In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
Abstract
1. Introduction
2. Basic Principles and Construction of Electrochemical In Situ Raman Spectroscopy
3. Reaction Pathways in the CO2RR Process
4. Detection of Reaction Intermediates Formed at Electrode/Electrolyte Interface
5. Monitoring the Structural and Valence Evolution of Cu-Based Catalysts
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ewis, D.; Arsalan, M.; Khaled, M.; Pant, D.; Ba-Abbad, M.M.; Amhamed, A.; El-Naas, M.H. Electrochemical Reduction of CO2 into Formate/Formic Acid: A Review of Cell Design and Operation. Sep. Purif. Technol. 2023, 316, 123811. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Duan, D.; He, C.; Ma, J.; Zhang, W.; Liu, H.; Long, R.; Li, Z.; Kong, T.; et al. Structural Reconstruction of Cu2O Superparticles toward Electrocatalytic CO2 Reduction with High C2+ Products Selectivity. Adv. Sci. 2022, 9, 2105292. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Cassou, C.; Hauser, M.; Hausfather, Z.; Lee, J.-Y.; Palmer, M.D.; et al. Indicators of Global Climate Change 2024: Annual Update of Key Indicators of the State of the Climate System and Human Influence. Earth Syst. Sci. Data 2025, 17, 2641–2680. [Google Scholar] [CrossRef]
- Chang, F.; Xiao, M.; Miao, R.; Liu, Y.; Ren, M.; Jia, Z.; Han, D.; Yuan, Y.; Bai, Z.; Yang, L. Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochem. Energy Rev. 2022, 5, 4. [Google Scholar] [CrossRef]
- Gao, D.; Li, W.; Wang, H.; Wang, G.; Cai, R. Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels. Trans. Tianjin Univ. 2022, 28, 245–264. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G.O.; Perez-Ramirez, J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Han, J.; Bai, X.; Xu, X.; Husile, A.; Zhang, S.; Qi, L.; Guan, J. Advances and Challenges in the Electrochemical Reduction of Carbon Dioxide. Chem. Sci. 2024, 15, 7870–7907. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Singh-Morgan, A.; Qi, K.; Zeng, Z.; Mougel, V.; Voiry, D. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions. ACS Catal. 2023, 13, 5375–5396. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Hua, Q.; Su, L.; Li, J.; Ge, Y.; Huang, Z. Regulation of Intermediate Microenvironment for Efficient C-C Coupling in Electrochemical CO2 Reduction. J. Mater. Chem. A 2024, 12, 20507–20526. [Google Scholar] [CrossRef]
- Leonzio, G.; Hankin, A.; Shah, N. CO2 Electrochemical Reduction: A State-of-the-Art Review with Economic and Environmental Analyses. Chem. Eng. Res. Des. 2024, 208, 934–955. [Google Scholar] [CrossRef]
- Kumar, B.; Muchharla, B.; Dikshit, M.; Dongare, S.; Kumar, K.; Gurkan, B.; Spurgeon, J.M. Electrochemical CO2 Conversion Commercialization Pathways: A Concise Review on Experimental Frontiers and Technoeconomic Analysis. Environ. Sci. Technol. Lett. 2024, 11, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Ma, X.; Sun, X.; Han, B. Electrochemical Transformation of CO2 to Value-Added Chemicals and Fuels. CCS Chem. 2022, 4, 3213–3229. [Google Scholar] [CrossRef]
- Li, Y.; Lu, T.-B. Coupling Electrochemical CO2 Reduction with Value-Added Anodic Oxidation Reactions: Progress and Challenges. Mat. Chem. Front. 2024, 8, 341–353. [Google Scholar] [CrossRef]
- Chang, B.; Pang, H.; Raziq, F.; Wang, S.; Huang, K.-W.; Ye, J.; Zhang, H. Electrochemical Reduction of Carbon Dioxide to Multicarbon (C2+) Products: Challenges and Perspectives. Energy Environ. Sci. 2023, 16, 4714–4758. [Google Scholar] [CrossRef]
- Ma, J.; Kim, S.Y. Development of Catalysts and Reactor Designs for CO2 Electroreduction towards C2+ Products. Energy Mater. 2025, 5, 500052. [Google Scholar] [CrossRef]
- Poon, K.C.; Wan, W.Y.; Su, H.; Sato, H. A Review on Recent Advances in the Electrochemical Reduction of CO2 to CO with Nano-Electrocatalysts. RSC Adv. 2022, 12, 22703–22721. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Lei, Q.; Tang, C.; Yin, J.; Lo, T.W.B. Optimizing Cu+-Cu0 Synergy by Operando Tracking of Cu2O Nanocatalysts during the Electrochemical CO2 Reduction Reaction. Nano Energy 2023, 118, 108920. [Google Scholar] [CrossRef]
- Wang, X.; Shi, L.; Ren, W.; Li, J.; Liu, Y.; Fu, W.; Wang, S.; Yao, S.; Ji, Y.; Ji, K.; et al. Enhancing *CO Coverage on Sm-Cu2O via 4f-3d Orbital Hybridization for Highly Efficient Electrochemical CO2 Reduction to C2H4. J. Energy Chem. 2024, 99, 409–416. [Google Scholar] [CrossRef]
- Xue, F.; Lai, X.; Xu, Y. Recent Advances on CO2 Electrochemical Reduction over Cu-Based Nanocrystals. ChemCatChem 2024, 16, e202400590. [Google Scholar] [CrossRef]
- Liu, C.; Guo, R.-T.; Zhu, H.-W.; Cui, H.-F.; Liu, M.-Y.; Pan, W.-G. Cu2O-Based Catalysts Applied for Electrocatalytic CO2 Reduction: A Review. J. Mater. Chem. A 2024, 12, 31769–31796. [Google Scholar] [CrossRef]
- Xiong, R.-Z.; Xu, H.-M.; Zhu, H.-R.; Zhang, Z.-J.; Li, G.-R. Recent Progress in Cu-Based Electrocatalysts for CO2 Reduction. Chem. Eng. J. 2025, 505, 159210. [Google Scholar] [CrossRef]
- Obasanjo, C.A.; Zeraati, A.S.; Shiran, H.S.; Nguyen, T.N.; Sadaf, S.M.; Kibria, M.G.; Dinh, C.-T. In Situ Regeneration of Copper Catalysts for Long-Term Electrochemical CO2 Reduction to Multiple Carbon Products. J. Mater. Chem. A 2022, 10, 20059–20070. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, J.; Wang, P.; Jin, H.; Zheng, Y.; Qiao, S.-Z. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. Adv. Mater. 2024, 36, 2307913. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tian, B.; Gao, X.; Zhong, Y.; Wang, S.; Song, S.; Wang, Z.; Zhang, Y.; Kuang, Y.; Sun, X. Copper Nanowire with Enriched High-Index Facets for Highly Selective CO2 Reduction. SmartMat 2022, 3, 142–150. [Google Scholar] [CrossRef]
- Zhang, H.; Qiao, Y.; Wang, Y.; Zheng, Y.; Huang, H. In Situ Oxidative Etching-Enabled Synthesis of Hollow Cu2O Nanocrystals for Efficient CO2RR into C2+ Products. Sustain. Energ. Fuels 2022, 6, 4860–4865. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Jin, W.; Tuo, Y.; Zhou, Y.; Zhou, S.; Gong, T.; Li, J.; Ni, Y.; Wang, M.; et al. In-Situ Construction of Highly Durable Cuδ+ Species Boosting Electrocatalytic Reduction of CO2 to C2+ Products. Appl. Catal. B Environ. 2025, 375, 125434. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.-G.; Bodappa, N.; Yang, W.-M.; Liang, Q.; Radjenovica, P.M.; Wang, Y.-H.; Zhang, Y.-J.; Dong, J.-C.; Tian, Z.-Q.; et al. Elucidating Electrochemical CO2 Reduction Reaction Processes on Cu(hkl) Single-Crystal Surfaces by in Situ Raman Spectroscopy. Energy Environ. Sci. 2022, 15, 3968–3977. [Google Scholar] [CrossRef]
- An, H.; Wu, L.; Mandemaker, L.D.B.; Yang, S.; de Ruiter, J.; Wijten, J.H.J.; Janssens, J.C.L.; Hartman, T.; van der Stam, W.; Weckhuysen, B.M. Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO2 Reduction on Copper. Angew. Chem.-Int. Edit. 2021, 60, 16576–16584. [Google Scholar] [CrossRef]
- de Ruiter, J.; An, H.; Wu, L.; Gijsberg, Z.; Yang, S.; Hartman, T.; Weckhuysen, B.M.; Stam, W.v.d. Probing the Dynamics of Low-Overpotential CO2-to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy. J. Am. Chem. Soc. 2022, 144, 15047–15058. [Google Scholar] [CrossRef]
- Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W.; et al. Complementary Operando Spectroscopy Identification of In-Situ Generated Metastable Charge-Asymmetry Cu2-CuN3 Clusters for CO2 Reduction to Ethanol. Nat. Commun. 2022, 13, 1322. [Google Scholar] [CrossRef]
- Xue, Y.; He, M.; Wang, P.; Yang, C.; Yao, J.; Zhang, T.; Xu, H.; Sun, X.; Li, Z. In Situ Spectroscopy in Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. C 2024, 128, 19109–19121. [Google Scholar] [CrossRef]
- Haryanto, A.; Jung, K.; Lee, C.W.; Kim, D.-W. In Situ Infrared, Raman and X-ray Spectroscopy for the Mechanistic Understanding of Hydrogen Evolution Reaction. J. Energy Chem. 2024, 90, 632–651. [Google Scholar] [CrossRef]
- Lee, W.H.; Han, M.H.; Ko, Y.-J.; Min, B.K.; Chae, K.H.; Oh, H.-S. Electrode Reconstruction Strategy for Oxygen Evolution Reaction: Maintaining Fe-CoOOH Phase with Intermediate-Spin State during Electrolysis. Nat. Commun. 2022, 13, 605. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pan, S.-Q.; Wang, W.-L.; Yue, X.; Xi, X.-H.; Yan, S.; Wu, D.-Y.; Wang, X.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. Acs Nano 2024, 18, 14000–14019. [Google Scholar] [CrossRef] [PubMed]
- Guselnikova, O.; Lim, H.; Kim, H.-J.; Kim, S.H.; Gorbunova, A.; Eguchi, M.; Postnikov, P.; Nakanishi, T.; Asahi, T.; Na, J.; et al. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18, 2107182. [Google Scholar] [CrossRef]
- Chang, X.; Vijay, S.; Zhao, Y.; Oliveira, N.J.; Chan, K.; Xu, B. Understanding the Complementarities of Surface-Enhanced Infrared and Raman Spectroscopies in CO Adsorption and Electrochemical Reduction. Nat. Commun. 2022, 13, 2656. [Google Scholar] [CrossRef]
- Tafazoli, S.; Yusufoglu, M.; Balkan, T.; Kaya, S. In-Situ Surface Enhanced Raman Spectroscopy Investigations on Surface Transformations of Oxide Derived Copper Electrodes during CO2RR. J. Catal. 2023, 423, 118–128. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Wang, K.; Li, S.-B.; Xie, Y.-M.; Tian, J.-H.; Zheng, Q.-N.; Ip, W.F.; Zhang, H.; Li, J.-F.; Tian, Z.-Q. In Situ Raman Spectroscopic Studies of Electrochemical CO2 Reduction on Cu-Based Electrodes. J. Phys. Chem. C 2024, 128, 11741–11755. [Google Scholar] [CrossRef]
- Zi, X.; Zhou, Y.; Zhu, L.; Chen, Q.; Tan, Y.; Wang, X.; Sayed, M.; Pensa, E.; Geioushy, R.A.; Liu, K.; et al. Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi-Carbon Products. Angew. Chem.-Int. Edit. 2023, 62, e202309351. [Google Scholar] [CrossRef]
- Cai, H.; Yang, H.; Feng, J.; Zhou, K.; Liu, C.; Hu, Q.; He, C. Ionic Liquid-Induced Product Switching in CO2 Electroreduction on Copper Reaction Interface. Adv. Funct. Mater. 2024, 34, 2404102. [Google Scholar] [CrossRef]
- Shen, Y.; Pan, Y.; Xiao, H.; Zhang, H.; Zhu, C.; Fang, Q.; Li, Y.; Lu, L.; Ye, L.; Song, S. Enhanced Electrochemical CO2-to-Ethylene Conversion through Second-Shell Coordination on a Cu Single-Atom Catalyst. J. Mater. Chem. A 2024, 12, 9075–9087. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Chen, H.-L.; Hsiao, K.-Y.; Dai, Y.-M.; Chen, C.-C.; Chen, I.C. Unveiling Photochemical CO2 Reduction Processes on PbBiO2I/GO Surfaces: Insights from In-Situ Raman Spectroscopy. Appl. Catal. B Environ. 2025, 364, 124844. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, J.; Yang, X.; Xu, Y.; Sun, W.; Zhou, J. MOF-Derived Cu@Cu2O Heterogeneous Electrocatalyst with Moderate Intermediates Adsorption for Highly Selective Reduction of CO2 to Methanol. Chem. Eng. J. 2022, 431, 134171. [Google Scholar] [CrossRef]
- Li, Z.; Sun, B.; Xiao, D.; Wang, Z.; Liu, Y.; Zheng, Z.; Wang, P.; Dai, Y.; Cheng, H.; Huang, B. Electron-Rich Bi Nanosheets Promote CO2•− Formation for High-Performance and pH-Universal Electrocatalytic CO2 Reduction. Angew. Chem.-Int. Edit. 2023, 62, e202217569. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Xie, Y.; Du, L.; Fu, X.; Chen, X.; Xie, W.; Lu, T.-B.; Yuan, M.; Wang, M. Constructing Cu-C Bonds in a Graphdiyne-Regulated Cu Single-Atom Electrocatalyst for CO2 Reduction to CH4. Angew. Chem.-Int. Edit. 2022, 61, e202203569. [Google Scholar] [CrossRef]
- Zeng, D.; Li, C.; Wang, W.; Zhang, L.; Zhang, Y.; Wang, J.; Zhang, L.; Zhou, X.; Wang, W. Insights into the Hydrophobic Surface Promoting Electrochemical CO2 Reduction to Ethylene. Chem. Eng. J. 2023, 461, 142133. [Google Scholar] [CrossRef]
- Xing, R.; Wang, X.; Wang, G.; Lu, Z.; Yang, X.; Wang, H.; He, Y.; San, X.; Liang, X.; Roy, V.A.L. Non-Precious Metal High-Entropy Alloys for CO2 Electroreduction. Nanoscale 2025, 17, 9374–9379. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Jin, S.; Yang, Y.; Zhu, J.; Li, X.; Lv, X.; Fu, J.; Hong, Z.; Su, Y.; et al. Customizing CO2 Electroreduction by Pulse-Induced Anion Enrichment. J. Am. Chem. Soc. 2023, 145, 26213–26221. [Google Scholar] [CrossRef]
- Huang, A.; Yu, J.; Zhang, J.; Zhang, Y.; Wu, Y.; Wang, Y.; Luo, W. Enhancing C-C Coupling in CO2 Electroreduction by Engineering Pore Size of Porous Carbon-Supported Cu Catalysts. Catalysts 2025, 15, 199. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Chaturvedi, S.; Chaudhary, N.; Gogoi, A.; Choksi, T.S.; Rajan, A.G. Advances in CO2 Reduction on Bulk and Two-Dimensional Electrocatalysts: From First Principles to Experimental Outcomes. Curr. Opin. Electrochem. 2025, 51, 101668. [Google Scholar] [CrossRef]
- Chen, L.; Li, M.; Zhang, J.-N. Tailoring Microenvironment for Efficient CO2 Electroreduction through Nanoconfinement Strategy. Nano Res. 2024, 17, 7880–7899. [Google Scholar] [CrossRef]
- Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catal. 2022, 12, 331–362. [Google Scholar] [CrossRef]
- Steimecke, M.; Araujo-Cordero, A.M.; Dieterich, E.; Bron, M. Probing Individual Cuprous Oxide Microcrystals towards Carbon Dioxide Reduction by Using In Situ Raman-Coupled Scanning Electrochemical Microscopy. ChemElectroChem 2022, 9, e202101221. [Google Scholar] [CrossRef]
- Iijima, G.; Inomata, T.; Yamaguchi, H.; Ito, M.; Masuda, H. Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO2 Reduction. ACS Catal. 2019, 9, 6305–6319. [Google Scholar] [CrossRef]
- Wang, Z.; She, X.; Wu, Z.; Yu, Q.; Zhang, Y.; Shen, W.; Li, H.; Xu, H. Controlling the Coverage of Intermediates on the Active Site Enables Efficient Carbon Dioxide Electroreduction to Hydrocarbons. Appl. Surf. Sci. 2024, 670, 160550. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Wang, J.; Meng, D.; Shu, Y.; Lv, X.; Zhao, B.; Yang, H.; Cheng, T.; Gao, Q.; et al. Enhanced Electroreduction of CO2 to C2+ Products on Heterostructured Cu/Oxide Electrodes. Chem 2022, 8, 2148–2162. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, Z.; Xia, S.; Cai, R.; Ma, L.; Zhang, T.; Ackley, J.; Yang, S.; Wu, Y.; et al. Grain Boundary-Derived Cu+/Cu0 Interfaces in CuO Nanosheets for Low Overpotential Carbon Dioxide Electroreduction to Ethylene. Adv. Sci. 2022, 9, 2200454. [Google Scholar] [CrossRef]
- Bian, L.; Zhang, Z.-Y.; Tian, H.; Tian, N.N.; Ma, Z.; Wang, Z.-L. Grain Boundary-Abundant Copper Nanoribbons on Balanced Gas-Liquid Diffusion Electrodes for Efficient CO2 Electroreduction to C2H4. Chin. J. Catal. 2023, 54, 199–211. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Tian, H.; Bian, L.; Liu, S.-Z.; Liu, Y.; Wang, Z.-L. Cu-Zn-Based Alloy/Oxide Interfaces for Enhanced Electroreduction of CO2 to C2+ Products. J. Energy Chem. 2023, 83, 90–97. [Google Scholar] [CrossRef]
- Jiao, J.; Kang, X.; Yang, J.; Jia, S.; Peng, Y.; Liu, S.; Chen, C.; Xing, X.; He, M.; Wu, H.; et al. Steering the Reaction Pathway of CO2 Electroreduction by Tuning the Coordination Number of Copper Catalysts. J. Am. Chem. Soc. 2024, 146, 15917–15925. [Google Scholar] [CrossRef]
- Chernyshova, I.V.; Somasundaran, P.; Ponnurangam, S. On the Origin of the Elusive First Intermediate of CO2 Electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270. [Google Scholar] [CrossRef]
- Lim, C.Y.J.; Yilmaz, M.; Arce-Ramos, J.M.; Handoko, A.D.; Teh, W.J.; Zheng, Y.; Khoo, Z.H.J.; Lin, M.; Isaacs, M.; Tam, T.L.D.; et al. Surface Charge as Activity Descriptors for Electrochemical CO2 Reduction to Multi-Carbon Products on Organic-Functionalised Cu. Nat. Commun. 2023, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E.G.; Rasouli, A.S.; Li, Y.C.; et al. A Metal-Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nat. Commun. 2022, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Q.; Duan, G.-Y.; Wang, R.; Han, L.-J.; Wang, Y.-F.; Xu, B.-H. Poly(ionic liquid)-Based Bimetallic Tandem Catalysts for Highly Efficient Carbon Dioxide Electroreduction. Appl. Catal. B Environ. 2022, 313, 121459. [Google Scholar] [CrossRef]
- Sakamoto, N.; Sekizawa, K.; Shirai, S.; Nonaka, T.; Arai, T.; Sato, S.; Morikawa, T. Dinuclear Cu(I) Molecular Electrocatalyst for CO2-to-C3 Product Conversion. Nat. Catal. 2024, 7, 574–584. [Google Scholar] [CrossRef]
- Zhan, C.; Dattila, F.; Rettenmaier, C.; Herzog, A.; Herran, M.; Wagner, T.; Scholten, F.; Bergmann, A.; Lopez, N.; Roldan Cuenya, B. Key Intermediates and Cu Active Sites for CO2 Electroreduction to Ethylene and Ethanol. Nat. Energy 2024, 9, 1485–1496. [Google Scholar] [CrossRef]
- Dattila, F.; Garcia-Muelas, R.; Lopez, N. Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO2 Reduction. ACS Energy Lett. 2020, 5, 3176–3184. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhao, X.; Chen, S.; Nian, Q.; Luo, X.; Fan, J.; Ruan, D.; Xiong, B.-Q.; Ren, X. Localized Alkaline Environment via In Situ Electrostatic Confinement for Enhanced CO2-to-Ethylene Conversion in Neutral Medium. J. Am. Chem. Soc. 2023, 145, 6339–6348. [Google Scholar] [CrossRef]
- Xiang, D.; Li, K.; Li, M.; Long, R.; Xiong, Y.; Yakhvarov, D.; Kang, X. Theory-Guided Synthesis of Heterostructured Cu@Cu0.4W0.6 Catalyst towards Superior Electrochemical Reduction of CO2 to C2 Products. Mater. Today Phys. 2023, 33, 101045. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. The Role of Oxygen-Vacancy in Bifunctional Indium Oxyhydroxide Catalysts for Electrochemical Coupling of Biomass Valorization with CO2 Conversion. Nat. Commun. 2023, 14, 2040. [Google Scholar] [CrossRef]
- Siegel, R.E.; Pattanayak, S.; Berben, L.A. Reactive Capture of CO2: Opportunities and Challenges. ACS Catal. 2023, 13, 766–784. [Google Scholar] [CrossRef]
- Liu, H.; Sun, C.; Wu, M.; Bai, Y.; Che, G.; Hao, J.; Shi, W. High-Performance Carbon Dioxide Reduction to Multi-Carbon Products on EDTA-Modified Cu-Ag Tandem Catalyst. J. Catal. 2024, 429, 115227. [Google Scholar] [CrossRef]
- Li, M.; Irtem, E.; Van Montfort, H.-P.I.; Abdinejad, M.; Burdyny, T. Energy Comparison of Sequential and Integrated CO2 Capture and Electrochemical Conversion. Nat. Commun. 2022, 13, 5398. [Google Scholar] [CrossRef]
- Cheng, D.; Nguyen, K.-L.C.; Sumaria, V.; Wei, Z.; Zhang, Z.; Gee, W.; Li, Y.; Morales-Guio, C.G.; Heyde, M.; Roldan Cuenya, B.; et al. Structure Sensitivity and Catalyst Restructuring for CO2 Electro-Reduction on Copper. Nat. Commun. 2025, 16, 4064. [Google Scholar] [CrossRef]
- Chen, S.; Ye, C.; Wang, Z.; Li, P.; Jiang, W.; Zhuang, Z.; Zhu, J.; Zheng, X.; Zaman, S.; Ou, H.; et al. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-Molecule Engineering of Copper-Based Electrocatalysts. Angew. Chem.-Int. Edit. 2023, 62, e202315621. [Google Scholar] [CrossRef]
- Lei, Q.; Huang, L.; Yin, J.; Davaasuren, B.; Yuan, Y.; Dong, X.; Wu, Z.-P.; Wang, X.; Yao, K.X.; Lu, X.; et al. Structural Evolution and Strain Generation of Derived-Cu Catalysts during CO2 Electroreduction. Nat. Commun. 2022, 13, 4857. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.-D.; Huang, J.-M.; Guan, M.-X.; Xu, M.; Gu, Z.-Y. In Situ Reconstruction of Cu-N Coordinated MOFs to Generate Dispersive Cu/Cu2O Nanoclusters for Selective Electroreduction of CO2 to C2H4. ACS Catal. 2022, 12, 15230–15240. [Google Scholar] [CrossRef]
- Herzog, A.; Luna, M.L.; Jeon, H.S.; Rettenmaier, C.; Grosse, P.; Bergmann, A.; Cuenya, B.R. Operando Raman Spectroscopy Uncovers Hydroxide and CO Species Enhance Ethanol Selectivity during Pulsed CO2 Electroreduction. Nat. Commun. 2024, 15, 3986. [Google Scholar] [CrossRef]
- Herzog, A.; Ruescher, M.; Jeon, H.S.; Timoshenko, J.; Rettenmaier, C.; Hejral, U.; Davis, E.M.; Haase, F.T.; Kordus, D.; Kuehl, S.; et al. Time-Resolved Operando Insights into the Tunable Selectivity of Cu-Zn Nanocubes during Pulsed CO2 Electroreduction. Energy Environ. Sci. 2024, 17, 7081–7096. [Google Scholar] [CrossRef]
- Amirbeigiarab, R.; Tian, J.; Herzog, A.; Qiu, C.; Bergmann, A.; Cuenya, B.R.; Magnussen, O.M. Atomic-Scale Surface Restructuring of Copper Electrodes under CO2 Electroreduction Conditions. Nat. Catal. 2023, 6, 837–846. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Y.; Lv, B.; Huang, A.; Zhang, J.; Wang, Z.; Zhang, Y.; Wu, Y.; Zhou, Y.; Wang, Y.; et al. Structural Transformation of Copper-Coordinated COFs Drives Enhanced Multi-Carbon Selectivity in CO2 Electroreduction. Appl. Catal. B Environ. 2025, 368, 125131. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Wang, S.; Zhang, C.; Zhong, Y.; Li, J.; Zhou, M.; Zhang, J.; Long, R.; Karadas, F.; et al. Synergistic Ag/Cu Dual-Site Catalysis Enables High-Efficiency CO2 Electroreduction to C2+ Products. Nano Res. 2025, 18, 94907482. [Google Scholar] [CrossRef]
- Yoon, A.; Bai, L.; Yang, F.; Franco, F.; Zhan, C.; Ruescher, M.; Timoshenko, J.; Pratsch, C.; Werner, S.; Jeon, H.S.; et al. Revealing Catalyst Restructuring and Composition during Nitrate Electroreduction through Correlated Operando Microscopy and Spectroscopy. Nat. Mater. 2025, 24, 762–769. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Q.; Li, G.; Yang, H.; He, C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. Electrochem. Energy Rev. 2022, 5, 28. [Google Scholar] [CrossRef]
- Wang, G.; Wang, G.; Zhuang, L.; Xiao, L. In-situ Raman Observation on Gas Diffusion Electrode/Polyelectrolyte Interface. Electrochim. Acta 2025, 510, 145348. [Google Scholar] [CrossRef]
- Li, P.; Mao, Y.; Shin, H.; Yang, Q.; Cheng, X.; Li, Y.; Li, K.; Yu, H.; Mulder, R.; Pang, W.K.; et al. Tandem Amine Scrubbing and CO2 Electrolysis via Direct Piperazine Carbamate Reduction. Nat. Energy 2025. [Google Scholar] [CrossRef]
Raman Shift (cm−1) | Assignments | Reference |
---|---|---|
Cu2O | ~149, 218–224, 406–427, 510–528, 610–650 | [27,53,72,76,77,79,82,83] |
CuO | 285–290, 590–601, 621–628 | [58,59,82,83] |
Cu(OH)2 | 280–292, 475–483, ~550 | [36,37] |
Cu-CO frustrated rotation | 280–284, ~291 | [57,59,76,79,80] |
Cu-CO stretching | ~348, 350–375, ~380 | [2,22,31,40,46,57,60,64,65,79,80,82,84] |
Cu-OH adsorption vibration | ~424, 520–530, 700–706 | [2,22,37,60,72,84] |
*CO32− | 1050–1056, 1060–1068, 1070–1079, ~1392 | [2,27,37,47,60,61,64,65,78,80,81,84] |
*HCO3− | 1000–2000, 1335–1366 | [2,26,27,37,42,60,65,72,80] |
VsCO2− VasCO2− | 1324–1360, 1524–1554 | [27,44,47,84] |
*H2O | 1635–1647 | [26,81] |
*COatop | 2000–2100 | [26,34,39,42,46,56,58,59] |
*CObridge | 1800–1900 | [2,34,40,42,46,58,59,78] |
C-H stretching | 2700–3100 | [26,42,65,80,82,84] |
V Cu-C[Cu-C] stretching vibration | 342–361 | [27,61,81,84] |
*OCCO | ~1540, 2088–2094 | [27,58] |
*COOH | 1370–1383, 1390–1443 | [26,38,40,43,59,77,81] |
*C-O stretching | 1000–1070 | [37,38] |
*OCCOH | 1205–1260, 1520–1645 | [26,38,58,59] |
C-OH stretching | 1010–1032, ~1262 | [82,84] |
hindered rotation of adsorbed CO | 275–290 | [22,65,76,82] |
C-C stretching | ~934, ~1453 | [65,84] |
C≡O stretching | 1800–2100, 1900–2200, ~1700, ~2400 | [22,40,56,57,61] |
CuOx | ~290, 345–400, 450–700 | [22,65] |
OHad | 370–380, 450–490, 520–540 | [78,79] |
COLFB | 2030.2–2054.3, 2060–2065 | [60,78,79] |
COHFB | 2090–2103.1 | [60,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, H.; Wang, Z.; Gao, H.; Che, L.; Xiao, K.; Dong, A. In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction. Nanomaterials 2025, 15, 1517. https://doi.org/10.3390/nano15191517
Zhang J, Gao H, Wang Z, Gao H, Che L, Xiao K, Dong A. In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction. Nanomaterials. 2025; 15(19):1517. https://doi.org/10.3390/nano15191517
Chicago/Turabian StyleZhang, Jinchao, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao, and Aiyi Dong. 2025. "In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction" Nanomaterials 15, no. 19: 1517. https://doi.org/10.3390/nano15191517
APA StyleZhang, J., Gao, H., Wang, Z., Gao, H., Che, L., Xiao, K., & Dong, A. (2025). In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction. Nanomaterials, 15(19), 1517. https://doi.org/10.3390/nano15191517