Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China
Highlights
- A minor 1.37% proportion loss in high-ecological value of grassland, woodland, wetland, and water body caused a large ESV loss of CNY 116.141 billion.
- The negative contribution of precipitation and human activities to ESV is gradually weakening, while the promoting effect from both is strengthening.
- Small losses of high-ecological-value land leading to large ESV declines highlight the priority of conserving these land types in policy-making; quantifying ESV losses also supports ecological compensation standards in fragile regions.
- As precipitation and human activities shift to exert positive impacts on ESV, this change supports the transition of regional environmental governance from passive restoration to active enhancement.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Assessment Methods for ESV
Improvement for Computing Ecosystem Services
- (1)
- Improved Classification of Built-up Land Ecosystem Service Indicators
- (2)
- Determination of the Sub-land Equivalent Factor Correction Parameter
Evaluation of ESV
- (1)
- Establishment of Equivalent Factor Table
- (2)
- Monetization of Equivalent Factor and Its Corresponding Ecological Land Value Coefficient
- (3)
- Calculation of ESV
2.3.2. Flow Gain/Loss Model of ESV
2.3.3. Spatial Characteristics Analysis
2.3.4. GTWR Model
3. Results
3.1. Analysis of the Evolved Land Changes in Inner Mongolia During 1990–2020
3.2. Analysis of the Spatiotemporal Changes of ESV in Inner Mongolia from 1990 to 2020
3.3. Spatial Autocorrelation Analysis of ESV
3.4. Gain and Loss Analysis of ESV from 1990 to 2020
3.5. Analysis of the Driving Mechanism of ESV Changes
4. Discussion
4.1. Ecosystem Services Considering the Internal Structure of Build-Up Land Were First Investigated in the Ecological Barrier Region of Northern China
4.2. Small-Scale Land Variables with Large Ecological Service Impacts Were Quantified in China’s Arid/Semi-Arid Zones in Inner Mongolia, China
4.3. A Comparison of Ecosystem Services from This Study and Other Regions
4.4. Screening Influencing Factors and Spatiotemporal Heterogeneity Analysis Through Different Models
4.5. Causal Mechanisms and Policy Implications
4.6. Limitations and Future Research Directions
5. Conclusions
- (1)
- Remote sensing revealed cropland and built-up areas expanded persistently, while grassland and wetland declined. Spatially, forest, grassland, and unused land dominated sequentially along the east–west gradient.
- (2)
- Ecosystem service accounting for built-up land internal structure in Northern China’s ecological barrier region was first examined, where the ESV declined from CNY 5515.316 billion to CNY 5425.188 billion from 1990 to 2020.
- (3)
- Another key finding was that small-scale variables with significant ecological service impacts were quantified: only a relatively minor fluctuation of −1.37% among the grassland, woodland, wetland, and water bodies resulted in a huge ESV loss of CNY 116.141 billion, with ESV trends primarily driven by these four land cover types.
- (4)
- The ESV displayed obviously spatial agglomeration effects. The high–high clusters were primarily concentrated in eastern Inner Mongolia, but the low–low clusters were predominantly distributed across the western region and centered around Alxa League.
- (5)
- From the driving perspective, the DEM, slope, and temperature exerted significant negative effects on ESV, but precipitation and human footprint displayed positive correlations during the study period.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ESV | Ecosystem Service Value |
| GLASS-GLC | Global Land Surface Satellite–Annual Dynamics of Global Land Cover |
| MODIS | Moderate-resolution Imaging Spectroradiometer |
| ESA CCI-LC | European Space Agency Climate Change Initiative Land Cover |
| CAS | Chinese Academy of Sciences |
| OLS | Ordinary Least Squares Regression |
| GD | Geographic Detector |
| GWR | Geographically Weighted Regression |
| GTWR | Geographically and Temporally Weighted Regression |
| DEM | Digital Elevation Model |
| NDVI | Normalized Difference Vegetation Index |
| NPP | Net Primary Productivity |
| FVC | Fractional Vegetation Cover |
| CLUD | China Land Use/Cover Dataset |
| UEMM | Urban Environment Monitoring and Modeling |
| ISA | Impervious Surface Area |
| VIF | Variance Inflation Factor |
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2020, 26, 289–301. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Daily, G.C.; Söderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.O.; Kautsky, N. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, J.; Qiu, J.; Amani-Beni, M.; Wang, Y.; Yang, M.; Chen, J. A modified equivalent factor method evaluation model based on land use changes in Tianfu new area. Land 2023, 12, 1335. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landsc. Urban Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Li, X.; Lu, D. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018. Earth Syst. Sci. Data 2021, 13, 63–82. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat. Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Song, X. Changes of ecosystem service value in a coastal zone of Zhejiang province, China, during rapid urbanization. Int. J. Env. Res. Public Health 2018, 15, 1301. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Wang, C.; Tian, L.; Lin, M.; Xu, S.; Zhu, C. A Comparison of recent global time-series land cover products. Remote Sens. 2025, 17, 1417. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Zhu, C.; Yang, H. The impact of land use change on ecosystem service value in the upstream of Xiong’an new area. Sustainability 2020, 12, 5707. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Du, G.; Yan, C.; Wu, S.; Li, R.; Lu, D.; Pan, T.; Ning, J.; Guo, C. Monitoring periodically national land use changes and analyzing their spatiotemporal patterns in China during 2015–2020. J. Geogr. Sci. 2022, 32, 1705–1723. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, P.; Xia, J.; He, W.; Gao, X. Temporal and spatial analysis of the ecosystem service values in the Three Gorges Reservoir area of China based on land use change. Environ. Sci. Pollut. R. 2022, 29, 26549–26563. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, Q.; Bai, H.; Luo, P.; Liu, J. Spatio-temporal evolution and coupled coordination of LUCC and ESV in cities of the Transition Zone, Shenmu City, China. Remote Sens. 2023, 15, 3136. [Google Scholar] [CrossRef]
- Wang, Y.; Shataer, R.; Zhang, Z.; Zhen, H.; Xia, T. Evaluation and analysis of influencing factors of ecosystem service value change in Xinjiang under different land use types. Water 2022, 14, 1424. [Google Scholar] [CrossRef]
- Duan, X.; Chen, Y.; Wang, L.; Zheng, G.; Liang, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef]
- Cui, X.; Liu, C.; Shan, L.; Lin, J.; Zhang, J.; Jiang, Y.; Zhang, G. Spatial-Temporal responses of ecosystem services to land use transformation driven by rapid urbanization: A case study of Hubei Province, China. Int. J. Environ. Res. Public Health 2021, 19, 178. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.; Wang, B.; Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth Sci. 2016, 75, 416. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain–oasis–desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Yang, L.; Zhu, Z. Variations in ecosystem service value and its driving factors in the Nanjing Metropolitan Area of China. Forests 2023, 14, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, H.; Li, A.; Ma, X.; Sun, A.; Zhang, J. Spatial-temporal differentiation and influencing factors of ecosystem health in Three-River-Source national Park. Ecol. Indic. 2025, 171, 113183. [Google Scholar] [CrossRef]
- Hu, B.; Kang, F.; Han, H.; Cheng, X.; Li, Z. Exploring drivers of ecosystem services variation from a geospatial perspective: Insights from China’s Shanxi Province. Ecol. Indic. 2021, 131, 108188. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, X.; Halik, Ü. The driving mechanism and spatio-temporal nonstationarity of oasis urban green landscape pattern changes in Urumqi. Remote Sens. 2025, 17, 3123. [Google Scholar] [CrossRef]
- Yu, D. Spatially varying development mechanisms in the Greater Beijing Area: A geographically weighted regression investigation. Ann. Reg. Sci. 2006, 40, 173–190. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Du, Z.; Huang, B.; Zhang, F.; Liu, R. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J Geogr. Inf. Sci. 2021, 35, 582–608. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Ruan, T.; Xu, Y.; Jones, L.; Boeing, W.J.; Calfapietra, C. Green infrastructure sustains the food-energy-water-habitat nexus. Sustain. Cities Soc. 2023, 98, 104845. [Google Scholar] [CrossRef]
- Kuang, W. Mapping global impervious surface area and green space within urban environments. Sci. China Earth Sci. 2019, 62, 1591–1606. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, J. Spatiotemporal differentiation of ecosystem service value and its drivers in the Jiangsu Coastal Zone, Eastern China. Sustainability 2022, 14, 15073. [Google Scholar] [CrossRef]
- Xu, X.; Luo, X.; Ma, C.; Xiao, D. Spatial-temporal analysis of pedestrian injury severity with geographically and temporally weighted regression model in Hong Kong. Transport. Res. F Traf. Psychol. Behav. 2020, 69, 286–300. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Du, H.; Li, H. Response of ecosystem service value to LULC under multi-scenario simulation considering policy spatial constraints: A case study of an ecological barrier region in China. Land 2025, 14, 601. [Google Scholar] [CrossRef]
- Song, M.; An, M.; He, W.; Wu, Y. Research on land use optimization based on PSO-GA model with the goals of increasing economic benefits and ecosystem services value. Sustain. Cities Soc. 2025, 119, 106072. [Google Scholar] [CrossRef]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Tariq, A.; Sardans, J.; Zeng, F.; Graciano, C.; Hughes, A.C.; Farré-Armengol, G.; Peñuelas, J. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. Glob. Change Biol. 2024, 30, e17292. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land use and land cover change in the Qinghai Lake region of the Tibetan Plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Huang, S. Evaluation of cultivated land ecosystem service value in the black soil region of Northeast China. Sci. Rep. 2025, 15, 20373. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Li, H.; Niu, X.; Wang, B. Prediction of ecosystem service function of Grain for Green Project based on ensemble learning. Forests 2021, 12, 537. [Google Scholar] [CrossRef]
- Han, H.; Yang, J.; Liu, Y.; Zhang, Y.; Wang, J. Effect of the Grain for Green Project on freshwater ecosystem services under drought stress. J. Mt. Sci. 2022, 19, 974–986. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological restoration for sustainable development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef]
- Dong, X.; Liu, M. Relationships among LUCC, ecosystem services and human well-being. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 465–475. [Google Scholar] [CrossRef]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]








| Types | Names | Years | Sources |
|---|---|---|---|
| Natural environment | DEM | / | https://www.resdc.cn/ (accessed on 1 September 2025) |
| Temperature | 2000/2010/2020 | https://data.tpdc.ac.cn/ (accessed on 1 September 2025) | |
| Precipitation | 2000/2010/2020 | https://data.tpdc.ac.cn/ (accessed on 1 September 2025) | |
| NDVI | 2000/2010/2020 | https://lpdaac.usgs.gov/ (accessed on 1 September 2025) | |
| NPP | 2000/2010/2020 | https://lpdaac.usgs.gov/ (accessed on 1 September 2025) | |
| FVC | 2000/2010/2020 | https://lpdaac.usgs.gov/ (accessed on 1 September 2025) | |
| Soil wind erosion | 2000/2010/2020 | https://www.resdc.cn/ (accessed on 1 September 2025) | |
| Human activity | CLUD | 1990/2000/2010/2020 | https://www.resdc.cn/ (accessed on 1 September 2025) |
| Impervious surface | 1990/2000/2010/2020 | [7,8] | |
| Human footprint | 2000/2010/2020 | [31] | |
| Statistical data | Crop sown area | 1990/2000/2010/2020 | Yearbooks |
| Net profit | 1990/2000/2010/2020 | ||
| Other data | City center points | / | https://www.resdc.cn/ (accessed on 1 September 2025) |
| Ecosystem Types | Supply | Regulation | Support | Culture | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| First-Level | Second-Level | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
| Cropland | Paddy land | 1.36 | 0.09 | −2.63 | 1.11 | 0.57 | 0.17 | 2.72 | 0.01 | 0.19 | 0.21 | 0.09 |
| Upland crops | 0.85 | 0.40 | 0.02 | 0.67 | 0.36 | 0.10 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 | |
| Woodland | Forest | 0.27 | 0.63 | 0.33 | 2.07 | 6.20 | 1.80 | 3.86 | 2.52 | 0.19 | 2.30 | 1.01 |
| Shrub | 0.19 | 0.43 | 0.22 | 1.41 | 4.23 | 1.28 | 3.35 | 1.72 | 0.13 | 1.57 | 0.69 | |
| Woods | 0.20 | 0.46 | 0.24 | 1.53 | 4.57 | 1.36 | 2.99 | 1.86 | 0.14 | 1.70 | 0.74 | |
| Others | 0.25 | 0.58 | 0.30 | 1.91 | 5.71 | 1.67 | 3.74 | 2.32 | 0.18 | 2.12 | 0.93 | |
| Grassland | High coverage | 0.38 | 0.56 | 0.31 | 1.97 | 5.21 | 1.72 | 3.82 | 2.40 | 0.18 | 2.18 | 0.96 |
| Medium coverage | 0.23 | 0.34 | 0.19 | 1.21 | 3.19 | 1.05 | 2.34 | 1.47 | 0.11 | 1.34 | 0.59 | |
| Low coverage | 0.18 | 0.26 | 0.14 | 0.91 | 2.39 | 0.82 | 1.76 | 1.11 | 0.09 | 1.01 | 0.45 | |
| Water body | Streams and rivers, lakes, reservoirs and ponds, beach and shore | 0.80 | 0.23 | 8.29 | 0.77 | 2.29 | 5.55 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
| Built-up land | Urban, rural settlements, industrial and mining land | 0.08 | 0.14 | 0.24 | 0.49 | 1.40 | 0.59 | 2.97 | 0.60 | 0.04 | 0.58 | 0.27 |
| Unused land | Sandy land, gobi, salina, swamp land, bare soil, bare rock, others | 0.01 | 0.03 | 0.02 | 0.13 | 0.10 | 0.41 | 0.24 | 0.15 | 0.01 | 0.14 | 0.06 |
| Wetland | Wetland | 0.51 | 0.50 | 2.59 | 1.90 | 3.60 | 3.60 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
| Ecosystem Types | Supply | Regulation | Support | Culture | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| First-Level | Second-Level | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
| Cropland | Paddy land | 4777.33 | 316.15 | −9238.51 | 3899.14 | 2002.26 | 597.17 | 9554.65 | 35.13 | 667.42 | 737.68 | 316.15 |
| Upland crops | 2985.83 | 1405.1 | 70.25 | 2353.54 | 1264.59 | 351.27 | 948.44 | 3618.12 | 421.53 | 456.66 | 210.76 | |
| Woodland | Forest | 948.44 | 2213.03 | 1159.2 | 7271.37 | 21,778.99 | 6322.93 | 13,559.18 | 8852.1 | 667.42 | 8079.3 | 3547.87 |
| Shrub | 667.42 | 1510.48 | 772.8 | 4952.96 | 14,858.89 | 4496.31 | 11,767.68 | 6041.91 | 456.66 | 5515 | 2423.79 | |
| Woods | 702.55 | 1615.86 | 843.06 | 5374.49 | 16,053.22 | 4777.33 | 10,503.09 | 6533.7 | 491.78 | 5971.66 | 2599.43 | |
| Others | 878.19 | 2037.39 | 1053.82 | 6709.33 | 20,057.75 | 5866.28 | 13,137.65 | 8149.56 | 632.29 | 7447.01 | 3266.85 | |
| Grassland | High coverage | 1334.84 | 1967.13 | 1088.95 | 6920.1 | 18,301.38 | 6041.91 | 13,418.67 | 8430.58 | 632.29 | 7657.77 | 3372.23 |
| Medium coverage | 807.93 | 1194.33 | 667.42 | 4250.42 | 11,205.64 | 3688.38 | 8219.81 | 5163.73 | 386.4 | 4707.07 | 2072.52 | |
| Low coverage | 632.29 | 913.31 | 491.78 | 3196.59 | 8395.45 | 2880.45 | 6182.42 | 3899.14 | 316.15 | 3547.87 | 1580.73 | |
| Water body | Streams and rivers, lakes, reservoirs and ponds, beach and shore | 2810.19 | 807.93 | 29,120.61 | 2704.81 | 8044.17 | 19,495.71 | 359,142.54 | 3266.85 | 245.89 | 8957.49 | 6639.08 |
| Built-up land | Urban, rural settlements, industrial and mining land | 281.02 | 491.78 | 843.06 | 1721.24 | 4917.84 | 2072.52 | 10,432.84 | 2107.64 | 140.51 | 2037.39 | 948.44 |
| Unused land | Sandy land, gobi, salina, swamp land, bare soil, bare rock, others | 35.13 | 105.38 | 70.25 | 456.66 | 351.27 | 1440.22 | 843.06 | 526.91 | 35.13 | 491.78 | 210.76 |
| Wetland | Wetland | 1791.5 | 1756.37 | 9098 | 6674.21 | 12,645.86 | 12,645.86 | 85,113.69 | 8114.43 | 632.29 | 27,645.26 | 16,615.26 |
| Ecosystem Types | ESV | Variation | |||||||
|---|---|---|---|---|---|---|---|---|---|
| First-Level | Second-Level | 1990 | 2000 | 2010 | 2020 | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 |
| Cropland | Paddy land | 42.64 | 48.27 | 51.07 | 46.31 | 5.63 | 2.80 | −4.76 | 3.67 |
| Upland crops | 1562.86 | 1660.05 | 1676.09 | 1686.51 | 97.19 | 16.04 | 10.42 | 123.65 | |
| Woodland | Forest | 10,398.69 | 10,406.03 | 10,485.28 | 10,514.94 | 7.34 | 79.25 | 29.66 | 116.25 |
| Shrub | 1042.46 | 1060.52 | 1055.84 | 1053.15 | 18.06 | −4.68 | −2.69 | 10.69 | |
| Woods | 768.39 | 766.33 | 714.21 | 717.54 | −2.06 | −52.12 | 3.33 | −50.85 | |
| Others | 312.51 | 91.58 | 110.10 | 114.25 | −220.93 | 18.52 | 4.15 | −198.26 | |
| Grassland | High coverage | 12,187.56 | 11,700.07 | 11,714.46 | 11,775.03 | −487.49 | 14.39 | 60.57 | −412.53 |
| Medium coverage | 8799.97 | 8791.07 | 8687.99 | 8571.71 | −8.90 | −103.08 | −116.28 | −228.26 | |
| Low coverage | 2969.65 | 2993.05 | 2952.64 | 2955.31 | 23.40 | −40.41 | 2.67 | −14.34 | |
| Water body | Streams and rivers, lakes, reservoirs and ponds, beach and shore | 6298.21 | 6474.43 | 6075.82 | 6199.86 | 176.22 | −398.61 | 124.04 | −98.35 |
| Wetland | Wetland | 9100.48 | 8968.21 | 8927.31 | 8814.72 | −132.27 | −40.90 | −112.59 | −285.76 |
| Built-up land | Urban, rural settlements, industrial and mining land | 291.09 | 298.97 | 326.07 | 415.49 | 7.88 | 27.10 | 89.42 | 124.40 |
| Unused land | Sandy land, gobi, salina, swamp land, bare soil, bare rock, others | 1378.65 | 1388.12 | 1396.85 | 1387.06 | 9.47 | 8.73 | −9.79 | 8.41 |
| Total | 55,153.16 | 54,646.70 | 54,173.73 | 54,251.88 | −506.46 | −472.97 | 78.15 | −901.28 | |
| Year | Moran’s I | Z | p |
|---|---|---|---|
| 1990 | 0.794 | 121.500 | <0.01 |
| 2000 | 0.791 | 121.001 | <0.01 |
| 2010 | 0.800 | 122.467 | <0.01 |
| 2020 | 0.799 | 122.246 | <0.01 |
| 1990 | 2000 | ||||||||||||
| Paddy land | Upland crops | Forest | Shrub | Woods | Others | High coverage | Medium coverage | Low coverage | Water body | Built-up land | Unused land | Wetland | |
| Paddy land | – | 0 | 0.05 | 0 | 0.01 | 0 | 0.02 | 0.03 | 0 | 2.48 | 0 | 0 | 0.06 |
| Upland crops | −0.07 | – | 14.73 | 1.32 | 1.24 | 0.81 | 139.2 | 22.78 | 7.36 | 47.02 | 1.03 | −1.76 | 15 |
| Forest | −0.12 | −85.23 | – | −1.93 | −1.02 | −0.44 | −0.68 | −1.28 | −0.96 | 1.35 | −0.24 | −0.12 | 7.9 |
| Shrub | −0.03 | −4.01 | 0.31 | – | 0.02 | 0.14 | 0.67 | −0.38 | −0.67 | 0.35 | −0.03 | −1.72 | 0.69 |
| Woods | −0.09 | −13.43 | 1 | −0.04 | – | 0.01 | 0.33 | −0.25 | −0.15 | 0.46 | −0.04 | −0.1 | 4.7 |
| Others | 0 | −9.67 | 4.99 | −3.63 | −1.78 | – | −0.12 | −0.73 | 0 | 0.13 | −0.02 | 0 | 8.72 |
| High coverage | −5.57 | −295.67 | 2.32 | −2.36 | −1.81 | 0 | – | −116.97 | −47.25 | 70.05 | −3.13 | −30.41 | 66.7 |
| Medium coverage | −0.89 | −84.9 | 6.82 | 0.66 | 1.05 | 0.3 | 27.6 | – | −21 | 39.02 | −0.81 | −30.85 | 11.45 |
| Low coverage | −0.27 | −8.01 | 1.42 | 0.39 | 0.23 | 0.09 | 10.46 | 8.36 | – | 20.06 | −0.15 | −70.34 | 3.06 |
| Water body | −13.31 | −80.53 | −3.99 | −3.1 | −0.55 | −0.01 | −11.52 | −23.85 | −20.41 | – | −1.98 | −99.31 | −19.61 |
| Built-up land | 0 | −0.04 | 0.01 | 0 | 0 | 0 | 0.01 | 0.01 | 0 | 0.35 | – | 0 | 0.01 |
| Unused land | 0.01 | 1.52 | 1.21 | 0.26 | 0.45 | 0 | 10.8 | 29.79 | 28.24 | 150.55 | 0.16 | – | 20.23 |
| Wetland | −14.3 | −68.07 | −2.42 | −0.38 | −0.24 | 0 | −18.31 | −48.56 | −21.89 | 74.45 | −1.89 | −74.07 | – |
| 2000 | 2010 | ||||||||||||
| Paddy land | Upland crops | Forest | Shrub | Woods | Others | High coverage | Medium coverage | Low coverage | Water body | Built-up land | Unused land | Wetland | |
| Paddy land | – | 0.03 | 0.03 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0.28 | 0.01 | 0 | 0.2 |
| Upland crops | −0.02 | – | 25.21 | 4.25 | 1.89 | 0.32 | 40.48 | 20.57 | 5.79 | 43.5 | 3.44 | −0.97 | 10.18 |
| Forest | −0.04 | −13.02 | – | −2.83 | −9.1 | −3.33 | −1.6 | −4.25 | −0.9 | 2.52 | −1.85 | −0.5 | 3.13 |
| Shrub | −0.03 | −3.47 | 5.72 | – | 0.02 | 0.11 | 3.05 | −0.94 | −0.55 | 4.99 | −0.38 | −0.33 | 1.49 |
| Woods | 0 | −2.31 | 29.76 | −0.01 | – | 0.28 | 0.42 | −0.18 | −0.33 | 1.22 | −0.09 | −0.12 | 1.22 |
| Others | −0.01 | −1.21 | 0.62 | 0 | −2.36 | – | −0.01 | −0.04 | −0.11 | 0.04 | −0.03 | −0.03 | 1.43 |
| High coverage | −1.19 | −63.19 | 2.24 | −3.78 | −0.36 | 0 | – | −27.12 | −33.06 | 27.21 | −8 | −31.79 | 11.09 |
| Medium coverage | −0.78 | −40.06 | 4.91 | 1.4 | 0.49 | 0.24 | 55.38 | – | −18.82 | 33.3 | −4.58 | −48.51 | 8.02 |
| Low coverage | −0.22 | −10.34 | 4.04 | 0.21 | 0.3 | 0.1 | 38.33 | 19.8 | – | 34.71 | −1.11 | −48.1 | 14.1 |
| Water body | −21.16 | −60.8 | −5.61 | −2.71 | −2.26 | 0 | −15.87 | −44.71 | −39.09 | – | −4.17 | −294.41 | −117.57 |
| Built-up land | 0 | −0.05 | 0.01 | 0 | 0 | 0 | 0.01 | 0.02 | 0.01 | 3.39 | – | 0 | 0 |
| Unused land | 0.13 | 1.61 | 0.18 | 0.11 | 0.08 | 0.02 | 5.91 | 25.58 | 34.52 | 82.93 | 0.93 | – | 9.99 |
| Wetland | −18.05 | −32.29 | −0.74 | −0.53 | −0.12 | −0.04 | −26.23 | −35.05 | −8.81 | 36.27 | −2.89 | −17.63 | – |
| 2010 | 2020 | ||||||||||||
| Paddy land | Upland crops | Forest | Shrub | Woods | Others | High coverage | Medium coverage | Low coverage | Water body | Built-up land | Unused land | Wetland | |
| Paddy land | – | 0.03 | 0.49 | 0.36 | 0 | 0.34 | 0.43 | 4.27 | 0.55 | 0.25 | 0.46 | −1.94 | 0 |
| Upland crops | −0.06 | – | 10.94 | 0.34 | 0.5 | 3.45 | 13.81 | 4.54 | 1.08 | 41.31 | 10.78 | −0.2 | 0.7 |
| Forest | −0.06 | −5.81 | – | −0.02 | −0.12 | −0.03 | −0.06 | −0.08 | −0.09 | 1.33 | −2.96 | −0.53 | 0.02 |
| Shrub | 0 | −0.47 | 0.03 | – | 0 | 0 | 0.08 | −0.12 | −0.8 | 0.66 | −0.77 | −0.03 | 0 |
| Woods | 0 | −0.84 | 0.01 | 0 | – | 0 | 0.02 | −0.03 | −0.04 | 0.35 | −0.75 | −0.07 | 0 |
| Others | 0 | −1.02 | 0 | 0 | 0 | – | 0 | 0 | 0 | 0 | −0.38 | 0 | 0 |
| High coverage | −0.26 | −38.33 | 0.24 | −0.24 | −0.16 | 0 | – | −35.98 | −9.47 | 16.17 | −22.45 | −0.49 | 0.5 |
| Medium coverage | −0.03 | −14.84 | 3.09 | 0.03 | 0.28 | 0.19 | 77.44 | – | −14.08 | 23.21 | −13.63 | −1.25 | 0.05 |
| Low coverage | 0 | −10.1 | 0.9 | 0.17 | 0.39 | 0.03 | 19.45 | 9.86 | – | 16.01 | −3.21 | −0.95 | 0.07 |
| Water body | −1.54 | −33.95 | −0.59 | 0 | −0.06 | −0.06 | −3.91 | −4.02 | −14.24 | – | −30.28 | −29.08 | −18.49 |
| Built-up land | 0 | −0.26 | 0.28 | 0 | 0.18 | 0 | 0.24 | 0.18 | 0.1 | 1.94 | – | −2.53 | 0.03 |
| Unused land | 0.02 | 3.94 | 16.23 | 0.21 | 1.95 | 0.05 | 3.93 | 15.69 | 24.19 | 95.57 | 11.16 | – | 1.2 |
| Wetland | −3.89 | −22.74 | −0.19 | 0 | −0.01 | −0.06 | −7.04 | −3.95 | −14.26 | 43.07 | −7.94 | −25.38 | – |
| 1990 | 2020 | ||||||||||||
| Paddy land | Upland crops | Forest | Shrub | Woods | Others | High coverage | Medium coverage | Low coverage | Water body | Built-up land | Unused land | Wetland | |
| Paddy land | – | 0.04 | 0.15 | 0.25 | 0.01 | 0.1 | 0.44 | 4.09 | 0.51 | 2.75 | 0.35 | −1.92 | 0.24 |
| Upland crops | −0.12 | – | 47 | 4.96 | 3.44 | 4.08 | 183.04 | 39.65 | 12.11 | 113.73 | 15.38 | −2.09 | 20.89 |
| Forest | −0.17 | −100.76 | – | −4.73 | −10.28 | −3.64 | −2.28 | −5.44 | −1.49 | 4.7 | −4.93 | −0.91 | 11.03 |
| Shrub | −0.07 | −7.58 | 5.99 | – | 0.04 | 0.17 | 3.69 | −1.48 | −1.93 | 5.66 | −1.06 | −2 | 2.18 |
| Woods | 0 | −15.77 | 30.48 | −0.06 | – | 0.29 | 0.75 | −0.41 | −0.48 | 1.65 | −0.79 | −0.45 | 5.89 |
| Others | −0.01 | −12.06 | 5.57 | −3.6 | −3.75 | – | −0.13 | −0.76 | −0.08 | 0.18 | −0.32 | −0.03 | 9.31 |
| High coverage | −7.18 | −384.27 | 4.78 | −6.87 | −2.16 | 0 | – | −170.91 | −81.89 | 75.63 | −35.79 | −63.75 | 83.22 |
| Medium coverage | −1.3 | −130.54 | 14.25 | 1.77 | 1.74 | 0.62 | 151.21 | – | −48.02 | 76.93 | −18.7 | −78.61 | 20.38 |
| Low coverage | −0.41 | −26.52 | 5.58 | 0.74 | 1.06 | 0.23 | 62.54 | 32.94 | – | 59.28 | −4.34 | −109.76 | 16.03 |
| Water body | −35.92 | −173.02 | −10.38 | −5.12 | −3.06 | −0.26 | −28.4 | −57.49 | −55.48 | – | −29.3 | −219.57 | −117.55 |
| Built-up land | 0 | −0.15 | 0.2 | 0 | 0.02 | 0.01 | 0.18 | 0.15 | 0.06 | 5.12 | – | −2.42 | 0.04 |
| Unused land | 0.13 | 6.54 | 18.47 | 0.63 | 2.46 | 0.04 | 20.36 | 62.31 | 81.63 | 190.23 | 11.28 | – | 23.75 |
| Wetland | −34.71 | −118.55 | −3.88 | −1.18 | −0.36 | −0.68 | −47.25 | −85.65 | −43.03 | 106.21 | −15.98 | −128.83 | – |
| Parameter | OLS | GWR | GTWR |
|---|---|---|---|
| R2 | 0.769 | 0.971 | 0.972 |
| AdjR2 | – | 0.966 | 0.968 |
| AICc | 1854.800 | 1852.639 | 1828.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Kuang, W.; Hong, G.; Hou, Y.; Guo, C.; Bao, W.; Wei, Z.; Dou, Y. Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China. Remote Sens. 2025, 17, 4040. https://doi.org/10.3390/rs17244040
Yin Z, Kuang W, Hong G, Hou Y, Guo C, Bao W, Wei Z, Dou Y. Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China. Remote Sensing. 2025; 17(24):4040. https://doi.org/10.3390/rs17244040
Chicago/Turabian StyleYin, Zherui, Wenhui Kuang, Geer Hong, Yali Hou, Changqing Guo, Wenxuan Bao, Zhishou Wei, and Yinyin Dou. 2025. "Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China" Remote Sensing 17, no. 24: 4040. https://doi.org/10.3390/rs17244040
APA StyleYin, Z., Kuang, W., Hong, G., Hou, Y., Guo, C., Bao, W., Wei, Z., & Dou, Y. (2025). Slight Change, Huge Loss: Spatiotemporal Evolution of Ecosystem Services and Driving Factors in Inner Mongolia, China. Remote Sensing, 17(24), 4040. https://doi.org/10.3390/rs17244040

