Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,300)

Search Parameters:
Keywords = active periodic structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 29903 KB  
Article
Air Conditioning Load Data Generation Method Based on DTW Clustering and Physically Constrained TimeGAN
by Yu Li, Xiaoyu Yang, Dongli Jia, Wanxing Sheng, Keyan Liu and Rongheng Lin
Sensors 2026, 26(1), 84; https://doi.org/10.3390/s26010084 (registering DOI) - 22 Dec 2025
Abstract
Generating air-conditioning system load data is crucial for tasks such as power grid scheduling and intelligent energy management. Air-conditioning load data exhibit strong non-stationarity. Their load curves are influenced by seasonal variations and highly correlated with outdoor meteorological conditions, indoor activity patterns, and [...] Read more.
Generating air-conditioning system load data is crucial for tasks such as power grid scheduling and intelligent energy management. Air-conditioning load data exhibit strong non-stationarity. Their load curves are influenced by seasonal variations and highly correlated with outdoor meteorological conditions, indoor activity patterns, and equipment operational strategies. These characteristics lead to pronounced periodicity, sudden shifts, and diverse data patterns. Existing load generation models tend to produce averaged distributions, which often leads to the loss of specific temporal patterns inherent in air-conditioning loads. Moreover, as purely data-driven models, they lack explicit physical constraints, resulting in generated data with limited physical interpretability. To address these issues, this paper proposes a hybrid generation framework that integrates the DTW clustering algorithm, a physically-constrained TimeGAN model, and an LSTM-based model selection mechanism. Specifically, DTW clustering is first employed to achieve structured data partitioning, thereby enhancing the model’s ability to recognize and model diverse temporal patterns. Subsequently, to overcome the dependency on detailed building parameters and extensive sensor networks, a parameter-free physical constraint mechanism based on intrinsic temperature-load correlations is incorporated into the TimeGAN supervised loss. This design ensures thermodynamic consistency even in sensor-scarce environments where only basic operational data is available. Finally, to address adaptability challenges in long-term sequence generation, an LSTM-based selection mechanism is designed to evaluate and select from clustered submodels dynamically. This approach facilitates adaptive temporal fusion within the generation strategy. Extensive experiments on air-conditioning load datasets from Southeast China demonstrate that the framework achieves a local similarity score of 0.98, outperforming the state-of-the-art model and the original TimeGAN by 11.4% and 13.3%, respectively. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

25 pages, 5358 KB  
Article
Forty-Year Landscape Fragmentation and Its Hydro–Climate–Human Drivers Identified Through Entropy and Gray Relational Analysis in the Tuwei River Watershed, China
by Yuening Huo, Jinxuan Wang, Yan Wu, Fan Wang and Ze Fan
Land 2026, 15(1), 24; https://doi.org/10.3390/land15010024 - 22 Dec 2025
Abstract
Landscapes in semiarid regions are highly sensitive to climate change and anthropogenic activities, and their evolution directly influences ecosystem services and regional ecological security. Although previous research has examined land use changes, systematic quantitative analyses of long-term evolutionary trends and driving mechanisms, particularly [...] Read more.
Landscapes in semiarid regions are highly sensitive to climate change and anthropogenic activities, and their evolution directly influences ecosystem services and regional ecological security. Although previous research has examined land use changes, systematic quantitative analyses of long-term evolutionary trends and driving mechanisms, particularly the comprehensive relationships between key hydrological elements and landscape pattern evolution in water-scarce, semiarid watersheds, remain limited. To address the research gap in long-term, multifactor, and hydro–landscape integrated analysis, China’s Tuwei River watershed was selected as the study area in this study, and methods such as landscape pattern indices and gray relational analysis were employed to quantitatively reveal the spatiotemporal evolution of watershed landscape fragmentation from 1980 to 2020 and identify its dominant driving forces. The results revealed that (1) over the 40-year period, the land use structure of the watershed underwent significant restructuring, with developed land expanding by 1282%, cropland and bare land areas decreasing by 14.2% and 32.01%, respectively, and grassland and forestland areas increasing by 24.5% and 14.9%, respectively; (2) land-scape fragmentation continued to intensify, with the landscape fragmentation composite index (FCI) increasing by 37.6%, patch density (PD) continuously increasing, edge density (ED) and landscape shape index (LSI) increasing significantly, and landscape connectivity weakening; (3) natural and socioeconomic factors jointly drove landscape evolution, with temperature and mean annual flow contributing the most among natural factors and the urbanization rate and secondary industry output value serving as the core drivers among socioeconomic factors; and (4) the trend of landscape fragmentation was synchronized with changes in annual rainfall and runoff and exhibited a significant negative correlation with the groundwater level. In summary, through long-term, multifactor comprehensive analysis, the evolution characteristics and driving mechanisms of landscape patterns in the Tuwei River watershed were systematically revealed in this study. These findings not only deepen the understanding of landscape fragmentation processes under the dual pressures of climate change and anthropogenic activities but also provide scientific evidence for the sustainable management of landscapes and associated ecosystems in semiarid watersheds. Full article
Show Figures

Figure 1

14 pages, 856 KB  
Article
Structural Stability of Silicone-Based Elastodontic Appliances After Clinical Use: Insights from FTIR Spectroscopy
by Emilia-Brindusa Brăilă, Vlad Tiberiu Alexa, Stefania Dinu, Vanessa Bolchis, Vlase Titus, Vlase Gabriela, Atena Galuscan and Daniela Jumanca
Materials 2026, 19(1), 13; https://doi.org/10.3390/ma19010013 - 19 Dec 2025
Viewed by 82
Abstract
Background and Objectives: Elastodontic appliances made of medical-grade silicone are increasingly used in interceptive orthodontics, but prolonged intraoral exposure may affect their stability. This study evaluated structural changes in LM-ActivatorTM 2 appliances after clinical use, using Fourier-transform infrared (FTIR) spectroscopy. Materials and [...] Read more.
Background and Objectives: Elastodontic appliances made of medical-grade silicone are increasingly used in interceptive orthodontics, but prolonged intraoral exposure may affect their stability. This study evaluated structural changes in LM-ActivatorTM 2 appliances after clinical use, using Fourier-transform infrared (FTIR) spectroscopy. Materials and Methods: Eight appliances (one unused control and seven worn for 3–24 months) were analyzed by FTIR-ATR in the 4000–650 cm−1 range. Absorption bands characteristic of polydimethylsiloxane (PDMS) were quantified, and indices reflecting backbone crosslinking, side-group retention, hydrophilicity, and relative reduction in methyl-related spectral contributions were calculated. Results: The PDMS backbone remained chemically intact across all samples. However, progressive molecular reorganization was detected with wear duration. The Backbone Dominance Index increased significantly from control to 24 months, while side-group indices decreased, confirming apparent depletion of methyl-related FTIR bands. Hydrophilicity and crosslinking indices rose over time, particularly after 12 months, indicating increased surface polarity and network densification. Conclusions: LM-ActivatorTM 2 appliances undergo gradual intraoral aging, marked by backbone crosslinking and apparent reduction in methyl-associated vibrational contributions inferred from FTIR ratio side-groups. These changes, while not compromising the polymer identity, may influence surface properties, biofilm retention, and long-term mechanical behavior. Periodic replacement is recommended to ensure optimal clinical performance. Full article
(This article belongs to the Special Issue Materials for Dentistry: Experiments and Practice)
Show Figures

Figure 1

16 pages, 4152 KB  
Article
Microbial Community Succession During Bioremediation of Petroleum-Contaminated Soils Using Rhodococcus sp. OS62-1 and Pseudomonas sp. P35
by Xiaodong Liu, Yuxi Ma, Yingying Jiang, Yidan Guo, Zhenshan Deng and Xiaolong He
Microorganisms 2026, 14(1), 7; https://doi.org/10.3390/microorganisms14010007 - 19 Dec 2025
Viewed by 121
Abstract
Oil pollution poses a persistent threat to soil ecosystems globally, and bioremediation using bacterial consortia has emerged as a cost-effective remediation strategy. However, the role of weak petroleum-degrading bacteria in enhancing the efficiency of specialized petroleum-degrading bacteria remains unclear. This study explores the [...] Read more.
Oil pollution poses a persistent threat to soil ecosystems globally, and bioremediation using bacterial consortia has emerged as a cost-effective remediation strategy. However, the role of weak petroleum-degrading bacteria in enhancing the efficiency of specialized petroleum-degrading bacteria remains unclear. This study explores the synergy and remediation potential of a two-bacterial consortium: the petroleum-degrading bacterium Rhodococcus sp. OS62-1 and the weak petroleum-degrading bacterium Pseudomonas sp. P35. A 25-day microcosm experiment was conducted with petroleum-contaminated soil, and four treatments were set: (1) uninoculated control, (2) inoculation with Rhodococcus sp. OS62-1 alone, (3) inoculation with Pseudomonas sp. P35 alone, and (4) inoculation with the consortium. Soil samples were collected periodically to analyze petroleum degradation efficiency, soil enzyme activities (dehydrogenase, catalase, polyphenol oxidase, and lipase), and microbial community composition (16S rRNA gene sequencing). Inoculating the soils with this consortium produced a higher petroleum degradation rate, microbial activity, and soil enzyme activity than inoculation with strain OS62-1 or P35 alone. Inoculation with strain P35 also contributed to the maintenance of strain OS62-1 during bioremediation. The study of microbial community structure found that the relative abundance of phylum Acidobacteriota (57.6 ± 5.3% to 75.6 ± 8.1%) and the Nocardioides genus (36.4 ± 4.5% to 53.0 ± 9.2%) increased dramatically during the bioremediation process. Pearson’s correlation analysis revealed that inoculation with strain OS62-1 and/or strain P35 increases the soil enzyme activity, boosts native oil-degrading bacteria, and accelerates the degradation of petroleum contaminants. Molecular ecological networks analysis revealed that inoculation with strain OS62-1 and/or strain P35 increased the complexity and robustness of the microbial network. These findings confirm that weak petroleum-degrading bacteria can synergistically enhance the bioremediation efficiency of specialized petroleum-degrading bacteria, providing a practical strategy for optimizing the design of bacterial consortia in the bioremediation of oil-polluted soils. Full article
(This article belongs to the Special Issue Interaction Between Microorganisms and Environment)
Show Figures

Figure 1

22 pages, 3324 KB  
Article
Antibacterial and Non-Toxic to Mammalian Cell Composite Material Based on Polymethyl-Methacrylate-like Resin Containing Grain-Shaped Copper Oxide Nanoparticles
by Fatikh M. Yanbaev, Dmitriy N. Ignatenko, Anastasiia V. Shabalina, Ilya V. Baimler, Dmitry E. Burmistrov, Maxim E. Astashev, Vasily N. Lednev, Alena A. Nastulyavichus, Roman Yu. Pishchalnikov, Ruslan M. Sarimov, Alexander V. Simakin and Sergey V. Gudkov
J. Compos. Sci. 2025, 9(12), 706; https://doi.org/10.3390/jcs9120706 - 18 Dec 2025
Viewed by 166
Abstract
Granular copper oxide nanoparticles (CopOx NPs), synthesized via laser ablation (100 nm, ζ-potential +30 mV), were introduced into photolithographic polymethyl methacrylate (PMMA) resin at concentrations of 0.001–0.1%. The resulting composite material enables the fabrication of high-resolution (up to 50 μm) parts with a [...] Read more.
Granular copper oxide nanoparticles (CopOx NPs), synthesized via laser ablation (100 nm, ζ-potential +30 mV), were introduced into photolithographic polymethyl methacrylate (PMMA) resin at concentrations of 0.001–0.1%. The resulting composite material enables the fabrication of high-resolution (up to 50 μm) parts with a high degree of surface quality after polishing using the MSLA method. CopOx NPs increased the degree of resin polymerization (decrease by almost 4× in unpolymerized components at 0.1% CopOx NPs) and induced the in situ formation of self-organized periodic structures visible under a modulation interference microscope. The composite samples exhibit pronounced oxidative activity: they intensify the generation of hydrogen peroxide and hydroxyl radicals and cause the oxidative modification of biomolecules (formation of 8-oxoguanine in DNA and long-lived reactive forms of proteins). A key property of the materials is their selective biological activity. While lacking cytotoxicity for human fibroblasts, they exhibit a strong antibacterial effect against E. coli, leading to cell death within 24 h. Thus, the developed composite photolithographic resin combines improved technological characteristics (high printing resolution, degree of polymerization) with functional properties (selective antibacterial activity) and holds promise for application in biomedicine, as well as in the food and agricultural industries. Full article
(This article belongs to the Special Issue Advances in Sustainable Composites and Manufacturing Innovations)
Show Figures

Figure 1

25 pages, 1573 KB  
Review
Endocrine Adaptations to Prolonged Fasting: From Physiology, Clinical Uncertainties, Translational Challenges to Healthspan Implications
by Rok Herman, Jure Trsan, Luka Lipar, Mojca Jensterle and Andrej Janez
Nutrients 2025, 17(24), 3949; https://doi.org/10.3390/nu17243949 - 17 Dec 2025
Viewed by 165
Abstract
Objectives: Intermittent fasting regimens that include periods of prolonged fasting may mimic certain well-documented benefits of calorie restriction. In this narrative review, we synthesize preclinical and human data on endocrine adaptations during prolonged fasting protocols. Methods: We conducted a structured search of relevant [...] Read more.
Objectives: Intermittent fasting regimens that include periods of prolonged fasting may mimic certain well-documented benefits of calorie restriction. In this narrative review, we synthesize preclinical and human data on endocrine adaptations during prolonged fasting protocols. Methods: We conducted a structured search of relevant databases, followed by data extraction and synthesis, with a focus on endocrine adaptations during prolonged fasting and their potential implications for healthspan. Results: Across various endocrine axes, prolonged fasting appears to induce a reproducible pattern marked by diminished anabolic signaling and transient activation of potential stress resilience pathways. However, the evidence is limited by small sample sizes, short follow-up durations, methodological heterogeneity, and dependence on surrogate endpoints. Endocrine outcomes are frequently secondary and reported inconsistently. Potential risks include transient hypogonadism, relative hypothyroidism, hypercortisolemia, orthostatic intolerance, electrolyte imbalances, catabolic loss of lean mass, and refeeding challenges. Conclusions: Overall, prolonged fasting activates conserved endocrine mechanisms that may confer plausible cardiometabolic benefits; however, their translation to clinical practice remains speculative. We highlight key knowledge gaps and propose directions for future research in this emerging field. Full article
(This article belongs to the Special Issue The Interplay Between Nutrition, Fasting, and Metabolic Health)
Show Figures

Figure 1

23 pages, 6257 KB  
Article
Quantifying and Explaining Land-Use Carbon Emissions in the Chengdu–Chongqing Urban Agglomeration: Spatiotemporal Analysis and Geodetector Insights
by Dingdi Jize, Miao Zhang, Aiting Ma, Wenjing Wang, Ji Luo, Pengyan Wang, Mei Zhang, Ping Huang, Minghong Peng, Xiantao Meng, Zhiwen Gong and Yuanjie Deng
Sustainability 2025, 17(24), 11328; https://doi.org/10.3390/su172411328 - 17 Dec 2025
Viewed by 122
Abstract
Land use change is a critical factor influencing regional carbon emissions, and understanding its spatiotemporal variability is essential for supporting science-based emission-reduction strategies. In this study, we constructed an improved measurement framework by integrating high-resolution land use data, gridded anthropogenic carbon emission data, [...] Read more.
Land use change is a critical factor influencing regional carbon emissions, and understanding its spatiotemporal variability is essential for supporting science-based emission-reduction strategies. In this study, we constructed an improved measurement framework by integrating high-resolution land use data, gridded anthropogenic carbon emission data, multi-source remote sensing indicators, and socioeconomic variables to quantify land use carbon emissions (LUCEs) in the Chengdu–Chongqing Urban Agglomeration (CCUA) from 2000 to 2022. We analyzed the temporal trends and spatial clustering of carbon emissions using the Mann–Kendall (MK) trend test and global/local Moran’s I statistics, and further explored the driving mechanisms through the Geodetector (GD) model, including both single-factor explanatory power and two-factor interaction effects. The results show that total LUCEs in the CCEC increased continuously during the study period, with significant spatial clustering characterized by high–high emission hotspots in the core areas of Chengdu and Chongqing and low–low clusters in western mountainous regions. Socioeconomic factors played a dominant role in shaping emission patterns, with construction land proportion, nighttime light intensity, and population density identified as the strongest drivers. Interaction detection revealed nonlinear enhancement effects among key socioeconomic variables, indicating an increasing spatial lock-in of human activities on carbon emissions. These findings provide scientific evidence for optimizing land use structure and formulating region-specific low-carbon development policies in rapidly urbanizing megaregions. Full article
Show Figures

Figure 1

26 pages, 7144 KB  
Article
Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China
by Zherui Yin, Wenhui Kuang, Geer Hong, Yali Hou, Changqing Guo, Wenxuan Bao, Zhishou Wei and Yinyin Dou
Remote Sens. 2025, 17(24), 4040; https://doi.org/10.3390/rs17244040 - 16 Dec 2025
Viewed by 143
Abstract
The spatiotemporal evolution of ecosystem services has a profound influence on the fragile eco-environment in Inner Mongolia and the arid/semi-arid and the ecological barrier regions of Northern China; in particular, the small-scale and high-value land variables may lead to large eco-environment effects through [...] Read more.
The spatiotemporal evolution of ecosystem services has a profound influence on the fragile eco-environment in Inner Mongolia and the arid/semi-arid and the ecological barrier regions of Northern China; in particular, the small-scale and high-value land variables may lead to large eco-environment effects through altering the ecosystem services, which is still unclear in this vulnerable area. The differential driving mechanism of both human activities and natural factors on ecosystem services also needs to be revealed. To solve this scientific issue, the synergistic methodology of spatial analysis technology, the improved ecosystem service assessment method, flow gain/loss model, global/local Moran’s I approach, and the Geographically and Temporally Weighted Regression (GTWR) model were applied. Our main results are as follows: remote sensing monitoring showed that the land changes featured a persistent expansion of cropland and built-up areas, with a decline in grassland and wetland, along the east–west gradient from forests, grasslands, and unused-lands, to become the dominant cover type. According to our improved model, the ecosystem services considering the internal structure of build-up lands were first investigated in this ecologically fragile area of China, and the evaluated ecosystem service value (ESV) reduced from CNY 5515.316 billion to CNY 5425.188 billion, with an average annual decrease of CNY 3.004 billion from 1990 to 2020. Another finding was that the small-scale land variables with large ecological service impacts were quantified; namely, the proportion of grassland, woodland, wetland, and water body decreased from 62.71% to 61.34%, with only a relatively minor fluctuation of −1.37%, but this decline resulted in a large ESV loss of CNY 116.141 billion from 1990 to 2020. From the driving perspective, the temperature, digital elevation model (DEM), and slope exhibited negative effects on ESV changes, whereas a positive association was analyzed in terms of the precipitation and human footprint during the studied period. This study provides important support for optimizing land resource allocation, guiding the development of agriculture and animal husbandry, and protecting the ecological environment in arid/semi-arid and ecological barrier regions. Full article
Show Figures

Figure 1

28 pages, 13255 KB  
Article
Research on Urban Spatial Environment Optimization Based on the Combined Influence of Steady-State and Dynamic Vitality: A Case Study of Wuhan City
by Xiaoxue Tang, Kun Li, Dong Xie and Yuan Fang
Land 2025, 14(12), 2427; https://doi.org/10.3390/land14122427 - 16 Dec 2025
Viewed by 190
Abstract
Urban vitality is an important evaluation indicator for enhancing urban spatial efficiency and promoting sustainable development. However, few studies have systematically integrated steady-state and dynamic vitality perspectives. To address this gap, we integrate steady-state vitality and dynamic vitality indicators, and use geographically weighted [...] Read more.
Urban vitality is an important evaluation indicator for enhancing urban spatial efficiency and promoting sustainable development. However, few studies have systematically integrated steady-state and dynamic vitality perspectives. To address this gap, we integrate steady-state vitality and dynamic vitality indicators, and use geographically weighted regression (GWR) and geographically weighted logistic regression (GWLR) to quantify how the built environment, natural elements, and travel purposes influence urban vitality. The results reveal that: (1) From the steady-state perspective, urban vitality exhibits a distinct polycentric structure, with transportation POI and catering facilities serving as core driving factors; (2) From the dynamic perspective, areas where citizens are always highly concentrated are mainly influenced by floor area ratio and transportation POI. Green space coverage and building density significantly correspond to patterns of persistently low vitality, while periodic population fluctuations are associated with subway accessibility and proximity to waterfronts. This study provides a comprehensive analysis of the stable spatial distribution and dynamic changes in population aggregation, offering a theoretical and empirical basis for optimizing urban spatial layout and meeting citizens’ activity needs. Full article
Show Figures

Figure 1

19 pages, 10274 KB  
Article
Microtopography Governs Tidal Inundation Frequency in the Luanhe Estuarine Salt Marsh: A Decadal Assessment Integrating Sentinel Data and UAV Photogrammetry
by Youcai Liu, Pingze Ni, Wang Ma, Qian Zhang, Qi Hu and Ziyun Ling
Water 2025, 17(24), 3559; https://doi.org/10.3390/w17243559 - 15 Dec 2025
Viewed by 167
Abstract
Tidal inundation is a key factor determining the structure and function of estuarine salt marsh ecosystems. However, due to the influence of microtopography (small-scale topographic variations), the fine-scale spatial variations in tidal inundation have not been fully studied. To fill this research gap, [...] Read more.
Tidal inundation is a key factor determining the structure and function of estuarine salt marsh ecosystems. However, due to the influence of microtopography (small-scale topographic variations), the fine-scale spatial variations in tidal inundation have not been fully studied. To fill this research gap, this study focuses on the Luanhe Estuary—a region highly sensitive to topographic changes—and explores in depth the physical mechanisms regulating tidal inundation in this area. The study integrates long-term data from the Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 Multispectral Instrument (MSI), spanning the period from 2016 to 2025, to construct a high-resolution time series dataset of Apparent Inundation Frequency (AIF). Subsequently, this dataset is correlated with a high-precision microtopographic Digital Elevation Model (DEM) obtained through Unmanned Aerial Vehicle (UAV) surveys. The analysis reveals a strong nonlinear relationship between AIF and topographic elevation, which is best described by an exponential decay model (R2 = 0.903). The results show that the average inundation probability in the study area has shown a fluctuating but overall upward trend, increasing from 16.74% in 2016 to 29.02% in 2025 (peaking at 31.39% in 2024). Quantitative modeling confirms that microtopography is the primary controlling factor for fine-scale variations in tidal inundation levels. The integrated research approach proposed in this study provides a reliable framework for coastal vulnerability assessment. Against the backdrop of increasingly severe impacts from climate change and human activities, the high-resolution quantitative data generated by this study provides scientific support for formulating disaster mitigation and geomorphological management strategies. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

20 pages, 17604 KB  
Article
Controls of Fault System on Hydrocarbon Accumulation: A Case Study from the Carboniferous Reservoir of the Hongche Fault Zone in the Junggar Basin
by Cheng Huang, Yonghe Sun, Huafeng Zhou, Xiaofan Yang, Junwei Han, Jian Fu, Mengyuan Hao and Yulin Song
Processes 2025, 13(12), 4054; https://doi.org/10.3390/pr13124054 - 15 Dec 2025
Viewed by 139
Abstract
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no [...] Read more.
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no detailed studies have been conducted on the fault systems in the Paleozoic strata of the Hongche Fault Zone. In this study, the fault systems in the Paleozoic strata of the Hongche Fault Zone were systematically sorted out for the first time. Furthermore, the controlling effects of active faults in different geological periods on hydrocarbon charging were clarified. Firstly, basing on the 3D seismic and well-log data, the structural framework and fault activity, fault systems, source-contacting faults were characterized. Vertically, the Hongche Fault Zone experienced three major thrusting episodes followed by one weak extensional subsidence Stage, forming four principal tectonic layers: Permian (Thrusting Episode I), Triassic (Thrusting Episode II), Jurassic (Thrusting Episode III), and Cretaceous–Quaternary (Post-Thrusting Subsidence). Laterally, six fault systems are identified: Middle Permian (Stage I), Late Triassic (Stage II), Jurassic (Stage III), post-Cretaceous (Stage IV), as well as composite systems from Middle Permian–Jurassic (Stages I–III) and Late Triassic–Jurassic (Stages II–III). These reveal multi-stage, multi-directional composite structural characteristics in the study area. According to the oil–source correlation, the Carboniferous reservoir is primarily sourced by Permian Fengcheng Formation source rocks in the Shawan Sag. Hydrocarbon migration tracing shows that oil migrates along faults, progressively charging from depression zones to thrust belts and uplifted areas. In this process, fault systems exert hierarchical controls on accumulation: Stage I faults dominate trap formation, Stages II and III faults regulate hydrocarbon migration, accumulation, and adjustment, while Stage IV faults influence hydrocarbon conduction in Mesozoic–Cenozoic reservoirs. By clarifying the fault-controlled hydrocarbon accumulation mechanisms in the Hongche Fault Zone, this study provides theoretical guidance for two key aspects of the Carboniferous reservoirs in the study area: the optimization of favorable exploration zones and the development of reserves. Full article
Show Figures

Figure 1

26 pages, 1250 KB  
Review
Controversies and Perspectives of Time-Qualified Dietary Interventions
by Sofia Lotti, Silvia Gallosti, Ramona De Amicis, Simona Bertoli, Barbara Colombini, Gianluigi Mazzoccoli and Monica Dinu
Nutrients 2025, 17(24), 3894; https://doi.org/10.3390/nu17243894 - 12 Dec 2025
Viewed by 291
Abstract
Time-qualified dietary interventions, including time-restricted eating (TRE), intermittent fasting (IF), and periodic fasting-mimicking diets (FMDs), have emerged as strategies to improve metabolic health. While preclinical studies consistently demonstrate robust effects on energy metabolism, cardiometabolic function, and longevity, translation to humans remains heterogeneous. In [...] Read more.
Time-qualified dietary interventions, including time-restricted eating (TRE), intermittent fasting (IF), and periodic fasting-mimicking diets (FMDs), have emerged as strategies to improve metabolic health. While preclinical studies consistently demonstrate robust effects on energy metabolism, cardiometabolic function, and longevity, translation to humans remains heterogeneous. In free-living settings, most metabolic improvements observed with TRE and IF appear primarily driven by spontaneous caloric restriction rather than meal timing per se, and isocaloric randomized controlled trials generally show no additional benefits compared to standard calorie restriction. Evidence supporting circadian-specific advantages, particularly for early TRE, is promising but inconsistent and often context-dependent. Important uncertainties also persist regarding long-term efficacy, lean mass preservation, safety in specific populations, and the physiological impact of extended fasting windows. Despite these controversies, time-qualified diets represent a paradigm shift in nutritional science by integrating chronobiology with dietary patterns. Future directions include tailoring eating windows to individual chronotypes, combining fasting regimens with high-quality dietary patterns and structured physical activity, and clarifying the molecular mechanisms that may mediate calorie-independent benefits. Large, long-term, mechanistically informed human trials are essential to determine whether aligning eating behaviors with circadian biology can produce durable clinical improvements. Such work will ultimately shape the role of personalized chrononutrition in preventive and therapeutic nutrition. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

23 pages, 490 KB  
Article
Municipal-Level Analysis of Peer Effects in China’s Sustainable Rural Development: Mechanisms and Imitation Patterns
by Xiao Li and Xiaoqiang Hu
Sustainability 2025, 17(24), 11122; https://doi.org/10.3390/su172411122 - 11 Dec 2025
Viewed by 238
Abstract
Based on panel data from 274 prefecture-level cities in China (2011–2022), this study employs a peer effects model to examine three questions: whether peer effects exist in sustainable rural development, what mechanisms underlie them, and which regions are imitated. It thereby offers a [...] Read more.
Based on panel data from 274 prefecture-level cities in China (2011–2022), this study employs a peer effects model to examine three questions: whether peer effects exist in sustainable rural development, what mechanisms underlie them, and which regions are imitated. It thereby offers a new perspective on the endogenous drivers of rural development. The main findings are as follows. Baseline regression results confirm a significant positive peer effect on rural sustainable development. This result remains robust after a series of tests addressing endogeneity and robustness, including the replacement of explanatory variables, data indentation, exclusion of provincial capitals, placebo tests, and instrumental variable estimation. Heterogeneity analysis reveals that central and western regions are more inclined to learn from other cities in the process of sustainable rural development, whereas the eastern region leans more toward innovation. After the Rural Revitalization Strategy was introduced in 2017, regions have actively explored new rural development models, leading to a decline in the peer effects coefficient compared to the pre-2017 period. Mechanism analysis indicates that both learning-based imitation and competitive imitation serve as channels for peer effects in rural sustainable development. A region’s own development experience does not suppress peer effects. Economically more developed regions are more likely to become imitation targets. Moreover, performance pressure on local officials and the degree of competition among prefecture-level cities strengthen the peer effects. After reclassifying peer groups based on economic structure and geographical location, results show that in the process of rural sustainable development, local governments primarily learn from other regions within the same province that share similar economic structures and are geographically proximate. Based on these findings, this paper proposes differentiated policy recommendations to support sustainable rural development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

31 pages, 2597 KB  
Article
Dark Markets for Bright Futures? Unveiling the Shadow Economy’s Influence on Economic Development
by Oana-Ramona Lobonț, Andreea-Florentina Crăciun, Sorana Vătavu, Ana-Cristina Nicolescu and Marian Pompiliu Cristescu
Systems 2025, 13(12), 1115; https://doi.org/10.3390/systems13121115 - 11 Dec 2025
Viewed by 331
Abstract
This paper examines the changes in the level of informal and shadow economy, mapping their evolution within the EU and measuring their implications on economic growth. The study also addresses the issue of conceptual differences in the methodology for measuring these phenomena. We [...] Read more.
This paper examines the changes in the level of informal and shadow economy, mapping their evolution within the EU and measuring their implications on economic growth. The study also addresses the issue of conceptual differences in the methodology for measuring these phenomena. We used a two-dimensional methodological approach, combining theoretical and empirical analysis. Initially, the bibliometric analysis—conducted exclusively on the Web of Science Core Collection to ensure methodological rigour, international comparability, and high-quality, standardised data—reveals the evolution of the subject and the inconsistencies in the conceptualisation and measurement of phenomena associated with the shadow economy. Subsequently, the normative analysis highlighted the most relevant norms, directives, and projects developed and applied at the European Union level to prevent and combat tax evasion activities. Finally, the empirical dimension of this study was conducted through structural equation modelling and fixed and random effects regressions, using data from the EU 27 member states for the period 2000–2022. Our results reveal a potential relationship between the level of scientific research and the prevalence of the shadow economy within EU countries and indicate a negative effect of the informal economy on economic growth, as undeclared work produces goods and services that are consumed in the informal economy and hinders economic growth. Since the level of the shadow economy has not decreased proportionally with the increase in the GDP per capita, we conclude that the efforts to combat the shadow economy are insufficient, and tax administration needs to be more drastic and efficient. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

16 pages, 738 KB  
Article
Effect of Atmospheric Temperature Variations on Glycemic Patterns of Patients with Type 1 Diabetes: Analysis as a Function of Different Therapeutic Treatments
by Alessandra Mascitelli, Stefano Tumini, Piero Chiacchiaretta, Eleonora Aruffo, Lorenza Sacrini, Maria Alessandra Saltarelli and Piero Di Carlo
Int. J. Environ. Res. Public Health 2025, 22(12), 1850; https://doi.org/10.3390/ijerph22121850 - 11 Dec 2025
Viewed by 215
Abstract
An overview of seasonal variations in glycaemic patterns in children and young adults with type 1 diabetes has been addressed in a previous work, which paved the way for an in-depth study involving not only traditional Multiple Dose Injection (MDI) therapy, but also [...] Read more.
An overview of seasonal variations in glycaemic patterns in children and young adults with type 1 diabetes has been addressed in a previous work, which paved the way for an in-depth study involving not only traditional Multiple Dose Injection (MDI) therapy, but also a comparative analysis with the use of Advanced Hybrid Closed-Loop (AHCL) insulin pumps. The widespread use of Flash Glucose Monitoring (FGM) and Continuous Glucose Monitoring (CGM) systems, as well as dedicated platforms for synchronizing and storing CGM reports, has facilitated an efficient approach to analyzing glycaemic patterns. The effect of environmental parameters on glycemic trends undoubtedly has a clinical relevance, which however can be appropriately managed by knowing the responses in patients treated with different therapeutic approaches. In this sense, it is possible to evaluate how the glycemic trend in diabetic patients, in relation to external temperatures, responds differently to therapies. In this work, the response, in terms of glucose level, in diabetic patients was analyzed, according to the different therapeutic approaches and in relation to variations in external temperature. For the same period of the previous work (one year: Autumn 2022–Summer 2023), seasonal variations in CGM metrics (i.e., Time In Range—TIR, Time Above Range—TAR, Time Below Range—TBR and Coefficient of Variation—CV) were analyzed. The results show a better metabolic control, linked to the effect of the algorithm on the trend of glycaemia. However, the analysis focused on the heatwave of July 2023 highlights the role of extreme temperatures as a stress factor in the insulin pumps performance. A further focus was carried out on the comparison of glycaemic patterns during the school and non-school period for all patients until 21 years old. Results suggest that during the school period, glycaemic patterns, in patients treated with MDI, show a greater onset of hyperglycaemia. From all that has emerged, it appears clear that structured education on diabetes self-management for patients and their families is fundamental and must take into account multiple factors (type of therapy, daily activities, atmospheric temperature) in order to keep their effects under control. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop