LS) type. Table 3 shows the following SG parameters: Pnom
is the SG nominal active power, Tj is the mechanical inertia constant of the unit, x4 is the
synchronous inductive resistance of the armature winding along the longitudinal axis, x4’
is the transient inductive resistance of the armature winding along the longitudinal axis,
xq” is the subtransient inductive resistance of the armature winding along the longitudinal
axis, GT is the flag of the possibility of implementing the generator tripping type AC on
SG. In this study, only two types of CA are used to ensure the TA: GT and LS. The use of
the steam turbine fast valving [44] unloading type CA for centralized emergency control is
a direction for future research.
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Table 2. Load values in the nodes of the IEEE39 test mathematical model.
Node Load, MVA LS Node Load, MVA LS
1 97.6 +j44.2 21 274.0 +j115.0
2 322.0 +j2.4 23 247.5 +i84.6
4 500.0 + 184.0 + 24 308.6 +j92.2
7 233.8 +j84.0 + 25 224.0 +j47.2
8 522.0 +j176.0 + 26 139.0 +j17.0 +
12 8.5 +j88.0 + 27 281.0 +j75.5 +
15 320.0 +j153.0 28 206.0 +j27.6 +
16 329.0 +j32.3 29 283.5 +j26.9 +
18 158.0 +330.0 + 31 9.2 +ij4.6 +
20 680.0 +j103.0 + 39 1104.0 +j250.0
Table 3. SG and WG parameters.
SG/WG Phom, MBT Tj, s Xd, p-u. xq', p-u. xq”, p-u. GT
1 1040 4.20 0.82 0.25 0.008
2 646 - - - - +
3 725 - - - -
4 652 2.86 2.16 0.36 0.008 +
5 508 - — - - +
6 687 - - - -
7 580 2.64 2.43 0.41 0.008
8 564 1.43 2.39 047 0.008 +
9 865 - - - - +
10 1100 5.00 0.18 0.05 0.009

Table 4 describes the classes used. The «GT» column provides the SG numbers where
the GT-type AC is used within one class, and the «LH» column provides the node numbers
where 100% load scheduling [45] is performed when implementing the CA. In the numerical
example, eight distinct classes of CAs are implemented. These classes are dynamically
chosen according to both the network topology and specific operational conditions of the
electrical system. A deterministic algorithm, initially introduced in reference [1], has been
appropriately adapted and enhanced to guarantee TS within the given framework.

Table 4. Description of classes.

Class Number GT LS
0 WG2 Node 8
1 SG4 Node 12
2 WGH Node 15
3 SG8 Node 16
4 WG9 Node 18
5 WG2 + WG5 Node 8
6 SG8 + WG9 Node 12
7 WG2 + SG8 Node 15

To form the data sample, the procedure of changing the parameters of the electrical
mode with subsequent calculation of EP and selection of CA, presented in Figure 2, was
used. The following parameters of the electrical mode and calculated EP were used as
features of the data sample: active power SG or WG, reactive power SG or WG, modules
and phases of voltage in the nodes of the EPS test model, flows of active and reactive
powers along the elements of the electrical network, active and reactive conductivity of
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short-circuit shunts, short-circuit duration, operational state of the elements of the electrical
network [46]. The classes in the formed data sample are a complex value that combines
the node number, type, and volume of CA. Figure 6 shows an example of measuring the
following features in the generated data sample: active power flow along branch 3-17,
reactive power flow along branch 4-14, and active power flow along line 15-14.

>
a 0.511 — P3-17
" Q4-14
3 0.50- — P15-14
©
>
(<)
é 0.49
P
uw 0.48 1 1 i v - 1 'v, ’
0 200 400 600 800 1000

Sample Number

Figure 6. Changes in three features are presented in the data sample.

Figure 4 shows the changes in the parameters of the electrical mode of the EPS
mathematical model, with values expressed in relative units to maintain clarity in the
figure. The values of the parameters of the electrical mode reflect fluctuations caused by
changes in loads, states of the elements of the electrical network, and the values of active
power WGs.

To reduce the dimensionality of the CA volume classification problem being solved, a
procedure for selecting the most significant features based on the DT algorithm [47] is used.
The Gini coefficient is used as a feature significance metric. Figure 7 shows the correlation
matrix of the selected informative features with the most tremendous significance for the
CA volume classification problem.

To balance the classes in the generated sample, the SMOTE algorithm was used [48].
This method involves creating new instances in the data sample that correspond to classes
with the smallest quantitative representation. The use of an unbalanced sample is reflected
in the undertraining of the ML algorithms and the ignoring of minor classes. The most
significant number of modes corresponds to class 6, the smallest to class 5. After applying
the synthetic minority resampling method, the distribution of classes in the sample is
uniform, while the number of modes in the data sample increased by 50%.

A necessary condition for applying the classification algorithm is the presence of data
clustering, which makes it possible to construct a dividing surface. The most visual method
of data cluster analysis is the analysis of the results of data dimensionality reduction
algorithms: the principal component analysis (PCA), t-distributed Stochastic Neighbor
Embedding (t-SNE) [49], multidimensional scaling, isometric mapping, etc. Figure 8 shows
the results of clustering the generated data sample using the Mean shift [50] algorithm
applied to the two-dimensional space of the first two t-SNE components. Since the t-SNE
algorithm does not provide a physical interpretation of the coordinate axes, the axes in
Figure 6 do not have physical dimensions. As a result of applying the Mean shift algorithm
in the space of the first two t-SNE components, 8 clusters were identified, for describing
the clustering quality of which the standard metrics given in Table 5 were used [51].

The matrix of correlations of informative features, given in Figure 5, shows the values
of mutual correlations of the parameters of the electric mode taken into account during
training and testing of ML algorithms. Each cell of the matrix shows the values of mutual
correlation with the appropriate color highlighting. The symmetrical correlation matrix
allows us to show only its lower part for the sake of clarity, since the upper part is completely
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symmetrical. The values of mutual correlations of the features taken into account during
training and testing of ML algorithms are in the range from 0.05 to 0.96.
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Figure 7. Feature correlation matrix.

Table 5. Classification quality metrics.

Metrics Value
Silhouette coefficient 0.4440
Davies-Bouldin index 0.7483

Calinski-Harabasz index 1187.9363
Adjusted Rand index 0.5644
Homogeneity score 0.5213
V-measure score 0.5245

Figure 6 shows the graphical results of the cluster analysis of the data sample to which
the t-SNE data dimensionality reduction algorithm was applied. The numbers of clusters
identified by the Mean Shift algorithm are shown in color. The use of this data clustering
algorithm made it possible to identify 8 clusters in the original data, corresponding to the
number of CA classes under consideration, the description of which is given in Table 4.

The values of the silhouette coefficient and Davies-Bouldin index indicate a sufficient,
but imperfect, quality of clustering. Excellent indicators were obtained for the Calinski-
Harabasz index, allowing us to interpret the data sample as having a clear, structured
separation of clusters. Despite the reduced values of the adjusted Rand index and homo-
geneity score, the data sample under consideration has sufficient properties for applying
classification algorithms based on ML algorithms.

Table 6 shows the results of preliminary processing of the data sample.
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Figure 8. Visualization of the data sample after applying the Mean Shift clustering algorithm.

Table 6. Results of data sample processing.

Metrics Value
Number of classes 8
Initial sample size 992
Sample size after class balancing 1496
Initial number of features 211
Number of features after applying the DT 18
algorithm

The grid search approach was used to train the selected ML algorithms. The total
dataset was divided into training and testing datasets in an 80/20 ratio. This algorithm
specifies an array of variable hyperparameters for which the classification accuracy is
calculated, and a set of hyperparameters is determined that provides the most satisfactory
classification results. Experts specify the array of hyperparameters under consideration.
Standard hyperparameter values are used for the support vector machine and restricted
Boltzmann machine algorithms. Table 7 contains a description of the hyperparameters of
each of the ML algorithms under consideration, an array of hyperparameter values, the
selected hyperparameter value, and a brief description of each hyperparameter.

Table 7. Results of ML algorithms” hyperparameter values determining.

ML Algorithm Hyperparameters

KNN n_neighbors = 3

LR C=10

RE n_estimators = 100, max_depth = 10, max_features = sqrt(n),
min_samples_leaf = 0.02, min_samples_split = 0.005

XGBoost n_estimators = 100, max_depth = 15, learning_rate = 0.1, base_score = 0.7

AdaBoost n_estimators = 200, learning_rate = 0.5

CatBoost n_estimators = 80, learning_rate = 0.1, max_depth = 10

LightBM learning_rate = 0.1, n_estimators = 100, num_leaves = 31

SVM C=01

In Table 7, the following notations are used: n_neighbors is the number of nearest
neighbors, n_estimators is the number of base classifiers, max_depth is the depth of the
base classifier tree, max_features is the proportion of features of the training sample
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randomly selected for training one tree, n is the number of features, min_samples_leaf is
the minimum proportion of data samples falling into the leaf, min_samples_split is the
minimum proportion of data samples for splitting, learning_rate is the speed of learning,
base_score is the base value of the probability of classifying a data row into a class for the
binary case, C is the regularization parameter. Standard hyperparameters were used for
the RBM algorithm.

As ML algorithms with a more complex architecture based on ANN, the convolutional
neural network (CNN) and graph neural network (GNN) algorithms were considered
for classifying CAs [9]. The CNN algorithm is used in most cases for recognizing image
fragments; therefore, for its application, the data used were transformed into an image
form, the formation scheme of which is shown in Figure 9.

A1 Z

Figure 9. An example of input data for the CNN algorithm (A is the adjacency matrix of the normal
EPS operating mode, Al is the adjacency matrix of the post-accident mode, F is the feature vector, Z
is an image fragment with zero values).

The structure used for the CNN algorithm is described in Table 8.

Table 8. CNN algorithm structure.

Layer Element
Input Image (3D tensor)
Convolution Layer (3,3,32)
Pooling layer
Hidden Convolution Layer (3,3,64)
Pooling layer
Flatten
Output CA class

The following parameters were used for the CNN: optimizer—Adam, learning rate—
0.001, maximum epochs—30. Figure 10 shows the values of the change in errors of the
CNN algorithm on the training and validation samples.

After reaching 15 training epochs, the accuracy of the CNN algorithm reaches a steady-
state value, and further continuation of the training process does not lead to significant
changes in accuracy.
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Figure 10. Modifying the accuracy of the CNN algorithm during the training process.

To select optimal CAs based on the GNN algorithm, the following parameters were
used: number of layers = 5, number of units = 15, neighborhood order = 4, optimizer—
RMSProp, activation function—ReLU. To incorporate information about the electrical
network topology in the GNN algorithm, the adjacency matrix and electrical regime
parameters are used as input data. The problem of classifying optimal CAs is considered as
a graph classification problem.

Table 8 shows the classification quality metrics and the average computational delay
of the CA-type classification for one mode. In Table 9, the Precision, Recall, F1 Score, and
Accuracy values are given in relative units.

Table 9. Comparison of classification quality metrics of the considered ML algorithms.

Algorithm Precision Recall F1_Score Accuracy Single Prediction Time, ms
KNN 0.835 0.835 0.835 0.835 0.071
LR 0.649 0.639 0.627 0.639 0.053
RF 0.984 0.983 0.983 0.983 0.047
XGBoost 0.960 0.950 0.950 0.954 1.150
AdaBoost 0.935 0.932 0.932 0.932 1.254
CatBoost 0.914 0.911 0.911 0.911 1.168
LightBM 0.926 0.922 0.922 0.922 0.983
SVM 0.662 0.664 0.614 0.664 0.085
RBM 0.950 0.950 0.940 0.945 0.215
CNN 0.952 0.952 0.952 0.948 0.081
GNN 0.947 0.945 0.945 0.946 0.097

The maximum classification accuracy and the shortest time to select one CA corre-
spond to the RF algorithm, the quality metric values of which are highlighted in bold in
Table 8. The lowest accuracy corresponds to the LR algorithm. The XGBoost, AdaBoost,
CatBoost, and LightGBM algorithms showed similar accuracy. Figure 11 shows an example
of a fragment of the RF algorithm decision tree, for which the feature numbers are indicated
in the threshold value comparison expression.
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16 <= 0.173
samples = 550

value = [107, 112, 102, 108, 111, 115, 96, 119]
class = Class 7

8 <=0.594 8 <= 0.569
samples = 425 samples = 125
value = [19, 4, 102, 108, 111, 115, 96, 119]| [value = [88.0, 108.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
class = Class_7 class = Class_1

Figure 11. Example of a decision tree used in the RF algorithm.

One of the standard approaches to analyzing the quality of ML algorithm classification
is to construct a confusion matrix, in which the abscissa axis indicates the classification
result, the ordinate axis indicates the actual class value, and each cell of the matrix indicates
the number of examples in the data sample. Constructing this matrix allows you to see
the distribution of classification results [52] clearly. The main diagonal of the matrix
indicates examples in which the classification result coincided with the actual CA type. The
remaining elements of the matrix show erroneous classification examples. Figure 12 shows

the error matrix of the random forest algorithm, for which the largest number of errors is
observed for class 3.

- 25

True label

Predicted label

Figure 12. Confusion matrix of the RF algorithm.
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Class 3 describes the SG8 GT type CA with simultaneous load shedding in node 16.
The peculiarity of this CA is the minimum value of the mechanical inertia constant of
SG8 compared to other SGs, which leads to an increased dynamic response of this SG
to disturbances in EPS and an increase in the probability of EPS TS loss. This pattern
contributes to an increase in classification errors for this CA, which is clearly shown in the
error matrices.

To analyze the robustness of the technique shown in Figure 2, numerical experiments
were performed with noise added to the feature signals obtained from the PMUs installed
at the EPS points corresponding to the calculated informative features. Table 10 shows the
results of the accuracy of CA classification by the trained RF algorithm.

Table 10. CA classification results when adding noise to informative features.

White Noise Pink Noise Blue Noise
Level, dB AC Level, dB AC Level, dB AC
0 0.983 0 0.982 0 0.984
5 0.981 5 0.981 5 0.983
10 0.980 10 0.978 10 0.982
15 0.979 15 0.976 15 0.976
20 0.973 20 0.971 20 0.972
25 0.962 25 0.961 25 0.961
30 0.954 30 0.952 30 0.956
35 0.948 35 0.949 35 0.947

Adding noise in the range from 5 to 20 dB to informative features leads to an insignifi-
cant decrease in the accuracy of CA classification. In the presence of noise interference in
informative features obtained from PMU, adaptive filtering algorithms can be used [53].
The obtained CA classification delay value of 0.047 ms allows us to conclude that the RF
algorithm can be used for EPS emergency control in real time.

To compare the results of the method proposed in this paper, a comparison was made
with the results obtained in the study [54]. The second method used to compare the results
of the proposed method is [55]. In this paper, the XGBoost algorithm was used to select
optimal CAs utilizing fast valving in a steam turbine. A comparison of the methods is
given in Table 11.

Table 11. CA’s selection methods comparison.

EP CA’s Proposed Method ?52]5 ([:51;]5
Line 15-16 tripping No No No
Line 8-9 tripping [SGS8, Node 16] [SGS8, Node 16] No
Line 21-22 tripping No No No
Node 19 K(3) 0.2 s. [SG4, Node 12] [SG4, Node 12] [SG4]
Node 22 K(2) 0.2 s. [SG4, Node 12] [SG4, Node 12] [SG4]
Node 25 K(2) 0.2 s. [SG8, Node 16] [SGS8, Node 16] [SG8]

In Table 11, the following notations are used: K(3)—three-phase short circuit,
K(2)—two-phase short circuit. In each cell with CAs, the following values are indicated in
square brackets: [GT, LS].

The methods used to select CAs to ensure EPS TS, presented in this study and in [54]
for the considered EPs, are entirely identical. The method presented in the study [55] allows
one to determine the CA’s of the GT type. The results of the method presented in the
study [55] coincide with the method proposed in this study in terms of CA’s of the GT type.
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5. Discussion and Study Limitations

The study presents a methodology for ensuring TS in EPS with a significant share

of RES, which helps to reduce the constant inertia and increase the speed of transient

processes. In the context of transforming traditional EPS, the issue of maintaining TS

becomes relevant [56,57]. The following are highlighted as limitations of the presented

study aimed at developing a methodology for selecting optimal CAs for maintaining the

TS of the protected EPS in the post-emergency operating mode:

Traditional methods (GT and LS) of quenching excess kinetic energy arising during EP
with the presence of SC are considered as CAs used to ensure the conservation of TS.
In low-inertia EPS with a significant share of RES and control devices based on power
electronics, it is advisable to consider CAs aimed at changing the operating mode of
RES, changing the value of synthetic inertia [58], and changing the operating mode
of energy storage devices. Considering a wider range of CAs allows for significantly
increasing the flexibility and economic efficiency of the EPS EC process.

The functioning of the EPS EC system based on the application of ML algorithms
directly depends on the parameters of the data used for training, validation, and
testing. A separate task, not considered within the framework of this article, is the
development of a data synthesis methodology that ensures the representativeness,
validity, and sufficiency of information required to approximate the physical patterns
that arise when providing TS in the protected EPS. The solution to the data synthesis
problem can be based on the use of a combination of physical measurements and
synthetic data that allows considering the most severe or rare topology options and
voltage levels, current loads of EPS elements, as well as active and reactive power
flows along power lines or transformers [59].

An important task, partially reflected in this study, is the development of an adaptive
method for selecting informative features. The problem of selecting optimal CAs for
maintaining EPS TS is characterized by a high dimensionality of the feature space
describing the topology of the electrical network and the parameters of the electrical
mode. To increase the speed of the training and operation of the ML algorithm, an
important task is to reduce the dimensionality of the problem being solved by selecting
informative features that provide the most significant contribution to the accuracy of
the approximation of the law of selecting optimal CAs [29].

When developing a methodology for selecting CAs, a separate important task is to
determine the requirements for information support, including the characteristics of
devices for measuring electrical mode parameters [53], the development of methods for
measuring the mechanical characteristics of SG operation [60], and the determination
of an acceptable speed of information exchange between the data processing center
and EPS facilities where CAs are implemented.

One of the factors, limitedly presented in this study, is the testing of the methodology
for selecting optimal CAs based on physical changes characterized by the presence of
noise, gaps, and outliers in the data. The use of physical data enables us to consider
the practical aspects of implementing the methodology for ensuring EPS TS.

One direction of development for the methodology, not presented in this study;, is the
selection of optimal CAs for predicted operating modes of the protected EPS, taking
into account the topology of the electrical network and the values of active and reactive
power of consumers [61].

The identified directions for future work and limitations of the study provide promis-

ing avenues for developing the proposed methodology to ensure EPS TS. In addition, one

of the most important tasks that the authors set for themselves is the development of an

adaptive EPS EC system that allows for the implementation of complex EPS management,
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taking into account the provision of all stability criteria, including new types described in
the work [62].
The following are highlighted as scientific achievements of this article:

e  The proposed architecture of the centralized EPS EC complex using ML algorithms is
presented in Figure 1. This architecture includes the stages of generating training data,
processing data to determine informative features, balancing classes, training, and
testing ML algorithms. The trained ML algorithm is used for operational management
of the EPS using data received from SCADA and PMU.

e A method for synthesizing synthetic data used for training and testing the ML algo-
rithm is proposed to select optimal CAs that preserve EPS TS when EP occurs.

e  An optimal ML algorithm was determined that ensures acceptable accuracy and time
delay in selecting CAs to preserve EPS TS when EP occurs. RF was selected as the
optimal algorithm, allowing for an accuracy of 98.3% in selecting CAs with a delay of
0.047 ms.

e Ananalysis of the stability of the proposed method to noise in the original data was
conducted. It was determined that when adding noise of 0 to 20 dB to the original
data, the accuracy of the CA’s classification changes insignificantly. This proves the
stability of the proposed method to noise in the original data caused by interference in
the electrical mode parameter measurement system.

e  The combination of data processing algorithms (SMOTE, t-SNE, Mean Shift clustering
algorithm), informative feature selection (DT), and classification (RF) used in this
study enables the implementation of an adaptive method for selecting optimal CAs,
providing the required level of accuracy, speed, and flexibility. At the same time, the
proposed method ensures high training speed, resistance to noise in the original data,
and the possibility of rapid integration into the existing information infrastructure. The
RF algorithm is not susceptible to overfitting due to the following features: aggregation
of weak models, diversity among trees, and tree size regularization. Unlike XGBoost,
where trees grow deep and risk overfitting the data, trees in RF are limited in depth or
number of leaves, preventing the creation of overly detailed models.

6. Conclusions

Modern EPS are undergoing significant changes associated with a decrease in the total
inertial constant, an increase in the speed, and the oscillatory component of transient pro-
cesses occurring during EP occurrence. In connection with these changes, the requirements
for the accuracy, adaptability, and speed of EPS control are significantly increasing. As a
tool for meeting the requirements for the control of modern EPS, the use of ML algorithms
is proposed. Due to the possibility of approximating hidden and implicit correlations in
data, they allow synthesizing a set of decision rules that ensure the selection of optimal CAs.
The use of this class of algorithms will significantly increase the speed and adaptability of
optimal CAs in the conditions of modern low-inertia EPS with a significant share of RES.
The article proposes the architecture of a centralized EPS EC system using ML algorithms.
This complex is based on procedures for processing data from SCADA systems, PMUs, and
archives of results obtained by selecting optimal CAs using deterministic algorithms [1].
By using the architecture presented in Figure 1, it is possible to organize a complete cycle
of data sample preparation, its processing, training of the ML algorithm, determination of
its quality metrics, and integration into the EPS operational control loop.

The paper presents a basic algorithm of a centralized EPS EC based on ML algorithms.
To ensure dynamic stability, generator or load shutdowns are used as a control action choice.
The functionality of the complex, based on ML algorithms, can be used as an extension of
the range of capabilities of existing EPS emergency control systems. The use of CA with
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ML algorithms can be beneficial in the event of accidents with cascade development, as
it offers a significantly faster response compared to deterministic approaches. The article
presents the analysis of studies of heuristic methods for selecting CA and estimating EPS
TS based on ML algorithms. The degree of elaboration of the research topic is revealed.
The advantages and disadvantages of existing heuristic methods for selecting CA are
shown. The problem of selecting CA is reduced to a multiclass classification problem. A
technique for selecting CA to ensure EPS TS based on ML algorithms is proposed. The
technique presents the stages of data synthesis, feature selection, class balancing, as well
as training and comparison of classification quality metrics on both the test and training
samples. The DT algorithm with a threshold Gini coefficient of 0.03 is used to select
features. The threshold value was selected through expert evaluation based on experience
in researching the application of ML algorithms to the EPSEC problem. The development of
a methodology for adaptively calculating the Gini coefficient threshold value is highlighted
as an area for future research. The SMOTE algorithm was used to balance classes.

To determine the characteristics of the data sample, cluster analysis was used based
on the Mean Shift algorithm, for the results of which the following clustering quality
metrics were calculated: Silhouette coefficient, Davies-Bouldin index, Calinski-Harabasz
index, Adjusted Rand index, Homogeneity score, and V-measure score. Clustering quality
was assessed using several standard metrics reflecting both the internal structure of the
identified clusters and their consistency with the proper class distribution. The Silhouette
coefficient (0.4440), which measures the proximity of objects to their clusters compared to
neighboring groups, demonstrates moderate data separation. The Davies-Bouldin index
(0.7483), which measures the average ratio of intracluster dispersion to intercluster distance,
also confirms the presence of a specific structure in the resulting groups. The high value
of the Kalinski-Harabasz index (1187.9363) indicates a significant difference between the
average distances within clusters and the overall dispersion of the sample, emphasizing the
sufficient clarity of the boundaries between clusters. The Adjusted Rand Index (Adjusted
Rand index = 0.5644), which measures the similarity between the actual and ideal clustering
solution, approaches a value indicating a moderate degree of consistency with expectations.
Finally, the Homogeneity Score (Homogeneity score = 0.5213) and V-Measure Score (V-
measure score = 0.5245), which assess the homogeneity and completeness of the distribution
of objects across clusters, confirm a moderate level of consistency between the resulting
clustering and the predetermined data structure.

To test the CA selection methodology, the results of numerical modeling of electrome-
chanical transient processes for the IEEE39 mathematical model were used. To reduce the
total EPS inertial component, WGs were added to nodes 31, 32, 34, 35, and 38 in the EPS
mathematical model used. WG output power modeling was implemented using the distri-
butions presented in the study [43]. Eight CA classes were used to generate the synthetic
dataset. The dataset size after class balancing was 1496 EPs. The number of informative
features used, determined using the DT algorithm, was 18. Modeling of transient processes
was performed in the Python 3 development environment in the Google Colaboratory
cloud service. As a result of modeling transient processes with variation in the state of
power transmission lines, loads, and generations according to a given law, a data sample
was formed. To select CA, the RF algorithm was used, providing an accuracy of 98.3% with
a numerical delay of 0.047 milliseconds.

Future research directions include:

e  Development of a methodology for selecting CAs aimed at changing the operating

mode of RES and control devices based on power electronics, considering the cost
of implementing each type of control. This methodology will significantly enhance
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the adaptability of EPS EC and incorporate consideration of market mechanisms for
determining the composition of CAs based on the minimum control cost.

e  Refinement of the synthetic data generation methodology to ensure the representative-
ness and validity of the EPS operating modes under consideration. Data sampling is
a key task in the development of EPS control systems based on ML algorithms. The
data sampling methodology proposed in this article is based on random changes in
loads, generation, and the topology of the electrical network. To increase the represen-
tativeness of the data sample, a technique for targeted changes in the EPS operating
mode can be used to increase the probability of EPS TS loss.

e  In this study, standard ML algorithms based on ensembles of decision trees, construc-
tion of separating hyperplanes, nearest neighbors, and neural networks were applied.
One of the directions for further research is the use of a multi-magnet approach and
dynamic ML to increase adaptability and performance further.

o  Testing the methodology on more complex EPS models: IEEE118, IEEE300, as well as
on real data. A crucial task is to test the developed methodology in real-time using spe-
cialized complexes [63]. Such testing will enable us to determine the actual time costs
of implementing CAs, considering the delay caused by the ML algorithm, information
transmission channels, and CA implementation mechanisms on LH and GT.

e Testing of the meta, taking into account the influence of control devices based on
power electronics on EPS TS [64].
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Nomenclature
The following nomenclatures are used in this manuscript:

AdaBoost  Adaptive boosting

ANN Artificial neural network

CA Control actions

CatBoost Categorical boosting

CNN Convolutional neural network
DRL Deep reinforcement learning
DT Decision tree

EP Emergency process

EPS Electric power system

FACTS Flexible alternating current transmission systems
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GNN Graph neural network

GT Generator tripping

KNN K-nearest neighbors

LightGBM  Light gradient-boosting machine
LNN Lyapunov neural network

LR Linear regression

LS Load scheduling

LS-SVM Least square support vector machine
NBC Naive Bayes classifier NBC

NCC Nearest centroid classifier

PCA Principal component analysis
PMU Phasor measurement units

RES Renewable energy sources

RBM Restricted Boltzmann machines
RF Random forest

SCADA Supervisory control and data acquisition
5G Synchronous generator

XGBoost eXtreme Gradient Boosting

SMOTE Synthetic minority oversampling technique

SVM Support vector machine
TS Transient stability
t-SNE t-distributed Stochastic Neighbor Embedding
WG Wind generator
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